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Supplementary Note 1: V −
B Coherence Protection

A key benefit of the CCDD scheme is that it enhances spin coherence. This provides

a larger contrast at longer MW pulsewidths, increasing max|∂(∆C)
∂B | and therefore

improving amplitude sensitivity. In this section we quantify these enhancements.
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We start by characterizing the natural lifetimes of the spin system. In Fig. 1(a)

we record a conventional Rabi oscillation. Fitting to a damped sine yields a coherence

time of TRabi = 36 ns for a Rabi frequency of Ω = 100 MHz. This short coherence

time is a consequence of electron-nuclear spin interactions [1]. In Fig. 1(b) we record

the longitudinal relaxation time, finding T1 = 14.9 µs. To understand the effect of the

CCDD drive relative to these natural coherence times, in Supplementary Fig. 1(c) we

present CCDD driven Rabi oscillations. The coherence time is a function of the drive

phase, θm, drive amplitude, Ω (which we fix at 100 MHz in all experiments), second

drive amplitude, ϵm, and signal amplitude, gx. In a typical CCDD implementation

we find TCCDD(θm = 0, ϵm = 10 MHz, gx = 0) = 7.477 µs, in excellent agreement

with the T2 ≈ 1
2T1 limit proposed for systems limited by two-phonon induced spin

relaxation [2]. Changing θm = π/2, we find TCCDD(θm = π/2, ϵm = 10MHz, gx = 0)

= 716 ns. Whilst the coherence time is reduced compared to θm = 0, it is ≈ 20 times

larger than the unprotected spin system. Moreover application of a resonant signal

largely recovers coherence, with gx = 2 MHz we find the coherence is extended to

TCCDD(θm = π/2, ϵm = 10 MHz, gx = 2 MHz) = 3.94 µs. Supplementary Fig. 1(d)

provides a more detailed view of the data and fits between 900 - 1000 ns.

To better understand the limits of the the coherence with and without a sig-

nal, we perform sweeps of the modulation amplitude, ϵm and signal amplitude, gx.

The coherence times are extracted from fits to the linewidth of the FFT of the

Rabi oscillation and plotted in Supplementary Figure 1(e) and (f). As the modula-

tion amplitude ϵm increases, we observe an initial sharp increase in coherence time,

with a maximum TCCDD(θm = π/2, ϵm = 12 MHz, gx = 0) ≈ 1150 ns (Supple-

mentary Figure 1(e)). Further increasing ϵm degrades the coherence, consistent with

previous observations[3]. The origin of the dip in coherence time for modulation ampli-

tudes centered around 8 MHz is unknown, but could be due to hyperfine coupling
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Supplementary Figure 1: V −
B coherence times (a) Conventional Rabi oscillation of the ms = 0

to ms = −1 ground state transition. A fit to a damped sine y = y0 + y1 sin(ωt+ ϕ)e−t/TRabi gives a
coherence time of TRabi = 36 ns.(b) T1 decay, fitting to a damped exponential y = y0+y1e−t/T1 gives
T1 = 14.9 µs. (c) CCDD Rabi oscillations. In the absence of a signal field, choosing θm = 0 (θm = π/2)
gives a fitted coherence time of TCCDD(θm = 0, ϵm = 10 MHz, gx = 0) = 7.477 µs, plotted in light
green (TCCDD(θm = π/2, ϵm = 10MHz, gx = 0) = 716 ns, plotted in purple). A gx = 2 MHz resonant
signal extends the θm = π/2 coherence time to TCCDD(θm = π/2, ϵm = 10 MHz, gx = 2 MHz) = 3.94
µs, plotted in dark green. θm = 0 data is fit to y = y0+y1 sin(ωt+ϕ)e−t/TCCDD(θm=0, ϵm, gx), while
θm = π/2 data is fit to y = y0 +(y1 cos(ω1t+ϕ1)+ y2 cos(ω2t+ϕ2))e−t/TCCDD(θm=π/2, ϵm, gx).(d)
Close up of (c) between 900 and 1000 ns. (e) TCCDD(θm = π/2, ϵm, gx = 0) as a function of
modulation amplitude, ϵm, in the absence of a signal (gx=0). (f) TCCDD(θm = π/2, ϵm = 10MHz, gx)
as a function of signal amplitude, gx, for a fixed modulation amplitude, ϵm = 10 MHz. In (e) and
(f) each data point corresponds to the linewidth of a lorentzian fit to the FFT of the CCDD Rabi
oscillation. The error bars indicate the uncertainties obtained from the fitting procedure.
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to neighboring nuclei[4, 5]. In the case of a resonant signal, plotted in Supplemen-

tary Figure 1(f), we observe a monotonic increase in the coherence time, reaching

TCCDD(θm = π/2, ϵm = 10MHz, gx = 400 kHz) ≈ 4 µs.

Supplementary Note 2: Device Response to Signal Frequency

In this section we start by discussing the sensor response to off-resonant signals. We

perform CCDD Rabi oscillations analogous to Fig. 2 of the main text, but as a function

of signal frequency. The interaction is illustrated by the FFTs plotted in Supplemen-

tary Fig. 2(a) and (b) for signal phases of ϕs = 0 and π
2 , respectively. The Fourier

response centres on the same nested Mollow triplet structure as in the main text, with

a central frequency of Ω = 100 MHz, CCDD sidebands at Ω± ϵm = 100±10 MHz and

signal induced sidebands. The latter is complex in structure, and depends on the detun-

ing between the sensor resonance and the signal frequency, δ = ωs−Ω0−ϵm. The sensor

undergoes a sharp transition when exposed to a resonant signal, shown here at a sig-

nal frequency of 2.31 GHz, with distinct responses for each signal phase. In particular,

the main frequency components change from Ω = 100MHz to Ω± ϵm = 100± 10MHz

for signal phases of ϕs = 0, and from Ω± ϵm = 100±10MHz to Ω± gx = 100±1MHz

for signal phases of ϕs = π
2 . This illustrates our protocol’s dependence on signal fre-

quency, which we detect by effectively filtering between these different Fourier regimes.

Far from resonance, the response reduces to frequencies at Ω± ϵm, as expected for a

CCDD Mollow triplet with the drive phase θm = π
2 [4].

The CCDD microwave drive also produces multiple other sensor resonances. Each

can be tuned using the drive parameters and display a similar response [6]. This is an

important feature of CCDD sensing schemes, as tuning the electron spin transition

normally involves changing the DC magnetic field by moving an external magnet,

which is slow and imprecise. Whereas in our device, the sensor resonances can be
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Supplementary Figure 2: Off resonant sensor response. Fourier transforms of CCDD driven
Rabi oscillations as a function of applied signal frequency for signal phases of ϕs = 0 in (a) and
ϕs = π

2
in (b). The sensor resonance is set to ωs = ω0 − ϵm = 2.31GHz. When this condition is met

a sharp change in the Fourier response is seen for both signal phases, indicating the device sensitivity
to signal frequency. Further information can be found in [6]

tuned within ±150 MHz of the electron spin transition electronically, as illustrated in

Supplementary Fig. 3. This is useful when probing signals of unknown frequency.

Using our protocol, in Supplementary Fig. 4 we show that these additional res-

onances can also resolve signal phase. We use the same CCDD parameters as those

in the main text, which targeted a resonance at ωs = ω0 − ϵm = 2.31 GHz. Instead,

here we apply a signal frequency of ωs = ω0 − Ω + ϵm = 2.23 GHz and analyse the

response of a CCDD Rabi measurement. To illustrate the dependence on signal phase,

Supplementary Fig. 4(a) shows the response for ϕs = 0 and π
2 . The Fourier response

is presented in Supplementary Figs. 4(b), where it is clear that each signal phase pro-

duces a different sensor output, analogous to the results presented in the main text.

Note that the Fourier response for each signal phase is reversed in comparison to the
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Supplementary Figure 3: Sensor resonances Sensor response as a function of signal frequency
ωs, displaying six sensor resonances centered on the electron spin transition, ω0 = 2.32 GHz. The
contrast was sampled after exposing the V −

B ensemble to a CCDD pulsewidth of TMW = 950 ns. The
applied signal had an amplitude of gx = 0.8 MHz and phase ϕs = 0. Drive phase was omitted, θm = 0.

Supplementary Figure 4: Alternative sensor resonance. (a) CCDD driven Rabi oscillation
with the same parameters as in the main text, but for a signal frequency of ωs = 2.23GHz instead of
ωs = 2.31 GHz. The two resonances display the same behaviour as in the main text, demonstrating
that the additional tuneable resonances produced through the CCDD scheme are also sensitive to
signal phases of ϕs = 0 (blue) and ϕs = π/2 (green). (b) Fourier transform of (a). The inset shows a
closeup of the right hand Mollow triplet, which presents an opposite phase response to the resonance
used in the main text.

resonance in the main text. This has no impact on the sensors ability to distinguish

signal phase as the protocol only requires two distinct responses to contrast against.

We also note that the magnitude of the Fourier response is reduced for signal fre-

quencies of ωs = ω0 − Ω + ϵm = 2.23 GHz. This applies for all resonances other than

ωs = ω0 ± ϵm, as they are subject to increased attenuation in the dressed state frame

of reference [7].
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Supplementary Note 3: Spin Response to Signal Vector

CCDD sensing schemes operate by driving the spin vector along multiple axes at mul-

tiple frequencies, producing additional resonances in the system whilst also decoupling

the spin from sources of magnetic noise. These dynamics produce a spin response that

depends simultaneously on the signal frequency and its direction of propagation. Our

sensor displays six resonances centred on the electron spin resonance. The frequencies

depend on the CCDD drive amplitudes Ω and ϵm and are only sensitive to signals

propagating in the XY plane[6]. Two additional resonances appear in the MHz range,

which are sensitive to signals propagating along the z-axis, and depend only on Ω and

ϵm. In the main text we focused on a single resonance for a signal propagating along

the x-axis. Here we consider three signals, one propagating along each axis. Selecting a

single resonance for each we show that the protocol retains phase sensitivity regardless

of the signal direction.

We consider the signal field,

Hs = (gxσx + gyσy + gzσz) cos(ωst+ ϕs), (1)

where gx, gy and gz are the signal amplitudes along each axis, σi are the Pauli oper-

ators, ωs is the signal frequency and ϕs is signal phase. We move through two rotating

reference frames, first with respect to 1
2ω0σz, and then 1

2ωmσ′
x (primes denote the

reference frame)[6], and select a single sensor resonance for each axis of propagation;

H ′′
s,x =

1

2
gxσ

′′
x cos((ωs − ω0)t+ ϕs), (2)

H ′′
s,y = −1

2
gyσ

′′
y sin((ωs − ω0)t+ ϕs), (3)

H ′′
s,z =

1

2
gzσ

′′
z (cos((ωs − ωm)t+ ϕs)− sin((ωs − ωm)t+ ϕs)), (4)

where ω0 describes the electron spin resonance and we choose ωm = Ω to meet the

conditions of the CCDD scheme. Choosing ϵm = ωs − ω0 for Supplementary Eqs. 2
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Supplementary Figure 5: Rotating frame spin dynamics modelled under different signal
vectors. Z projection of the rotating frame spin vector as a function of time, modelled for a signal
vector of g = (0, 0, gz) and signal frequency of ωs = Ω+ϵm in (a), g = (0, gy , 0) and signal frequency
of ωs = ω0 + ϵm in (b) and g = (gx, 0, 0) and signal frequency of ωs = ω0 + ϵm in (c). Modelled for
signal amplitudes of gx,y,z = 1

4
ϵm and signal phases of ϕs = 0 (blue) and ϕs = π

2
(green).

and 3, and ϵm = ωs − ωm for Supplementary Eq. 4 satisfies the resonance conditions

of the sensor. Our aim is to demonstrate that for each signal in Eqs. 2, 3 and 4, the

sensor response will depend on the signal phase ϕs. To illustrate this we model the

spin evolution for each signal when driven by the CCDD field. Damping effects are not

considered. As the sensor readout projects the spin onto the z-axis, in Supplementary

Fig. 5 we plot the z-component of the spin vector as a function of time, for signal

phases of ϕs = 0, π
2 and signals along the z, y and x axes in (a), (b) and (c) respectively.

For each signal, the spin has a phase-dependent response, illustrating the protocols

ability to resolve signal phase for any signal vector.
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Supplementary Note 4: Device Response to Signal Amplitude

In the Fourier domain, the frequencies of the nested Mollow triplet structure are

determined by the field amplitudes of the CCDD microwave drives, Ω and ϵm, and

the signal, gx. This means that, for a fixed set of CCDD amplitudes, small changes

in the signal amplitude gx will change the Rabi frequencies of the sensor. Monitoring

the contrast at a fixed point in the Rabi oscillation provides a way of detecting any

changes to the Rabi frequency - and thereby the signal amplitude. If the fixed point

is selected appropriately, changes in signal phase and amplitude produce opposite

responses, such that changes in the two can be distinguished (see Fig. 3(a) of the

main text). Supplementary Fig. 6 plots the Mollow triplet structure as a function of

signal amplitude, for a signal phase of ϕs = π
2 . The Fourier components centre on

the CCDD drive fields Ω = 100 MHz and Ω ± ϵm = 100 ± 10 MHz. The significant

Fourier components are offset from these central values by the signal amplitude, to

Ω±gx = 100±gxMHz and Ω±ϵm±gx = 100±10±gxMHz. This manifests as diverging

Fourier components in Supplementary Fig. 6, illustrating the devices sensitivity to

signal amplitude.

Supplementary Figure 6: Fourier response to signal amplitude Mollow triplet structure as
a function of signal amplitude. Each Fourier transform was produced from a Rabi oscillation recorded
over 4000 ns, for a fixed signal amplitude. The signal phase was ϕs = π

2
at a frequency ωs = 2.31GHz.

The divergent Fourier components illustrate the devices sensitivity to signal amplitude.
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Supplementary Note 5: Optimised Heterodyne Measurement

Time

The quantum heterodyne detection protocol presented in the main text tracked the

evolution of signal phase across successive readouts, with each lasting 2.5 µs. Note that

it is beneficial to minimise the length of this sequence. Firstly, it enables a higher sam-

pling resolution, which improves the SNR and increases the Fourier resolution. It also

increases the Nyquist frequency of the heterodyne protocol, increasing the frequency

range that can be detected for a fixed set of CCDD parameters. The 2.5 µs sequences

consisted of 1.35 µs of optical initialisation/ readout, 950 ns of CCDD drive with

100 ns of idle time either side. This relatively long CCDD drive time maximised the

amplitude sensitivity, as it provided more time for weak signals to drive a detectable

change in spin state. However, this can be dramatically shortened if amplitude detec-

tion is not required. To demonstrate phase sensitivity it is sufficient to differentiate

between two Fourier responses which are largely defined by the drive amplitude ϵm for

ϵm >> gx. This is illustrated by the Rabi sequence and associated Fourier transform

in Supplementary Figs. 7(a) and (b), where the inset shows a departure in the sensors

phase response on timescales of ≈ 1/(ϵm − gx) ≈ 125 ns. Results presented here used

ϵm = 10 MHz, however the CCDD drive functions with values of ϵm up to 25 MHz

(see Supplementary Note 1 and Supplemetary Fig. 1), which could further reduce this

time to ≈ 1/(ϵm − gx) ≈ 40 ns. At this limit each measurement sequence will be

constrained by the optical initialisation and readout rate. Further optimisation could

bring this down to 200 ns[8], to realise a total measurement sequence lasting 500 ns.

Supplementary Note 6: Signal Amplitude Dependence of

Heterodyne signal to Noise Ratio

The coherence time TCCDD(θm = π/2, ϵm, gx), and therefore the phase sensitivity,

of the CCDD protocol is dependent on the signal amplitude, gx. As this protocol
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Supplementary Figure 7: Optimisation of heterodyne measurement time (a) CCDD Rabi
oscillation exposed to a resonant signal with phases of ϕs = 0 (blue) and ϕs = π

2
(green). The sensor

can differentiate between signal phases on timescales of ≈ 1/(ϵm−gx), shown in the inset. (b) Fourier
transform of (a). Each signal phase produces a different Fourier response. For small signal amplitudes
where gx << ϵm, the major Fourier components contributing to each response are largely determined
by the drive parameter ϵm.

underpins the heterodyne measurements we expect to see a signal-to-noise ratio that

depends on the signal amplitude. This is verified by the measurement shown in Sup-

plementary Figure 8. As the signal amplitude increases to greater than ∼ 10 µT the

SNR increases as the signal provides additional coherence protection, and reaches a

maximum when the signal amplitude at ∼ 35 µT ≈ 1 MHz ≈ 1/TMW [6].

Supplementary Figure 8: Heterodyne signal-to-noise ratio as a function of the signal
amplitude. The measurement parameters are the same as used in Fig. 4 of the main text and an
integration time of 10 s.
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Supplementary Note 7: Heterodyne Detection of Amplitude

Modulated Signals

Classical heterodyne detection has historically been used to detect amplitude or

frequency modulated signals used in communications protocols. In this section we

demonstrate that our quantum heterodyne scheme can also detect complex signals

composed of multiple signal frequencies for a single set of CCDD parameters. Using the

heterodyne detection parameters presented for Fig. 4, we record the sensor response

under exposure to a carrier wave detuned by 20 kHz from the spin resonance and

amplitude modulated at 2 kHz. The FFT of the autocorrelated sensor output is plot-

ted in SI Fig. 9, which records the carrier frequency at 40 kHz corresponding to twice

the detuned value, sidebands at 40 ± 2 kHz and the amplitude modulated frequency

of 2 kHz. A similar response is expected for frequency modulated signals or multi-

ple independent signals provided the transmission frequencies fall within the 100 kHz

range of the spin resonance.

Supplementary Figure 9: Heterodyne Detection of an Amplitude Modulated Signal FFT
of an autocorrelated heterodyne measurement for a 2 kHz amplitude modulated signal detuned by
20 kHz from the sensor resonance at ωs = 2.32 GHz. Four peaks are visible corresponding to the
amplitude modulation at 2 kHz, double the carrier wave detuning at 40 kHz and two sidebands at
40 ± 2 kHz. Remaining measurement parameters are as described for Fig. 4. of the main text
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