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Abstract
In this study the hydrogel microparticles (MPs) were used to enhance migration of neutro-

phils in order to improve outcome of anthrax infection in a mouse model. Two MP formula-

tions were tested. In the first one the polyacrylamide gel MPs were chemically coupled with

Cibacron Blue (CB) affinity bait. In the second one the bait molecules within the MPs were

additionally loaded with neutrophil-attracting chemokines (CKs), human CXCL8 and mouse

CCL3. A non-covalent interaction of the bait with the CKs provided their gradual release

after administration of the MPs to the host. Mice were challenged into footpads with Bacillus
anthracis Sterne spores and given a dose of MPs a few hours before and/or after the

spores. Pre-treatment with a single dose of CK-releasing MPs without any additional inter-

vention was able to induce influx of neutrophils to the site of spore inoculation and regional

lymph nodes correlating with reduced bacterial burden and decreased inflammatory

response in footpads. On average, in two independent experiments, up to 53% of mice sur-

vived over 13 days. All control spore-challenged but MP-untreated mice died. The CB-cou-

pled particles were also found to improve survival likely due to the capacity to stimulate

release of endogenous CKs, but were less potent at decreasing the inflammatory host

response than the CK-releasing MPs. The CK post-treatment did not improve survival com-

pared to the untreated mice which died within 4 to 6 days with a strong inflammation of foot-

pads, indicating quick dissemination of spores though the lymphatics after challenge. This

is the first report on the enhanced innate host resistance to anthrax in response to CKs

delivered and/or endogenously induced by the MPs.
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Introduction
Spatial and temporal concentration gradients of chemoattractants direct many biological pro-
cesses involving leukocyte migration during development, regulation of homeostasis and ongo-
ing immune responses within lymphoid organs and peripheral tissues. Chemokines (CKs) are
an important class of these chemoattractant molecules [1]. Immune cells expressing the appro-
priate CK receptors typically migrate up chemotactic gradients of CKs toward their source to
participate in the immune responses, such as presentation of antigens or elimination of patho-
gens and tumors. Manipulation with chemotaxis for therapeutic purposes opens new possibili-
ties to design more effective vaccine adjuvants, anti-tumor reagents, anti-inflammatory and
anti-microbial treatments.

Previous studies demonstrated application of the controlled-release nanomaterials loaded
with CKs for the recruitment of immune cells applicable to basic studies and therapeutic appli-
cations [2–5]. Also, there are reports that non-functionalized nanoparticles and microparticles
(MPs) of several kinds are themselves capable of eliciting the immune responses such as pro-
duction of cytokines and activation of neutrophils raising questions of their potential utility for
a stimulation of host defenses as well as their safety upon a prolonged contact with normal tis-
sues [6]. It was recently proposed using a new class of CK-releasing MPs consisting of a non-
toxic polyacrylamide hydrogel covalently coupled with a variety of affinity baits such as dyes of
different chemical nature [7]. The MPs can be loaded with substances of interest for a reversible
release from the baits at a controlled off-rate and dose depending on the property of the bait-
ligand pair [8]. The hydrogel structure protects the loaded cargo to assure preservation of its
function from degradation in the complex biological environment.

We recently applied the bait-hydrogel MP technology to increase an influx of neutrophils
into draining lymph nodes (LNs) of mice [8]. For this purpose the MPs containing the Reactive
Blue-4 bait were loaded with the neutrophil-attracting CKs, a mixture of human IL-8/CXCL8
and murine MIP-1α/CCL3 [9,10]. Inoculation of these CK-loaded MPs into footpads of mice
enhanced the number of neutrophils migrating to the sites of injection and the regional popli-
teal LNs. Based on these results, in the current study we chose to test the MP-based CK gradi-
ent remodeling approach in the course of infectious disease.

The CK-related pathologies have been documented in the course of many infections; how-
ever, the field of MP-based CK delivery in infectious disease remains unexplored. We hypothe-
sized that enhancing the recruitment of immune cells in the course of infection would provide
new opportunities for therapeutic interventions such as boosting the innate response in the
lymphatics resulting in the increased bactericidal effect beneficial to the host. We chose experi-
mental anthrax caused by the administration of B. anthracis (B.a.) spores into footpads of sus-
ceptible mice as a model system to manipulate for the first time the process of immune
trafficking using MPs and evaluate its contribution to the outcome of disease. During all forms
of anthrax infection (inhalational, cutaneous, and gastrointestinal) the B.a. first spreads via
lymphatics before appearing in the bloodstream independently of the spore entry route. Tissue
macrophages and DCs uptake the spores from the site of exposure and deliver them within a
few hours to the draining LNs, where anthrax lethal and edema toxins (LT and ET) expressed
by germinating spores disrupt functions of DCs, including the ability of DCs to release inflam-
matory cytokines and attract monocytes and neutrophils [11]. Bacteria then quickly multiply
in the LNs causing hemorrhagic lymphadenitis, gain access to the circulation and disseminate
[11,12]. In the case of footpad challenge the migrating spores are known to follow a single
route and first accumulate in the popliteal LN. This feature of the murine lymphatics makes a
popliteal LN a convenient target for the MP-based intervention. We previously showed that
the footpad-injected MPs are quickly delivered to the popliteal LNs where they can exert their
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effect on trafficking and activation of host phagocytic cells known to play key roles in the prop-
agation of anthrax in the host.

Treatment of anthrax represents a significant clinical challenge. Half of patients who
develop systemic disease are expected to die, despite improvements in modern therapeutic
measures. The establishment of B.a. infection in the lymphatic system constitutes a critical
point at which pharmacological intervention could prevent transition to a lethal systemic stage
of disease. However, many aspects of the immune trafficking in anthrax remain insufficiently
understood, and current antibiotics poorly penetrate the LNs. Viable bacilli can remain in
patient's LNs until death while the bloodstream is sterile after antibiotic therapy [13]. There-
fore, novel treatments that effectively target the complex molecular processes caused by bacte-
ria in the lymphatics are needed. Toward this goal we decided to explore the effect of enhanced
neutrophil trafficking on the outcome of anthrax in mouse model. Neutrophils can be readily
mobilized in response to CK stimulation and are capable of efficient innate protection in sev-
eral experimental models of bacterial and fungal infections. However, in anthrax the role of
neutrophils in either promoting or suppressing host immunity is controversial. We previously
showed that MPs induce rapid neutrophil recruitment to the primary site of inoculation and
regional popliteal LNs [8]. This response can be enhanced by the pre-loading of MPs with CKs.
In this study, we used the MPs coupled with Cibacron Blue (CB) dye with the CK binding
properties characterized in our previous experiments. Mice were administered with CB-cou-
pled MPs (further referred as MPs) loaded with CXCL8 and CCL3 before and/or after the foot-
pad subcutaneous challenge with B.a. spores. Pre-treatment of mice with the CK-loaded MPs
increased neutrophil migration to draining LNs in infected mice, reduced the bacterial burden
and the inflammatory response in footpads, restricted the systemic spread of the bacilli, and
ultimately promoted survival. The MPs themselves without loaded CKs contributed to the pro-
tective effect of pre-treatment. However, the MP treatment shortly after spore challenge did
not increase survival, in line with our previous observations on the quick systemic spread of
the spores.

Materials and Methods

Materials
Cibacron Blue F3G-A (CB) was purchased from Polysciences, Inc. (Warrington, PA, USA).
The carrier-free recombinant CKs from BioLegend (San Diego, CA, USA) were a mouse CCL3
(MIP-1α), and a human CXCL8 (IL-8). Cell culture media and reagents were purchased from
Mediatech, Inc. (Manassas, VA, USA). The CyQUANT1 NF Cell Proliferation Assay Kit was
from ThermoFisher Scientific (Waltham, MA, USA). Endotoxin-free water was from Life
Technologies (Fredrick, MD, USA). B. anthracis Sterne strain 34F2 was from Colorado Serum
Co. α-B. anthracis serum recognizing the vegetative bacterium was raised in rabbits after a sub-
cutaneous spore challenge. It was shown by us to recognize a vegetative form of the bacterium.

Synthesis of the crosslinked MPs with chemically-coupled dye affinity
bait and quantification of endotoxin content
Poly(N-isopropylacrylamide) MPs containing co-polymerized allylamine were prepared via
precipitation polymerization as described [8]. N-isopropylacrylamide (9.0 g) and N-N0-methy-
lenebisacrylamide (0.28 g) were dissolved in 250 ml of water, and the solution was partially
degassed by vacuum filtration through a 0.45 μm nylon filter. The filtered solution was purged
with nitrogen at room temperature upon stirring for 15 min. Allylamine (670 μl, 12 μmoles)
was then added and the solution was purged with nitrogen for another 15 min and then heated
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to 75°C. After stably reaching 75°C, polymerization was initiated with the addition of potas-
sium persulfate (0.1 g) in 1 ml of water. The reaction was maintained with stirring under nitro-
gen for 3 h. After this time, the reaction was allowed to cool to room temperature overnight
with stirring under nitrogen. The MPs were then pelleted by centrifugation for 20 min at 23°C
at 16,000 g and re-suspended in 300 ml of water. This centrifugation-dispersion process was
repeated for a total of 5 times. The N4 Plus PCS Submicron Particle Analyzer (Beckman Coul-
ter) was used to determine the particle size (500–600 nm) and the polydispersity index in
water, which was in the interval of 0.2 to 0.5.

Cibacron Blue F3G-A (CB), the reactive triazine dye, was immobilized via direct reaction
with the amine group of the MP allylamine units, displacing the chlorine on the di-substituted
triazine ring of the dye. The coupling of the dye was performed under sterile, endotoxin-free
conditions. The MPs were re-suspended in the endotoxin-free water and incubated with the
dye (2 g CB dye per 325 ml of total solution) for 36 h at room temperature. After dye incorpo-
ration, the MPs were washed six times using tissue culture grade PBS diluted 1:3 with endo-
toxin-free water. The absence of bacterial contaminants was demonstrated by plating 100 μl of
final MP suspension onto Luria Broth agar plates and incubating them at 37°C for 48 h. A few
drops of chloroform as a bactericidal agent were added to the final batch of MPs stored at 4°C.

The endotoxin content of MPs was measured with the Pierce Limulus Amoebocyte Lysate
(LAL) Chromogenic Quantitation Kit (ThermoFisher) according to the manufacturer’s proto-
cols. The E. coli endotoxin standard provided in the kit was serially diluted with the endotoxin-
free water. The supernatant from MP suspensions prepared under the endotoxin-free was col-
lected for analysis. Supernatant and diluted standards were incubated with the kit’s synthetic
substrates at 37°C for 6 min, and the endotoxin-dependent proteolysis of the substrate was
measured at 405 nm as the amount of released p-nitroaniline after quenching of reaction with
acetic acid. MPs prepared using the endotoxin-free conditions contained 0.14 EU/ml of
endotoxin.

Loading of MPs with CKs
Loading of the MPs with CKs for in vitro assays was accomplished by incubating CB MPs (10%
wet v/v) with 1 μg/ml of indicated CK in 1/3 PBS at 4°C overnight. The buffer was supple-
mented with 100 U/ml of penicillin and 100 μg/ml streptomycin (pen/strep) to prevent bacte-
rial contamination. The MPs were pelleted, supernatants removed, and the MP pellets were re-
suspended in the culture medium for chemotactic assays as described below. The suspensions
of CK-loaded NPs used for animal injections were prepared by incubating CB MPs (10% wet
v/v) in PBS with a mixture of CXCL-8 and CCL3 (1 μg/ml each) at 4°C overnight. The suspen-
sions were brought up to room temperature and injected into footpads of mice as described for
animal challenge experiments below.

In vitro chemotactic assays for immune cell migration analysis
In vitro chemotactic assays were conducted in the 96-well format. The transwell inserts incor-
porating tissue culture-treated polycarbonate membrane filters (8.0 μm pores) from Neuro
Probe, Inc. were used. Cell migration of monocytic human THP-1 cells from ATCC, Manassas,
VA, was measured. The bottom chambers of the transwell plates contained 300 μl of complete
serum-free medium (CSFM) fromMediatech (Manassas, VA) with or without CCL3. The CK
solutions were assayed at several concentrations up to 100 ng/ml. The MP-bound CCL3 was
assayed after its release from the MPs. For this purpose, the MPs loaded with CCL3 as
described above were resuspended in a 10-fold greater volume of CSFM at 37°C for 3 h. The
MPs were removed by centrifugation and the supernatants containing released CK were
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transferred into bottom wells of the transwell plate. Dilutions of supernatants were prepared in
the transwell plate immediately prior to assay performance. To increase the chemotactic respon-
siveness of migrating cells, the latter were starved in CSFM at 37°C, 5% CO2 for 1 h prior to
assay. The serum-starved cells (50 μl of 1.28x107 cells/ml) were added to the top chambers. Cell
migration after 4 h at 37°C, 5% CO2 was enumerated by the DNA-binding fluorescent dye using
the CyQUANT NF Cell Proliferation Assay Kit (Thermo Fisher Scientific, USA) according to
the manufacturer’s protocols. Briefly, cells from the bottom chambers were pelleted by centrifu-
gation, incubation medium was removed, and the cells were permeabilized using the kit’s dye
delivery reagent to allow the dye to associate with nuclear DNA. After 10-min incubation at
room temperature in the dark, the stable fluorescence of DNA-dye association was measured
using a fluorimeter at 485/538 nm. Fluorescence intensity was converted to the fraction of
migrated cells using the calibration curves obtained with the known number of cells.

The number of cells trapped on the membrane that were unable to fully migrate to the bottom
chamber was estimated after staining with Crystal Violet. For staining, the membranes were
rinsed three times with PBS and fixed with methanol for 15 min, incubated with 3% Crystal Vio-
let stain (Becton Dickinson, MD, USA) at room temperature for 15 min, washed three times with
water, and air-dried. The cells were counted under microscope. Less than 0.1% of the total cell
numbers were retained on the membranes, and were therefore not considered for calculations.

Animal challenge experiments
All animal experiments were conducted under protocol #284 approved by George Mason Uni-
versity’s Institutional Animal Care and Use Committee. Groups of female 6-8-week-old DBA/
2 mice (Jackson Labs) were challenged with toxinogenic, non-encapsulated vaccine strain B.
anthracis Sterne 34F2 spores in PBS into each hind footpad as previously described [8]. At cer-
tain times before and/or after the spore challenge, mice received 50 μl intradermal footpad
injections of MPs with or without loaded CKs, as well as the CKs only, by the same route as
spores. The number of mice per group (from 5 to 10) and the spore doses (from 0.4x106 to
4x106 in 20 or 50 μl of PBS) are indicated in the corresponding figure legends. The animals
were monitored once or twice daily and were euthanized by carbon dioxide asphyxiation if one
or more of the following criteria were met: (1) Rough hair coat, hunched posture, distended
abdomen, or lethargy if debilitating, (2) Respiratory distress (dyspnea) or cyanosis, (3) Central
nervous system signs such as head tilt, tremors, spasticity, seizures, circling, or paresis, (4) Per-
sistent lateral recumbency, (5) Impaired mobility interfering with eating, drinking, or ambula-
tion. Analgesics were not administered due their potential interference with the infectious
process. All injections were performed under anesthesia using isoflurane inhalation for chemi-
cal restraint and reduction of stress. Thirty minutes before euthanasia, the animals were
injected with 20 μl of 1% Evans Blue dye in PBS into both hind footpads for visualization of
LNs. One popliteal LN and one footpad from each animal were placed in 10% neutral buffered
formalin solution for immunohistological analysis. The formalin-incubated tissues were
embedded in paraffin blocks, sliced into 5 μm sections, and mounted onto glass slides for stain-
ing. For enumeration of bacterial titers, the spleen and another popliteal LN from each infected
animal were homogenized using frosted glass slides and suspended in PBS. Volumes of 10 μl
and 100 μl of homogenized tissue suspensions were plated onto Luria Broth agar plates and
incubated at 37°C overnight. Semi-quantitative scores of footpad inflammation and edema
were assigned immediately prior to Evans Blue dye injection as: 0 = no visible signs, 1 = initial
signs of swelling and light redness in the footpad, 2 = prominent swelling and redness partially
extending from the footpad to the ankle, 3 = strong swelling and redness extending to the
whole ankle, 4 = extensive swelling and redness beyond the ankle. The statistical significance of
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inflammation scores was determined using a two-tailed Mann-Whitney U test available online
at http://www.socscistatistics.com/tests/mannwhitney/. Mortality curves were compared using
the Log Rank Test Statistic, which was calculated using MedCalc statistical software.

Immunohistochemical analysis
Slides used in immune cell staining were subjected to antigen retrieval in sodium citrate buffer
(pH 6) for 40 min at 95°C followed by incubation for 20 min at room temperature. For slides
stained with the anti-bacterial serum, the incubations at 95°C and room temperature were 20
min each. All slides were stained with antibodies using a Dako autostainer and counter-stained
with Mayer’s hematoxylin. To detect the presence of neutrophils, tissue sections after antigen
retrieval were incubated with the primary biotin-labeled anti-Ly-6G antibody (Biolegend,
USA) followed by the Dako CSA streptavidin-biotin-peroxidase complex. Antibody staining
was completed with a 5-minute incubation with 3,3’-diaminobenzidine tetrahydrochloride and
followed with counter-staining using Mayer’s hematoxylin. For staining using the non-biotiny-
lated antibodies or immune serum against B. anthracis, the secondary reagent was the anti-rab-
bit EnVision+ HRP-Labeled Polymer (Dako, USA).

Results

CKs released from MPs retain their chemotactic activity in the in vitro cell
migration assays
We previously showed that the MPs with coupled CB dye readily bind CKs and release them
with a half-life of several hours after dilution with a fresh buffer [8]. However, the biological
activity of the released CKs was not demonstrated. Therefore, we tested the chemotactic activ-
ity of the MPs loaded with selected CKs in comparison with the freshly-prepared solutions of
soluble CKs. MPs were co-incubated with CKs at 4°C overnight and the loaded MPs pelleted
for analysis by centrifugation to separate them from the supernatants. To demonstrate the che-
motactic activity of the CKs after their release from the loaded MPs, the latter were re-sus-
pended in CSFM and incubated for 3 h at 37°C. The MPs were pelleted and the supernatants
tested in the Boyden-type transwell assay. Fig 1 shows representative results obtained with
CCL3-loaded MPs and THP-1 test cells which were highly responsive to CCL3. Similar experi-
ments were carried out with CXCL8 and the U937 cells (the THP-1 cells did not respond to
CXCL8; not shown). The freshly-diluted CCL3 displayed a typical dose-response standard
curve with a maximal activity in the range of 10 to 30 ng/ml. As expected, CCL3 loaded onto
MPs and partially released before the assay showed only a fraction of the chemotactic activity
anticipated in the case of a full CCL3 release. According to the off-rate determined in our previ-
ous study (t1/2 7.4 h) [8], the 3-h incubation estimated to dissociate about 25% of the bound
CK. When plotted against the estimated amount released, the chemotactic activity of CCL3 in
Fig 1 overlapped with the standard curve, indicating no substantial loss of the CK activity due
to the MP binding and release. In comparison, CCL3 incubated without MPs in the conditions
of CK loading lost a substantial part of its activity, likely due to its aggregation in a diluted solu-
tion [14].

MPs influence the inflammatory response at the site of B.a. infection and
survival of the spore-challenged mice depending on the CK load and the
time of administration
Injection of B.a. spores into mice footpads results in bacterial proliferation at this site [15]. The
MPs injected by the same route follow the migration of spores [16] and therefore can be used
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to manipulate with the local response to infection through the delivery of MPs’ cargo. The
released CKs are then expected to form chemotactic gradients attracting the corresponding
immune cells. It’s also likely that MPs themselves can play an immune-modulating role
through the induction of endogenous CK/cytokine release by the host cells [6].

To assess the effect of MPs and loaded CKs on the outcome of B.a. infection, six groups of
animals challenged with equal numbers of spores into each of the hind footpads were treated
as described below with equal doses of CKs per injection. Spore-challenged animals in Group 1
served as untreated controls. Group 2 received MPs only, first at 24 h before (pre-treatment)
and then at 4 h and 24 h after infection (post-treatment). Group 3 was pre-and post-treated
with a mixture of the soluble neutrophil-attracting CKs, CXCL8 and CCL3 without MPs.
These groups allowed for evaluation of the individual influences of MPs without loaded CKs,
and soluble CKs without MPs on the outcome of infection.

Groups 4–6 compared the effects of pre-treatment, post-treatment and their combination.
Group 4 was only pre-treated with the CK-loaded MPs, while Group 5 was pre- and post-
treated with the same MPs. Finally, Group 6 received CK-loaded MPs as a post-treatment only.
The survival was monitored for 13 days. Mice were assigned semi-quantitative scores for the

Fig 1. Chemotactic activity of CCL3 after release fromMPs with THP-1 cells in a transwell format. The MP-
bound CCL3 was assayed after its release from the MPs in CSFM at 37°C for 3 h. The MPs were removed by
centrifugation and the supernatants containing released CK were transferred into bottom wells of the transwell plate.
The serum-starved cells in CSFM were added to the top chambers. Cell migration to the bottom chamber was
enumerated after incubation for 4 h at 37°C, 5% CO2. Values on the x-axis correspond to the concentrations
calculated from the total amount of CCL3 used to prepare solutions (solid lines with open and closed squares) or the
estimated amount of CCL3 released from the MPs during 3-h incubation (solid line with open circles). Dashed line
represents the chemotactic activity of supernatants after the control incubations of MPs without CCL3 in the amounts
used for the standard curve. Dotted line corresponds to the chemotactic activity left in solution after MPs were loaded
with the indicated concentrations of CCL3.

doi:10.1371/journal.pone.0163163.g001
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inflammation and swelling seen in the challenged footpads during the course of disease as
described in Materials and Methods.

The untreated mice in Group 1 developed high level of inflammation and died within 5
days post infection (p.i.) (Fig 2, solid lines with open circles). Similar behavior was displayed by
the Group 3 which received soluble CKs. Only marginal reduction of inflammation and delay
in mortality were detected (Fig 2, solid lines with closed squares). However, the Groups 2, 4,
and 5 corresponding to the administration of MPs and MP loaded with CKs demonstrated sub-
stantial differences from the control groups 1 and 3. The average footpad inflammation per
mouse in Group 4 showed a biphasic curve with two statistically significant peaks around days
3 and 9 p.i. (p<0.01, α = 0.05) (Fig 2A). The host response was initially reduced, reached mini-
mal levels and then increased again, followed by a final reduction in surviving mice. Groups 2
and 5 appeared visually to progress in a similar biphasic manner, but the difference between
the low and high points of the corresponding curves only reached statistical significance in
Group 5 during the second phase. Overall, in all groups the death predominantly took place in
mice with high inflammatory scores (S1 Fig).

The most prominent effect was observed in the case of CK-loaded MPs administered as a
single pre-treatment dose. Statistical analysis using Mann-Whitney U-test confirmed high sig-
nificance of the inflammatory score differences between Group 1 and Groups 2, 4, 5 at days 2
and 3 (p values in the range from 0.001 to 0.008). The MPs without loaded CKs (Group 2,
dashed lines with closed circles) also displayed the anti-inflammatory effect during the first
phase; however, the level of inflammation was reliably higher than in the case of Group 4 (solid
lines with closed circles) during the second phase (p = 0.008 at day 7). Fig 2B shows the MP
administration in groups 2, 4, and 5 had a strong positive impact on survival in comparison
with Group 1 (p<0.0007, Log-Rank test). Group 4 demonstrated the best survival rate of 35%
at day 13 and delay in death which correlated with the lowest inflammatory score. However,
the differences between survival in Groups 2, 4, and 5 did not reach statistical significance. In
contrast to the treatment groups involving the MP pre-treatment, the post-treatment with CK-
loaded MPs in Group 6 (dashed line with open triangles) shortly after the spore challenge did
not increase survival (Fig 2B). The inflammation during the first phase was high, and all ani-
mals (except one) died within 5 days.

The beneficial effects of pre-treatment with CK-loaded MPs on survival and the associated
host response were confirmed in the independent experiment replicating Group 1 (B.a.) and
Group 4 (24-h pre-treatment plus B.a.) which additionally included the 4-h pre-treatment plus
B.a. group. At day 13, 50% and 70% of animals survived in the 4-h and 24-h pretreated groups,
respectively. In both groups the inflammatory response displayed a bi-phasic behavior (not
shown). The Log-Rank test showed that all three pre-treatment only groups did not statistically
differ from each other (p<0.21) with the average survival rate of 53±16% (SD).

The activity of CK-loaded MPs correlates with the reduction of bacterial
burden and influx of neutrophils to the sites of infection and regional LNs
To determine whether a protective effect of CK-loaded MPs was associated with the reduction
of bacterial load, animals were challenged with spores and euthanized at 24 h p.i. The popliteal
LNs were surgically removed and plated onto LB agar after homogenization in PBS. Pre-treat-
ment with CK-loaded MPs demonstrated a statistically reliable (p = 0.02) decrease in the num-
ber of colony-forming units (CFUs) in comparison with the infected controls untreated with
MPs (Fig 3A). The duration of pre-treatment (4 h vs. 24 h) did not show a substantial differ-
ence in the anti-bacterial effect (p = 0.14). Surviving mice at day 13 demonstrated low numbers
of residual bacteria in LNs, spleen and footpads (Fig 3B and data not shown) indicating that
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Fig 2. Effect of MP administration on the inflammatory response at the site of B.a. infection and
survival of the spore-challengedmice. Six groups of animals (n = 8–9 each) were challenged with equal
doses of spores (2.6x106 per 50 μl dose) into each of the hind footpads and treated as following by the same
inoculation route. Group 1 (solid line, open circles) served as untreated controls. Group 2 (dashed line, closed
circles) received MPs only without CKs at 24 h before (pre-treatment) and two injections at 4 h and 24 h after
infection (post-treatment). Group 3 (solid line, closed squares) was pre-and post-treated with a mixture of the
soluble CKs (50 ng of each CXCL8 and CCL3 per injection) without MPs. Group 4 (solid line, closed circles)
was pre-treated with the same amount of CKs loaded onto MPs, while Group 5 (solid line, open squares) was
additionally post-treated with the sameMPs. Group 6 (dashed line, open triangles) received an equal dose of
CK-loaded MPs as post-treatment injections only. (A) Total scores for inflammation and swelling seen in the
challenged footpads per number of mice observed at the indicated time during the course of disease. (B)
Kaplan-Meier mortality curves.

doi:10.1371/journal.pone.0163163.g002
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overall the immune response was able to control bacterial propagation and systemic dissemina-
tion, but the elimination of persisting bacteria was slow.

Immunostaining of the tissue sections using α-B.a. serum confirmed the above results. Mice
challenged with spores without the MP pre-treatment showed intense staining of the footpad
tissue sections which was substantially reduced in mice pre-treated with the CK-loaded MPs (S2
Fig). Further analysis with a neutrophil-specific α-Ly-6G antibody [17] showed that the antibac-
terial effect of MPs was accompanied by the influx of neutrophils to the site of MP injection (S3
Fig). The B.a.-positive staining was associated with the extracellular bacterial chains as well as
the cytoplasmic content of the infiltrating immune cells (Fig 4A), indicating that these cells were
involved in the phagocytic engulfment of bacteria. Staining with the α-Ly-6G and α-CD11b
antibodies (specific mainly to neutrophils and monocytes/macrophages, respectively) confirmed
a large number of infiltrating phagocytes attracted to the sites of bacterial proliferation (Fig 4A).
In contrast to the control infected mice, no extracellular bacteria were visible in the tissue of the
CK-pre-treated mice (Fig 4B). The B.a.-specific intracellular staining overlapped with a large
area strongly positive for neutrophils and the less intensely stained macrophages.

We previously found that a fraction of the spores injected into footpads quickly disseminate
to the regional draining LNs where the proliferating bacteria cause extensive pathological
changes [15,16]. Immunohistochemical analysis of the LN tissue showed a remarkable change
in the neutrophil staining pattern in response to MP-directed CK administration (Fig 5). The
high-intensity, punctate staining of occasional neutrophils in naïve mice (Fig 5A, arrows) was
replaced after CK administration with a massive diffuse infiltration by the immature neutro-
phils with lower levels of Ly-6G (Fig 5A, arrowheads). The latter are visible in the high endo-
thelial venules of naïve and CK-pre-treated mice and therefore seem to originate from the
blood (Fig 5A, bottom panels). The infectious process stimulated the migration of activated
(Ly-6G-high) neutrophils into LNs, but was detected only at low spore dose (Fig 5B, middle
right panel), in agreement with the inhibition of neutrophil function by B.a. [11,18–21]. This
immunosuppressive effect was overcome by the CK-pretreatment, which led to the accumula-
tion of neutrophils in the subcapsular space (Fig 5B, arrows in middle left and right panels).
Finally, the surviving mice demonstrated the enlarged LNs, the B.a.-positive staining and the
increased presence of neutrophils in the LN germination centers as evidence of the protective
immune response (S4 Fig).

Fig 3. Bacterial load in LNs of mice pre-treated with CK-loaded MPs and control mice at 1 day (A) and
13 days (B) post challenge with 4x106 of B.a. spores in 20 μl of PBS per hind footpad. Bars indicate
arithmetic means in each group. Mann-Whitney U-Test, * p = 0.02, # p = 0.14, n = 4–6 per group.

doi:10.1371/journal.pone.0163163.g003
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Fig 4. Administration of CK-loadedMPs results in the phagocytic elimination of bacterial burden in
the spore-challenged footpads. (A) B.a. infection with spores (4x106 per hind footpad in 20 μl of PBS) after
24 h shows presence of extracellular bacterial chains and intracellular bacterial antigen (brown stain
indicated by black and white arrows, correspondingly; top panels). Red square in the left panel identifies a
position of a bacterial swarm shown under magnification in the right panel (dotted line) next to the B.a.-
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Discussion
This study for the first time demonstrates a protective effect of MPs loaded with CKs against
anthrax infection in mice, even in the absence of antibiotic therapy. Our MPs represent a ver-
satile platform consisting of a hydrogel with covalently coupled bait capable of reversible CK
binding with a desired affinity and release rate. These parameters can be modified by employ-
ing a spectrum of available baits of different nature. In the case of MPs with the triazine dye
bait such as CB used in the current and previous studies, the negatively charged sulfate
groups of the bait readily bind positively charged CKs. Our data show the binding affinity to
be in the range of 0.5 to 5 μM [8], which compares favorably with the CK-extracellular matrix
interactions in the natural gradients. The release rate estimates show that a sustained delivery
of CKs can be continued for>30 h, sufficient for initiation of LN responses, in contrast to a
bolus injection of a biomolecule which is expected to dissipate rapidly, failing to provide the
spatial context needed for CK-mediated cell migration. Our MPs are characterized by low
toxicity and long circulation rates because a polyacrylamide gel is biologically inert [22–24]
while the reactive dyes become virtually non-toxic after chemical coupling to substrates [25].
The process of loading can be carried out in mild physiological conditions eliminating major
obstacles of many previous MP designs. As shown in Fig 1 the CCL3 released from the MPs
displayed the chemotactic activity corresponding to the fully active CK while the control one
in solution decreased its potency upon incubation likely due to aggregation [14]. All chemo-
tactic activity after the loading step was found associated with MPs, making a separation of
MPs from the unbound CKs unnecessary. The size of our MPs mimicked microbial cells to
ensure co-localization of the MPs and bacteria. Although some data indicate that the drain-
age of the sub-micron MP to the lymphatics can be restricted [26], we found that a significant
portion of the MPs rapidly entered the local LNs via afferent lymphatic vessels [27]. In future
experiments we are going to optimize the MP delivery and protective effect depending on the
particle size.

To study the capacity of the MPs to attract neutrophils, we chose to load the MPs with
human CXCL8. This CK plays a dominant role in stimulating neutrophilic inflammation in
humans. Although mice do not express CXCL8, they possess a receptor homologous to
human CXCR2 that is able to mediate neutrophil chemotaxis in response to human CXCL8
[28–30]. CXCL8 demonstrates high level of neutrophil recruitment in contrast to the endoge-
nous mouse analogs MIP-2 and KC [9]. Anticipating an increased combined effect of CKs
belonging to different families, we decided to load the MPs with mouse CCL3 in addition to
CXCL8. The CC chemokines were originally described as preferential chemo-attractants and
activators of mononuclear cells and eosinophils; however, several studies demonstrate that
this chemokine subtype is highly active in stimulating neutrophil migration in murine models
[10,31,32].

Antimicrobial neutrophils represent an attractive choice for MP-directed manipulation
with their chemotactic behavior. Neutrophils are quickly recruited to the site of infection
where they mediate effective bacterial clearance via different mechanisms, including the release
of lytic enzymes, production of reactive oxygen intermediates, and neutrophil extracellular

positive phagocytes (brown color). Consecutive slices of tissue stained with α-Ly-6G and α-CD11b (A,
bottom panels) demonstrate infiltration of phagocytes (brown color) to the site of infection. (B) Pretreatment
with CK-loaded MPs for 24 h stimulates an elimination of extracellular bacteria. No extracellular bacteria can
be found in the infected tissue (top panels). Red square in the left panel identifies a region magnified in the
right panel. Multiple phagocytes stained positive for the B.a. antigens (brown color) are visible. Compared to
(A), the consecutive slices of tissue stained with α-Ly-6G and α-CD11b antibodies demonstrate increased
infiltration of phagocytes.

doi:10.1371/journal.pone.0163163.g004
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Fig 5. Administration of CK-loadedMPs results in the increased appearance and altered distribution of the neutrophil-specific
antigen Ly-6G in the popliteal LNs of naïve and B.a.-infected mice. (A) Mice were injected into footpads with CK-loaded MPs (CK
MPs) for 28 h and the presence of Ly-6G+ cells was revealed immunohistochemically (brown color) using primary antibody against Ly-
6G. The medullar (A, top row) and subcapsular/cortical LN regions demonstrate change in the neutrophil antigen distribution pattern in
response to CKs. The magnified squared regions in the right panels show the cell stained with high and low intensities (shown by arrows
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traps [33–35]. The protective role of neutrophils was demonstrated in several infections [36–
48]. However, imbalance in the recruitment and removal of these cells can result in pathologies,
including chronic infections and inflammatory disorders [49–51]. Neutrophils from humans
and mice are capable of killing B. anthracis spores and/or bacilli in vitro [52–54]. However, the
functional chemotactic responses by neutrophils in vivo required to exert their bactericidal
effect seem to be inhibited by B.a. [21,55]. Therefore, neutrophils may appear to be unimpor-
tant in the defense against B.a. infection [56]. We hypothesized that timely stimulation of neu-
trophils as key mediators of innate immunity early in the course of infection would be able to
interfere with the suppression of their function and ultimately improve the outcome of disease.

We found that extensive inflammation of footpads in the spore-challenged control group
was followed by rapid onset of mortality (Fig 2). However, in the groups of mice which received
the MP-based treatments before spore challenge the inflammation was reduced while the mor-
tality was delayed and/or partially prevented. The most prominent anti-inflammatory effect,
which took place during the first and second phases of inflammation, was observed in Group 4
treated with CK-loaded MPs. In comparison, the MPs without CKs in Group 2 also demon-
strated similar reduced response during the first phase of inflammation, which subsided at day
7 in Group 4 but remained significantly higher in Group 2 (p = 0.008). A different result was
obtained in the case of the Group 6 treated with CK-loaded MPs shortly after the spore chal-
lenge. This group showed high mortality and inflammation close to that of untreated control
which is consistent with quick systemic dissemination of the spores through lymphatics to dis-
tant locations such as the spleen within less than 3 h [27]. This would render the LN-attracted
neutrophils ineffective in eliminating the remote spores.

Several explanations can be put forward for the observed protective effects. We show that
both the administration of CK-loaded MPs and spore challenge resulted in the migration of
neutrophils to the site of inoculation and regional popliteal LNs as documented immunohisto-
chemically by specific neutrophil marker Ly-6G. Additionally, many migrating monocytes/
macrophages were also present, as shown by the CD11b-positive staining (Fig 4). We suggest
that prophylactic administration of CK-loaded MPs before the spore challenge effectively
reduced the bacterial burden due to the activity of phagocytes demonstrating large amount of
B.a. antigen in their content (Fig 4B). The short 4-h pre-treatment was statistically as effective
as the 24-h one, indicating quick and sustained mobilization of circulating neutrophils. Judging
by the predominant number of Ly-6G+ cells compared to CD11b+ ones, the majority of cells
recruited were resting neutrophils (CD11b-Ly6G+), which can be activated by CXCL8 to
become CD11b+ [51,57].

During the first phase the MP-delivered CKs seem to overcome the suppressive effect of B.
a. infection on the actin-based neutrophil chemotaxis. Even a low level of neutrophil influx in
response to MPs without CKs reported in our previous study [8] seems enough to shift the
course of B.a. infection toward clearance by host immune cells. Our preliminary data (not
shown) indicate that the MPs do not display a direct anti-spore or anti-bacterial activity but
can be involved in the induction of endogenous CKs such as Gro/KC which can work in con-
cert with the externally-delivered CKs during the first phase of the host inflammatory response.

and arrowheads, respectively). The cortical LN regions from the CK-treated mice (A, bottom row) contain a large amount of diffusely-
distributed Ly-6G antigen with a pattern shown in the magnified squared region in the right panel. (B) Mice were injected into footpads
with CK-loaded MPs (CKMPs) for 4 h and then challenged with B.a. spores (low, 4x105 spores or high, 4x106 spores in 20 μl of PBS) for
24 h. The neutrophils were stained as in (A). The infection after CK administration resulted in the enhanced number of neutrophils in the
subcapsular region (arrows). Low B.a. dose stimulated the neutrophil migration (B, middle right panel), but high dose abrogated it (B, left
panel).

doi:10.1371/journal.pone.0163163.g005
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This suggestion is consistent with observation of low-level neutrophil migration to the site of
subcutaneous injection of agarose beads coupled with CB [58].

The appearance of a second peak of inflammation might be at least partially attributed to
the waning of the CKs’ effect as their sustained release according to our estimates can take
place only for a few days. It is likely that the decreased innate response during the second phase
was not replaced by the fully protective adaptive immunity and therefore could not prevent
death. Some of the surviving mice still demonstrated footpad inflammation and residual bacte-
rial burden. Experiments in this direction are forthcoming.

Overall, we demonstrated a remarkable effectiveness of CK-loaded MPs which resulted in a
substantial delay in mortality and improvement in survival after a single injection of MPs
without any additional therapeutic intervention. Although potential clinical utility of our MPs
requires further studies, the presented data suggest that stimulation of the immune responses
with exogenous CKs may be considered as novel strategy to improve outcome of anthrax
infection. In future experiments it seems promising to combine our MP-based delivery with
administration of antibiotics for increased efficacy, or to apply this approach to other types of
diseases.
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