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Ever since May theorized that communities with larger numbers of species

or interspecific interactions are inherently unstable, the mechanism allowing

for the stable existence of complex communities in nature has been a central

question in ecology. The main efforts to answer this question have sought to

identify non-random features of ecological systems that can reverse a nega-

tive complexity–stability relationship into a positive one, but are far from

successful, especially in their generality. Here, using the traditional commu-

nity matrix analysis, we show that variation in the density dependence of

interspecific interactions, which should be ubiquitous in nature, can dramati-

cally affect the complexity–stability relationship. More specifically, we

reveal that a positive complexity–stability relationship arises when harmful

interspecific effects have larger density dependence than beneficial ones,

regardless of the signs (i.e. positive or negative) of their dependence.

Furthermore, numerical simulations demonstrated the synergistic stabilizing

effect of interaction type diversity and density-dependence variation. Thus,

this concept of density-dependence variation advances our understanding of

the complexity–stability relationship in the real world.
1. Introduction
In natural ecological communities, a number of species are connected to each

other via diverse ecological relationships, forming a complex network of inter-

specific interactions. In earlier times, this ecological complexity (i.e. species

diversity and dense interactions) was expected to stabilize community

dynamics (e.g. [1,2]). However, in the 1970s, this view was opposed in a theor-

etical study by May, which demonstrated with a mathematical model that a

large, complex community is unlikely to be stable against even subtle pertur-

bations [3]. Since May’s seminal paper, the ‘complexity–stability’ issue has

been one of the most highly debated topics in community ecology, and a

number of researchers have been motivated to seek biological and ecological

mechanisms that contribute to the stability of complex communities (reviewed

in [4–6]).

Density dependence is a key feature that characterizes interspecific effects.

An interspecific effect is defined as the magnitude of change in recipient

population density caused by a donor species. According to ecological

theory, an interspecific effect can be separated into two parts: a numerical

response and a functional response. The former is measured by the changes

in density of the recipient species caused by slight changes in the density of

the donor species (e.g. considering the benefits of a predator–prey interaction,

the recipient and the donor species are the predator and the prey, respect-

ively), whereas the latter is measured by the change in the ‘per capita’ effect

that the donor species gives to the recipient one [7–9]. In the present paper,

we used the term density dependence to refer to the latter response, which

may be caused by various behavioural or physiological changes involved in
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the interspecific relationship. In a predator–prey relation-

ship, for example, aggregation behaviour, cryptic or

warning coloration, mimicry, switching predation, group

foraging, etc., are known to exhibit density dependence on

each player (e.g. [10–15]). It should also be noted that

what functional forms a density-dependent effect takes

may be varied with its evolutionary context that is diverse

among species. For example, the predation avoidance of

warning coloration improves with prey density if the prey

is honestly unpalatable; otherwise, the avoidance efficiency

decreases [16,17]. Thus, various forms of density depen-

dence in interspecific interactions should coexist in a

natural community.

Our aim in the present paper is to examine explicitly

how density-dependence variation affects the complexity–

stability relationship. The functional type of interspecific

interaction is highly influential with respect to community

dynamics and the likelihood of species coexistence

[9,18,19]. When the impact of a species interaction increases

as the density of the affected species increases (i.e. positive

density dependence, hereafter PDD), harmful effects provide

an advantage to less abundant species and thus stabilize

interspecific relationships, whereas beneficial effects exert

positive feedback by providing greater benefit to the more

abundant species, thus destabilizing community dynamics.

In contrast, with negative density dependence (i.e. the

impact of the interaction decreases with increasing density

of the recipient species, hereafter NDD), the consequences

of harmful and beneficial interactions are reversed (i.e. desta-

bilizing and stabilizing, respectively). For these reasons,

several theoretical studies on the complexity–stability

relationship have focused on density dependence or the

functional response of species interactions [20–23]. For

example, a Holling’s type III functional response may yield

positive complexity–stability relationships, but others may

not [20] (but see [21]). Kondoh [22] demonstrated that

food-web persistence improves with increasing complexity

when predators show adaptive or flexible foraging in

response to prey abundance. However, most of the models

presented were based on an implicit assumption that

density dependence occurs in either beneficial or harmful

interactions, or that the density-dependent function of an

interaction effect is fixed and uniform in the community

(e.g. models assuming only a Holling’s type I, II or III

functional response). Thus, it remains unclear what role, if

any, variations in density dependence play in community

stability.

In this study, we present a general theory that explains

how the type of (and variation in) density dependence of

interspecific interactions affects community dynamics, and

we provide a simple condition under which positive

complexity–stability relationships emerge. To do this, we

first extended the typical generalized Lotka–Volterra model

to include variation in density-dependent effects, in which

the per capita effect can be any form of density dependence

for each species interaction. Then, we analytically derived a

stability criterion for the model with some limited assump-

tions and tested the generality of the analytically derived

prediction by performing numerical simulations of the

local stability analysis with relaxed assumptions. Based on

the analysis, we discuss the importance of density-depen-

dence variation in the complexity–stability relationship

in nature.
2. Methods
(a) Mathematical model
Consider an N-species community, whose dynamics are driven

by various types of species interactions, such as antagonistic,

competitive and mutualistic relationships. Any pair of species

is connected to each other with probability C (�1; connectance).

The population dynamics is given as

dXi

dt
¼ Fi ¼ ri þ

X
j[pos

BijXj � siXi þ
X
j[neg

DijXj

0
@

1
A

0
@

1
AXi, ð2:1Þ

in which Xi, ri and si are the abundance, the intrinsic growth rate

and the self-regulation intensity of species i, respectively.

Parameters Bij and Dij denote the per capita effects of beneficial

and harmful interactions that species j has on i, respectively

(i = j ).

The per capita effect of an interspecific interaction may be

dependent on the densities of conspecifics and allospecifics,

which is described by various forms of functional response

[24]. Typical community models often assume uniform or unilat-

eral (i.e. only in beneficial or harmful effects) density-dependent

functions in the community [20–23]. However, in reality, any

form of functional response should coexist in the community.

Here, we present a mathematical model of an ecological commu-

nity in which variation in functional response is explicitly

incorporated. We assume that around the equilibrium,

the density dependence of per capita interspecific effects is

approximated by an exponential function,

Bij ¼ bijX
bij

i

and Dij ¼ dijX
dij

i ,

)
ð2:2Þ

in which bij and dij are the slopes of the per capita beneficial and

harmful interspecific effects, respectively (both bij and dij . 0).

Parameters bij and dij determine the functional type or density

dependence of the beneficial and harmful effect that species j
has on species i, respectively. Per capita effect on species i decele-

rates with its own density when bij or dij , 0 (i.e. NDD). With an

increase in the density of the recipient species i, the per capita
effect with a positive density dependence (PDD) saturates as in

a Holling’s type II functional response when 0 , bij or dij , 1

and accelerates when bij or dij � 1.
(b) Analytical solution for local stability criterion
Among several indices of ecological community stability [5,6],

we used local stability of feasible equilibrium, that is, the ten-

dency of the community to return to an equilibrium when all

species have positive density after small perturbations [3,25].

Such local behaviours are easily assessed by linearization of the

system at an equilibrium point, which is the so-called community

matrix M [26]. Thus, given that equation (2.1) holds that Fi ¼ 0 at

an equilibrium, diagonal elements of the community matrix can

be obtained as partial derivatives with respect to the density of

species i:

Mii ¼
@Fi

@Xi

����
X�
¼ �siX�i þ

X
j[pos

bijbijðX�i Þ
bij X�j �

X
j[neg

dijdijðX�i Þ
dij X�j ,

ð2:3Þ

where X�i denotes the equilibrium density of species i (X�i . 0).

For the off-diagonal elements, Mij is set to 0 when species j has

no effects on i. On the other hand, with positive and negative

species effects, the off-diagonal elements become

Mij ¼
@Fi

@Xj

����
X�
¼ bijðX�i Þ

bijþ1 and� dijðX�i Þ
dijþ1, ð2:4Þ

respectively.



rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180698

3
The system is locally stable if all eigenvalues of the commu-

nity matrix have negative real parts. For a random community

matrix with CN � 1, E(Mij) ¼ 0 and E(MijMji) ¼ 0, the stability

criterion is analytically given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Var( MijÞ

q
, �Mii, ð2:5Þ

[3,25,27]. To ensure the above conditions, we here assumed some

constraints in the community dynamics model with the density-

dependence variation. First, for the simplicity, parameters and

species abundances are set as constant (si ¼ s, bij ¼ b, dij ¼ d,

bij ¼ b, dij ¼ d and X�i ¼ X�). Then, positive and negative inter-

specific interactions are set to be of the same magnitude on

average (d ¼ b(X*)b2d) to hold that E(Mij) ¼ 0. As any pair of

species is randomly connected with probability C in the present

model, there is no statistical correlation between the off-diagonal

elements of the interaction matrix (i.e. E(MijMji) ¼ 0). Therefore,

for large systems, the diagonal elements Mii and Var(Mij) can

be approximated by

Mii ¼ �sX� þ ðN � 1ÞC
2

ðb� dÞbðX�Þbþ1

and Var( MijÞ ¼ EðM2
ijÞ � EðMijÞ2 ¼

NðN � 1ÞC
N2

ðbðX�Þbþ1Þ2,

ð2:6Þ

respectively (a species is expected to interact with (N 2 1)C
allospecifics). Substituting equation (2.6) into equation (2.5) and

assuming N 2 1 � N for CN � 1, we have the stability criterion

for communities with the density-dependence variation,

given by

s . b
ffiffiffiffiffiffiffi
NC
p

1þ
ffiffiffiffiffiffiffi
NC
p

2
(b� d)

 !
ðX�Þb, ð2:7Þ

which is identical to May’s stability criterion [3] without any

density dependence (i.e. s . b(NC)1/2 when b ¼ d ¼ 0).
(c) Numerical simulation with relaxed assumptions
The local stability criterion obtained above was limited to the

case that meets the condition E(Mij) ¼ 0 and E(MijMji) ¼ 0, in

which parameters and equilibrium densities are constant

among species, and the community matrix is constructed with

random interaction. Here, to investigate the effect of the den-

sity-dependence variation under more realistic situations, we

further performed numerical simulations while relaxing the

assumptions. First, the self-regulation intensity si and an equili-

brium density of each species X�i were randomly chosen from

uniform distributions U(0, smax) and U(0, Xmax), respectively.

The effects of beneficial interactions bij and harmful interactions

dij were also chosen from uniform distributions U(0, bmax) and

U(0, dmax), respectively.

Finally, to reflect the non-random network structure of real

communities [28], we introduced interaction-type diversity into

the model [27,29]. Specifically, in the simulation with the mul-

tiple interaction types, any interaction between species i and j
(i = j ) was categorized as one of four interaction types: preda-

tor–prey, competition, mutualism and random, with the

proportions p, c, m and 1 2 ( p þ c þ m), respectively. The

slopes of competitive, mutualistic and random interaction effects

were chosen from U(21, 0), U(0, 1) and U(21, 1), respectively.

The slopes of interaction for the predator and prey were also

chosen from U(0, 1) and U(21, 0), respectively.

Based on the signs of the interaction matrix, the density-depen-

dence parameters bij and dij were randomly assigned from the

uniform distributions U(bmin, bmax) and U(dmin, dmax), respectively.

In the numerical simulations, PDD and NDD condition were

defined as the mean value of the density-dependence distribution

(the mean density dependence of beneficial and harmful
interactions was bmean¼ (bmin þ bmax)/2 and dmean ¼ (dmin þ
dmax)/2, respectively), because each interspecific interaction can

be PDD and NDD depending on the distribution range. After set-

ting parameters, the intrinsic growth rates ri were determined to

hold that dX�i =dt ¼ 0. Thus, under these relaxed assumptions,

off-diagonal elements of the community matrix Mij can take any

value without the constraints E(Mij) ¼ 0 and E(MijMji) ¼ 0, and

the equilibrium densities X�i were different among species. To

investigate the local stability of the community, we calculated the

eigenvalues of the obtained community matrix. Stability was

defined as the proportion of communities in which the largest

real part of the eigenvalue becomes negative among 1000 samples.
3. Results
(a) Analytical solution for local stability criterion
Figure 1 shows how the minimum self-regulation intensity

that is required for local stability (the right-hand side of

equation (2.7)) changes with community size N (the connec-

tance is fixed as C ¼ 1). In communities with symmetric

density dependence, the NDD condition (i.e. b ¼ d , 0)

simply promotes local stability, whereas the PDD condition

decreases stability compared with May’s criterion; however,

the value monotonically increases with an increase in N,

indicating that the traditional negative relationship between

complexity and stability is qualitatively unchanged in all

cases (figure 1a). On the other hand, the stability criterion

equation (2.7) demonstrates that variation in density

dependence (i.e. b 2 d= 0) dramatically changes the

complexity–stability relationship. More specifically, if b 2

d . 0 the stability criterion shows an accelerated rise,

whereas if b 2 d , 0 the criterion shows a convex curve as

a function of community size, and finally falls below the

upper threshold of stability in large communities (figure 1b).

That is, a positive complexity–stability relationship emerges

whenever the density dependence of harmful species

interactions is larger than that of beneficial interactions.

(b) Local stability analysis with numerical simulations
Figure 2 illustrates how the density-dependence variation

affects the eigenvalue distribution of the random community

matrix. As shown in the figure, when the degree of density

dependence was equal between beneficial and harmful inter-

action (i.e. bmean2 dmean ¼ 0), random communities have an

eigenvalue distribution similar to the analytical prediction

based on May’s stability criterion (figure 2a). In contrast, the

eigenvalue distribution is skewed towards negative values in

the real number axis whenever the discrepancy in the density-

dependence, bmean 2 dmean , 0, exists (figure 2b–d). This

indicates that such differences in density dependence have

a stabilizing effect on ecological communities, although

there are differences in the distribution among the parameter

combinations (figure 2b–d).

Further numerical simulations demonstrated that the

density-dependence variation dramatically affects the

complexity–stability relationship in the random communities

(figure 3). Specifically, whereas the complexity–stability

relation corresponds to that of May’s model when the degree

of density dependence was equal between beneficial and harm-

ful interactions (figure 3a), the positive complexity–stability

relationships arise once the density-dependence parameters

meet the condition that bmean 2 dmean , 0 (figure 3b–d). For
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example, when both the beneficial and harmful interactions

tend to be negatively density dependent (figure 3b), the com-

munity stability shifts from initial drop to increment as the

community size and interaction connectivity increase. This indi-

cates that the assumptions of equal parameters and equilibrium

densities among species are not essential to the effect of the

density-dependence variation. In particular, the stabilizing

effect was highest when the distributions of beneficial and

harmful interactions had NDD and PDD mean, respectively

(figure 3c), whereas it is lowest in communities where both

interactions had PDD mean (figure 3d). That is, unlike the

analytical prediction above, the community stability pattern

was quantitatively different even though the difference

between mean density dependence of beneficial interactions

and that of harmful interactions was held to be an equal

value (bmean2 dmean ¼ 20.4 in figure 3b–d).

We further found that, with the density-dependence

discrepancies, a positive complexity–stability relationship

occurs even in structured networks (i.e. communities domi-

nated by trophic, competitive and mutualistic interactions;
figure 4). The results also indicated that the stabilizing

effect of the density-dependence variation differs among

network structures. Specifically, even though the density-

dependence variation held the condition bmean2 dmean , 0

(figure 4a–c), competitive and mutualistic communities no

longer show a positive complexity–stability relationship

under the NDD distributions (i.e. both bmean and dmean are

negative; figure 4a) and the PDD distributions (both bmean

and dmean are positive; figure 4c), respectively. On the other

hand, when the density-dependence variation did not hold

the condition, the positive complexity relationship occurs in

competitive communities with PDD mean (bmean . dmean . 0;

figure 4d ) and in mutualistic communities with NDD mean

(0 . bmean . dmean; figure 4e).
4. Discussion
We extended the traditional mathematical model of commu-

nity dynamics to incorporate variations in the density
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dependence of interspecific interactions and revealed that

variations in the density dependence of interspecific effects

dramatically impact community stability and the complex-

ity–stability relationship. Community stability is enhanced

by PDD and NDD of harmful and beneficial interspecific

effects, respectively. Furthermore, the classically negative

complexity–stability relationship is reversed when harmful

interspecific effects have larger density dependence than

beneficial interspecific effects, regardless of whether the

density dependence is positive or negative.

One might consider that the stabilizing effects are attribu-

table to the combination of PDD of harmful effects and NDD

of beneficial effects. That is, the PDD of negative effects

and NDD of positive effects combined results in density-

dependent growth such that the population receives more

positives when its density is small and more negatives

when its density is large. This strengthens self-regulatory

mechanisms and thus stabilizes the dynamics. However,

this condition does not explain all of the observed pat-

terns, as the emergence of a positive complexity–stability

relationship does not necessitate the condition of strong

self-regulation. Rather, the condition under which a positive

complexity–stability relationship arises is that in which

harmful effects are more density dependent than benefi-

cial effects, regardless of the signs (i.e. positive or negative)
of their dependence; there is a chance for a positive

complexity–stability relationship to arise even when both

interspecific effects tend to be negatively or positively density

dependent (figure 3b,d ). This is because the stabilizing effects

of species interactions (e.g. harmful interactions with PDD)

may cancel out the destabilizing effects (e.g. beneficial

interactions with PDD). Importantly, this cancelling effect

necessarily accumulates with an increase in ecological com-

plexity, or in the number of interacting species. Thus, only

a slight difference in mean density dependence is required

to yield a positive complexity–stability relationship (equation

(2.7); figure 3b–d ). Our additional simulations confirmed this

conclusion, as the positive complexity–stability relationships

occurred whenever the condition bmean2 dmean , 0 was met,

regardless of the ranges in density-dependence distribution

(electronic supplementary material, figure S1).

The present theory has a link to existing predictions on

how functional response affects community stability.

Nunney [20] argued that a Holling’s type III functional

response can yield a positive complexity–stability relation-

ship. Specifically, with a simple approximation of diagonal

(self-regulatory) elements and off-diagonal (destabilizing)

elements of community matrices with a type III curve, the

magnitude of self-regulatory terms in the stability criterion

increases faster than off-diagonal terms with increasing
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connectance [20]. This prediction was questioned by Abrams

& Allison [21], who provided some counterexamples using

models of low-dimensional (4–10 species) systems and

argued that the positive complexity–stability relationship

with the type III curve is based on unrealistic assumptions

[30]. However, our additional comprehensive analysis

strengthens the logical basis of Nunney’s argument (see the

text in the electronic supplementary material). We argue

that the apparent contradiction between the two studies

stems from the difference in the assumed system size. Here,

the point is that food-web models with functional responses,

such as Holling’s type I, II and III responses, can be viewed

as models with density dependence for harmful inter-

specific effects alone (i.e. b ¼ 0, d= 0). A type III functional

response leads to an accelerating attack rate (i.e. d . 0) at low

prey density levels, and thus can give rise to a positive

complexity–stability relationship (equation (S5) and figure

S3 in electronic supplementary material). Abrams & Allison

[21] would have found a positive connectance–stability

relationship if they had used a model with more species

(electronic supplementary material, figure S3a).

Density-dependence variation adds to our understanding

of how interaction types and their diversity affect species

coexistence. Recently, several theoretical studies have investi-

gated the effects of mixing multiple interaction types (i.e.

trophic, competitive and mutualistic interactions) on the

complexity–stability relationship [27,29,31–33]. However,

as these models assumed specific conditions (e.g. uniform
density dependence or constant interaction effort), the gen-

eral effect of multiple interaction types remains less well

understood. Using more general modelling, the present

study explicitly reveals that whether or not the positive

complexity–stability relationship arises is synergistically

determined by the interaction type and the variation in den-

sity dependence (figure 4). For example, when harmful

interactions have larger density dependence than beneficial

ones and the both of these have PDD distributions, increasing

complexity destabilizes mutualistic communities while stabi-

lizing the others (figure 4c). On the other hand, when bmean2

dmean , 0 and both of these have NDD distributions, the posi-

tive complexity–stability relationship disappears only in

competitive communities (figure 4a). In extreme cases, the

stabilizing effect of increasing complexity arises in competi-

tive or mutualistic communities even when bmean2 dmean .

0 (figure 4d,e). Note that the perfect competition and mutual-

ism significantly decreased the community stability

(electronic supplementary material, figure S2). In particular,

the positive complexity–stability relations arise in perfectly

competitive networks when competitions have a moderate

PDD mean (electronic supplementary material, figure S2b,c)

but do not in mutualistic networks when mutualisms have

a moderate NDD mean (electronic supplementary material,

figure S2a,b). This is caused by the fact that the positive feed-

back of mutualistic interactions is so strong that moderate

NDDs cannot cancel out the destabilizing effect. Thus,

whether or not increasing complexity stabilizes ecological
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community depends on both interaction-type mixing and

density-dependence variation.

The present theory predicts that complex communities

can be stable if harmful interspecific effects have larger den-

sity dependence than beneficial ones. For example, a food

web shows the complexity–stability relationship if prey

species suffer from predation attacks accelerating with their

own density (yielding PDD in harmful effects) and/or pred-

ator species interfere with each other in terms of consuming

prey (yielding NDD in beneficial effects). However, there is

virtually no evidence that this condition actually holds true

in nature. While much effort has been made to describe the

pattern of the functional response of predator attack rate

(i.e. density dependence of harmful effects on prey species;

e.g. [34–38]), we know little about the density dependence

of the beneficial effects that a predator species receives

from its prey [39]. We have even less information for other

relationships, such as mutualism [40,41]. The theory of

evolutionary biology may help to compensate for this infor-

mation shortage. For example, optimal foraging theory

predicts that preferential attacks on abundant and palatable

prey are favourable to predators, yielding predation effects

with PDD on prey density [42,43]. This may explain the
frequent observations of adaptive foraging behaviour

across diverse taxa [37,44]. Some community theories also

assume saturating benefits of mutualism [40,41], although

the evolutionary mechanism underlying such functional

responses are unknown. However, as mutualism is often

compared with consumer–resource relationships [41,45],

the optimal foraging logic might be applicable, weakening

the PDDs in mutualistic interactions. Thus, in light of the

density-dependence variation, unifying predictions from

evolutionary theory and empirical surveys of functional

responses may advance our understanding of ecological

complexity–stability in the real world.
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