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Food safety draws considerable attention in the modern pace of the world owing to rapid-

changing food recipes and food habits. Foodborne illnesses associated with pathogens,

toxins, and other contaminants pose serious threat to human health. Besides, a large

amount of money is spent on both analyses and control measures, which causes signifi-

cant loss to the food industry. Conventional detection methods for bacterial pathogens and

toxins are time consuming and laborious, requiring certain sophisticated instruments and

trained personnel. In recent years, nanotechnology has emerged as a promising field for

solving food safety issues in terms of detecting contaminants, enabling controlled release

of preservatives to extend the shelf life of foods, and improving food-packaging strategies.

Nanomaterials including metal oxide and metal nanoparticles, carbon nanotubes, and

quantum dots are gaining a prominent role in the design of sensors and biosensors for food

analysis. In this review, various nanomaterial-based sensors reported in the literature for

detection of several foodborne bacterial pathogens and toxins are summarized high-

lighting their principles, advantages, and limitations in terms of simplicity, sensitivity, and

multiplexing capability. In addition, the application through a noncross-linking method

without the need for any surface modification is also presented for detection of pork

adulteration in meat products.

Copyright © 2015, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Foodborne diseases are caused by consuming foods or bev-

erages contaminated by bacteria, viruses, and parasites. The

worldwide statistics on foodborne diseases published for
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inistration, Taiwan. Publis

/licenses/by-nc-nd/4.0/).
2011e2012 by the Centers for Disease Control and Prevention

reported a total of 1632 outbreaks, 29,112 affected patients,

1750 hospitalizations, and 68 deaths [1]. Some of the various

bacterial pathogens that cause foodborne diseases and even-

tual death are Salmonella (31%), Listeria (28%), Campylobacter

(5%), and Escherichia coli O157:H7 (3%) [1,2]. Likewise, the trend
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of foodborne disease outbreaks in Taiwan between 1991 and

2010 reported by the Food and Drug Administration of

Department of Health in Taiwan indicated 4284 outbreaks and

82,342 cases, with annual average number of 285 outbreaks

during 2001e2010 being substantially greater than that of 143

during 1991e2000 [3]. The three most common foodborne

pathogens responsible for these outbreaks in Taiwan include

Vibrio parahaemolyticus, Staphylococcus aureus, and Bacillus ce-

reus [3]. The spread of foodborne disease due to pathogens and

toxins causes a substantial loss to the food industry because a

large amount of money will be spent on analyzing and iden-

tifying preventivemeasures for food protection [4,5]. Thus, the

development of a rapid, sensitive, specific, and cost-effective

analytical method is of great importance for detection of mi-

crobial contaminants.

Conventional methods for detecting pathogens include

microscopy-, nucleic acid-, and immunoassay-based tech-

niques. The microscopy-based methods require a large

amount of sample, long incubation time, and tedious culture

preparations [6]. However, the discovery of DNA and devel-

opment of polymerase chain reaction (PCR) have led micro-

biologists to target genes and proteins instead of the

microorganism itself. Although the PCR-based techniques and

several other molecular diagnostic methods such as rapid-

PCR, ligand chain reaction, checkerboard hybridization,

ligase chain reaction, ribotyping, and pulsed-field gel elec-

trophoresis are highly sensitive and selective, they require

undamaged DNA, experienced personnel, and expensive

equipment as well as reagents, thusmaking the overall cost of

detection high enough to prevent wide-scale application,

especially in developing nations and point-of-care scenario

[6,7]. The immunoassays involving targeting of specific pro-

teins or carbohydrate moieties to pathogens include enzyme-

linked immunosorbent assays (ELISAs) and Western blot an-

alyses, both of which are sensitive and can provide molecular

fingerprints of the pathogen. Despite their sensitivity, both

ELISA and PCR require extensive sample preparation and long

readout time, which can delay the pathogen detection and

immediate preventive action toward the infected patients

[4,6e8].

Similarly, the toxins secreted by bacteria can induce cyto-

toxicity by altering the physiological activity and integrity of

the plasma membrane [6,7,9]. For example, the Shiga toxin

secreted by E. coli O157:H7 can inhibit protein synthesis and

activate apoptosis and necrosis, whereas listeriolysin O

secreted by Listeria monocytogenes can create pores for subse-

quent disruption of the phospholipid bilayer and eventual cell

lysis [6,7,9,10]. Although toxins are not usually transmitted

through infected individuals, they are able to cause significant

devastating effects on organs and tissues. Besides, the toxins

can remain in the food, environmental, and clinical samples

even after the death of their corresponding pathogens.

Therefore, prompt screening of toxins is highly essential to

minimize intoxication. Similar to pathogens, the existing

detection methods for toxins include ELISA, Western blots,

surface plasmon resonance (SPR) biosensors, antibody

microarrays, and antibody-coated polystyrenemicrobeads, all

of which are sensitive and possess multiplexing capability

[2,4e7,9]. However, these methods are time consuming and

laborious, besides requiring homogeneous or purified
samples. Furthermore, as thesemethods are performed in the

fluorometric or spectrophotometric mode, the number of

samples screened can be limited [2,4e7,9]. Nevertheless, these

limitations can be overcome by some other toxin detection

techniques such as liquid chromatography-mass spectrom-

etry and multidimensional protein identification [6]. Yet, the

requirement of sophisticated instrumentation as well as lack

of portability and user friendliness still limits their wide-scale

application. Thus, the development of an advanced detection

method with nanomaterials as a platform is crucial.

Meatball is a special type of restructured and pulverized

meat product, which is popular in many Asian and European

countries [11,12]. Pork has been identified as a potential

adulterant in beef and chicken meatballs because of cheaper

cost [11,13]. Moreover, from the religious and health point of

view, the mixing of pork or pork-related products in food

raises serious concerns due to violation of Kosher and Halal

food laws [12e14]. In addition, consumption of food products

with pork adulteration has been reported to cause allergic

reactions [10e12], and consumption of these foods at high

levels can cause accumulation of cholesterol and saturated

fats in the human body, resulting in chronic diseases such as

diabetes and cardiovascular disease [11e14]. Thus, the

development of a sensitive and selective analytical method is

imperative for detection of pork adulteration in meatball

preparations.

Recent developments in the field of nanotechnology offer

many technological advances for detection of foodborne

pathogens and toxins as well as adulteration among meat

formulations [2,4e6,9,11e14]. However, most of the published

articles have mainly dealt with the theranostic application of

nanomaterials for cancer detection and treatment [15]. Owing

to the presence of unique properties in nanoscale materials,

the sensing devices can be designed to enhance sensitivity,

reduce detection time, and enable multiplexing capability

[16e18]. Compared with their bulk counterparts, the nano-

sized materials (1e100 nm) possess large surface area, exhibit

quantum confinement effects, as well as enhance surface

reactivity, electrical conductivity, and magnetic properties

[6,18]. Most importantly, the properties of nanomaterials can

be tailored by changing the size, shape, composition, and

modifying the nanomaterial surface with appropriate func-

tionalization. In view of this, the electronic, spectroscopic,

light-scattering, and conductive properties can bemodified by

engineering the structural parameters of nanomaterials

including size, composition, self-assembling, and binding

[2e6,16e18]. In addition, the groundbreaking developments in

surface patterning techniques have paved the way for gener-

ating nanoscale arrays for pathogen-targeting ligands, which

can drastically improve the accuracy of analytical techniques

associated with detection of food-related toxins [6,16,17]. In

addition, the application of nanoparticles as sensors in

conjugation with affinity ligands, antibodies, as well as the

existing novel detection techniques has led to improved

sensitivity for simultaneous detection of multiple toxins

[2,4e6,16e18]. Several nanomaterials commonly used for

detection of foodborne pathogens and toxins include gold

nanoparticles (GNPs), gold nanorods, magnetic nanoparticles

(MNPs), quantum dots (QDs), silver nanoparticles (SNPs), and

silica nanoparticles [2,4,5]. Detection of foodborne pathogens

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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and toxins is usually achieved by exploiting the optical (opti-

cal sensors) or electronic (electrochemical sensors) properties

of the nanomaterial [4]. In this review, we have highlighted

the application of several nanomaterials as sensors for

detection of foodborne bacterial pathogens and toxins. In

addition, the application of a promising noncross-linking

method requiring no surface modification of nanomaterials

used for detection of pork adulteration in meat products is

also presented.
2. Nanomaterial-based sensors for bacterial
pathogens

Table 1 summarizes a collection of some reported studies on

nanomaterial-based sensors used for detection of bacterial

pathogens.

2.1. Escherichia coli

E. coli O157:H7 is the most important serotype among E. coli

strains. It has drawn considerable attention owing to its toxin-

producing capability, thereby damaging the intestinal lining

and causing anemia, stomach cramps, hemolytic uremic

syndrome, and hemorrhagic colitis with an infective dose as

low as 100 cells [9]. It can be transmitted to humans through

consumption of raw or undercooked ground meat products

and raw milk. More specifically, several foods reported to be

responsible for outbreaks of E. coli O157:H7 include under-

cooked hamburgers, dried cured salami, unpasteurized fresh-

pressed apple cider, yogurt, and cheese made from raw milk

[4]. In addition, the cross-contamination through feces in

water, meat products, fruits, and vegetables has also

contributed to E. coli O157:H7 outbreaks [4,9]. For the

nanoparticle-based detection of E. coli O157:H7, Mao et al [19]

developed a quartz crystal microbalance (QCM) DNA sensor

using streptavidin-conjugated MNPs as mass enhancers to

amplify the frequency change. A thiolated single-stranded

DNA probe specific to the E. coli O157:H7 eaeA gene was self-

assembled onto the QCM sensor followed by inducing hy-

bridization through exposure of this single-stranded DNA

probe to the complementary target DNA and amplification

using asymmetric PCR with biotin-labeled primers. This

resulted in a change in mass with a concomitant change in

QCM frequency for detection of E. coli O157:H7. The detection

limit obtainedwas 2.67� 102 colony forming units (CFU)/mL in

the linear working range of 2.67 � 102e2.67 � 106 CFU/mL [19].

Based on a similar approach, a circulating-flow piezoelectric

biosensor (PEB) was developed for detection of E. coli O157:H7

using GNPs-conjugated thiolated probe as mass enhancer and

sequence verifier [20]. An E. coli O157:H7 eaeA gene-specific

thiolated probe conjugated to PEB was exposed to E. coli gene

fragment amplified by PCR and the resultantmass changewas

measured as frequency shift of PEB, with the detection limit

obtained being 1.2� 102 CFU/mL in the linear working range of

102e106 CFU/mL [20].

For detection of E. coli O157:H7 in milk, a disposable

immunosensing strip containing double antibodies for indi-

rect sandwich enzyme-linked immunoassay was fabricated

by attaching 13-nm GNPs onto screen-printed carbon
electrodes (SPCEs) [21]. The electrode was coupled with the

first E. coli O157:H7-specific antibody, E. coli O157:H7 intact

cells and the second E. coli O157:H7-specific antibody conju-

gated with horseradish. The hydrogen peroxide and ferroce-

nedicarboxylic acid (FeDC) were used as a substrate and

mediator, respectively. The presence of GNPs and FeDC

enhanced the response current by 13.1-folds, allowing for

detection of 6 CFU/strip and 50 CFU/strip in buffer and milk,

respectively. The concentration range from 102 CFU/mL to

107 CFU/mL could be detected by this amperometric method.

Cho et al [22] developed an electrochemical immunosensor

based on deposition of peptide nanotubes on SPCE

(PNseSPCE). The anti-E. coli O157:H7 antibody immobilized on

PNeSPCE adsorbed E. coli O157:H7 from samples through

antigeneantibody interaction and the response current was

measured by cyclic voltammetry. Some other E. coli strains

were also detected using sensors incorporating nanomaterials

such as MNPs [23], SNPs [24], GNPs [25], and carbon nanotubes

(CNTs) [26]. With D-mannose-functionalized MNPs, El-

Boubbou et al [23] developed a method to detect E. coli cells

at 104 cells/mL through incubation of the modified MNPs with

fluorescein-labeled concanavalin A at 4�C for 12 hours, fol-

lowed by further incubation with E. coli cells in phosphate-

buffered saline (PBS) buffer, separation using magnetic field,

staining with fluorescent dye, and imaging with epifluor-

escent microscopy. In a similar study, Kalele et al [24] used

rabbit immunoglobulin G (IgG) antibody-conjugated silver

nanoshells for rapid and highly selective detection of E. coli in

the range of 5e109 cells by monitoring the change in the SPR

band shift in the presence of E. coli cells. In addition, a rapid

anodic stripping voltammetric detection of E. coli using core-

shell Cu@GNPs as anti-E. coli sensors was also reported [25].

More recently, Maurer et al [26] developed a novel nano-

biosensor platform through decoration of CNTs with RNA-

coated GNPs for the selective detection of E. coli.

2.2. Salmonella

Salmonellosis is one of the most important bacterial diseases

caused mainly by Salmonella species such as Salmonella enter-

itidis and Salmonella typhimurium [4]. TheWHO statistics reveal

about tens of millions of new human cases affected and

100,000 deaths every year, with symptoms including fever,

abdominal pain, diarrhea, nausea, and vomiting [2,4,9]. A

highly sensitive electrochemical immunoassay for determi-

nation of S. typhimurium was demonstrated by Dungchai et al

[27], who immobilized monoclonal antibodies on polystyrene

for capturing bacteria followed by adding polyclonal anti-

bodyeGNPs conjugate to bind the bacteria in the presence of

copper-enhancer solution and ascorbic acid. The copper

released upon reduction was deposited on GNPs for direct

measurement of S. typhimurium concentration by anodic

stripping voltammetry, with the limit of detection being

98.9 CFU/mL and the anodic current linearly depending on S.

typhimurium concentration over a working range of

1.30 � 102e2.6 � 103 CFU/mL [27]. In a later study, a reusable

capacitive immunosensor involving ethylenediamine and

GNPs grafted on glass carbon electrode was developed for

detection of Salmonella spp. in commercial pork samples [28].

The interaction of monoclonal antibodyeGNPs conjugated

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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Table 1 e Some reported nanomaterial-based sensors for detection of different bacterial strains.

Bacterium Nanomaterial
support

Recognition element/detection technique Detection limit/working range Reference

Escherichia coli O157:H7 MNPs Thiolated ssDNA immobilized on quartz crystal microbalance 2.67 � 102 CFU/mL;

2.67 � 102e2.67 � 106 CFU/mL

[16]

GNPs eaeA gene-specific thiolated probe conjugated to piezoelectric

biosensor

1.2 � 102 CFU/mL;

102e106 CFU/mL

[17]

GNPs Two ABs coupled with GNPseSPCE; DIS-amperometry 6 CFU/strip in buffer and 50 CFU/strip in milk; 102e107 CFU/mL [18]

PNPs AB immobilized on PNPseSPCE; cyclic voltammetry d [19]

E. coli MNPs Incubation of target with fluorescein-labeled concanavalin A;

epifluorescent microscopy

104 cells/mL [20]

SNPs Rabbit IgG antibody conjugated with SNPs; SPR band shift using UV

eVIS spectroscopy

5e109 cells/mL [21]

Cu@GNPs ABeCu@GNPs; anodic stripping voltammetry 30 CFU/mL [22]

GNPs@CNTs RNA-coated GNPs on CNTs; UVeVIS spectroscopy d [23]

Salmonella GNPs MABepolystyrene coupled with PABeGNPs; anodic stripping

voltammetry

98.9 CFU/mL; 1.3 � 102e2.6 � 103 CFU/mL [24]

GNPs MABeGNPs conjugated to GCE; electrochemical impedance

spectroscopy

1 � 102 CFU/mL; 1 � 102e 1 � 105 CFU/mL (pork sample) [25]

MNPs ABeMNPs and ABeTiNPs; UVeVIS spectroscopy 100 CFU/mL (milk sample) [26]

CNTs MABeCNTs conjugated to GCE; electrochemical impedance

spectroscopy

1.6 � 104 CFU/mL [27]

QDs ABeMBs coupled with ABebiotin and streptavidineQDs; fluorescence

spectroscopy

103 CFU/mL; 103e107 CFU/mL (chicken carcass water) [28]

SNC Extent of SNC's bending proportional to bacterial count 25 cells/mL [29]

Listeria monocytogenes MNPs ABeSPIONs; magnetic flux measurement by high-transition

temperature SQUID

5.6 � 106 cells/20 mL and 230 cells/1 nL [30]

Mycobacterium avium MNPs ABeprotein GeSPIONs at optimum SPIONs concentration of 2 mg Fe/mL;

SQUID

15.5 CFU/mL; 15.5e775 CFU/mL [31]

GNPs MABeDSNBesulfureGNPs; SERS-based sandwich immunoassay 100 ng/mL in buffer and 200 ng/mL in pasteurized whole milk [32]

Pseudomonas aeruginosa GNRs ABeGNRs by carbodiimide chemistry; NIR light-mediated staining of

live/dead cells

75% decrease in cell viability [33]

Vibrio parahaemolyticus GNPs AgaroseeGNPs on SPCE; amperometry 7.4 � 104 CFU/mL; 105e109 CFU/mL [35]

E. coli O157:H7,

Salmonella typhimurium

and Bacillus cereus

SiNPs ABeSiNPs; plate-counting and fluorescence methods 1e400 cells (plate-counting method)

single cell (fluorescence method)

(ground beef sample)

[36]

Twelve different bacteria* GNPs Poly(para-phenylene ethynylene)eGNPs; fluorescence spectroscopy 1 � 109 CFU/mL [37]

Eight different bacteria* MNPs Amine-functionalized MNPs; plate-counting method 88.8e99.1% bacteria capture (water, grape juice, green tea, and

urine)

[38]

AB ¼ antibody; CFU ¼ colony forming units; CNTs ¼ carbon nanotubes; Cu ¼ copper; DIS ¼ differential impedance spectroscopy; DSNB ¼ 5,50-dithiobis(succinimidyl-2-nitrobenzoate); GCE ¼ glass

carbon electrode; GNPs ¼ gold nanoparticles; GNRs ¼ gold nanorods; Ig ¼ immunoglobulin; MAB ¼monoclonal antibody; MBs ¼magnetic beads; MNPs ¼magnetic nanoparticles; NIR ¼ near infrared;

PAB ¼ polyclonal antibody; PNPs ¼ peptide nanotubes; QDs ¼ quantum dots; RNA ¼ ribonucleic acid; SERS ¼ surface-enhanced Raman scattering; SiNPs ¼ silica nanoparticles; SNC ¼ silicon-nitride

cantilever; SNPs ¼ silver nanoparticles; SPCE ¼ screen-printed carbon electrode; SPIONs ¼ superparamagnetic iron oxide nanoparticles; SPR ¼ surface plasmon resonance; SQUID ¼ superconducting

quantum interference device; ssDNA ¼ single-stranded DNA; TiNPs ¼ titanium nanoparticles; UVeVIS ¼ ultravioletevisible.
* The names of bacteria are provided in the text.
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with Salmonella spp. could be directly measured by electro-

chemical impedance spectroscopy with a detection limit of

1 � 102 CFU/mL, with the linear relationship between change

in capacitance and logarithm of concentration being obtained

in the range of 1 � 102e1 � 105 CFU/mL. Using MNPs and op-

tical nanocrystal probes, Joo et al [29] developed a facile and

sensitive method for detection of Salmonella in milk. The

bacteria in milk were captured by antibody-conjugated MNPs,

followed by separating the bacteria-adsorbed probe using an

external magnetic field, exposing it again to antibody-

immobilized TiO2 nanocrystals for absorption of UV light,

and then magnetically separating the MNPseSalmonellaeTiO2

complexes from solution for analysis of unbound TiO2 nano-

crystals with an UVevisible spectrometer. A detection limit of

100 CFU/mL was obtained for Salmonella in milk [29]. In an

attempt to improve the performance of electrochemical

biosensor by CNTs, Jain et al [30] immobilized CNTs-

functionalized monoclonal antibodies onto a glassy carbon

electrode for S. typhimurium detection using electrochemical

impedance spectroscopy as a function of change in charge

transfer resistance and impedance. A detection limit of

1.6 � 104 CFU/mL was obtained with the linear response being

10�1 to 10�6 (serial dilution values of overnight bacterial cul-

ture) [30].

The use of QDs as fluorescent labels is emerging as a novel

and promising class of fluorescent biosensors. For detection of

S. typhimurium in chicken carcass washwater, Yang and Li [31]

separated the bacteria fromwashwater using anti-Salmonella-

antibody-coated magnetic beads and allowed them to react

with secondary biotin-labeled anti-Salmonella antibody to

facilitate reaction of biotin with streptavidin-coated QDs and

measure fluorescence intensity. The linear response between

logarithm of bacterial cell number and fluorescence intensity

was in the range of 103e107 CFU/mL with the detection limit

obtained being 103 CFU/mL [31]. Earlier to the aforementioned

sensors for Salmonella, Weeks et al [32] developed a silicon

nitride cantilever for detection of Salmonella enterica cells as

low as 25 by monitoring the cantilever's surface bending,

which was directly proportional to the amount of bacteria

bound on cantilever.

2.3. Listeria monocytogenes

L. monocytogenes is the Gram-positive bacterium responsible

for the infectious disease listeriosis. It is the most virulent

microorganism and the third leading cause of death among

foodborne bacterial pathogens. For detection of L. mono-

cytogenes, Grossman et al [33] developed an interesting prin-

ciple based on monitoring the binding rate between antibody-

linkedMNPs and bacteria using a high-transition temperature

superconducting quantum interference device (SQUID).

Superparamagnetic nanoparticles with a size of 50 nm coated

with antibody were added to the L. monocytogenes sample,

followed by applying pulsed magnetic field to align the mag-

netic dipole moments. While free nanoparticles quickly

randomize by Brownian rotation, the nanoparticles bound to

L. monocytogenes could undergo Neel relaxation and gradually

dissipate magnetic flux for measurement by SQUID. A detec-

tion limit of 5.6 � 106 and 230 L. monocytogenes cells were ob-

tained in a sample of 20 mL and 1 nL, respectively [33]. A similar
magnetic relaxation technique was also used for detection of

mycobacterial species, which will be described in the

following section.

2.4. Mycobacterium avium

Mycobacterium avium subspecies paratuberculosis (MAP) is the

causative agent of Johne's disease in cattle and the existing

major obstacle in controlling the spread of this disease lies in

the inability to rapidly detect this microorganism in small

concentrations. Recent advances in developing nanosensors

provide attractive solutions for fast, sensitive, and high-

throughput analysis [6,34,35]. Kaittanis et al [34] developed a

one-step nanoparticle-mediated bacterial detection method

in milk and blood by exploiting the magnetic relaxation

property of superparamagnetic iron oxide nanoparticles

(SPIONs). The principle underlying the detection mechanism

by magnetic nanosensors is based on their ability to switch

between dispersed and clustered state during target interac-

tion, resulting in a concomitant change in spinespin relaxa-

tion time. For detection of MAP, the SPIONs were conjugated

with anti-MAP antibodies through protein G and the nano-

sensors were shown to respond in a dose-dependent manner

upon addition of MAP, with the method working best at a

nanoparticle concentration of 2 mg Fe/mL. Accordingly, the

MAP-spiked whole milk conjugated with 2 mg Fe/mL MAP

nanosensor showed a change in T2, which was indirectly

proportional to the MAP concentration, with the reliable

quantitation being attained in the range of 15.5e775 CFUs

after a 30-minute incubation at room temperature [34]. How-

ever, at 37�C, the detection and quantitation of MAP could be

achieved with high sensitivity in 2% milk. One more advan-

tage is that a 30-minute incubation at 37�C did not affect the

detection sensitivity in the presence of some other bacteria

such as E. coli, S. aureus, Pseudomonas aeruginosa, Enterococcus

faecalis, Proteus vulgaris, and Serratia marcescens, but increasing

the incubation time to 45 minutes increased the detection

limit from 15.5 CFUs to 38.8 CFUs. Furthermore, this single-

step assay could also determine whether the blood samples

from an individual were MAP positive or negative [34]. In

another study, Yakes et al [35] developed a sandwich immu-

noassay for rapid, low-level detection of MAP based on

surface-enhanced Raman scattering (SERS) with two key

components through immobilization of monoclonal antibody

13E1 for targeting a surface protein MAP2121c on microor-

ganism and designing extrinsic Raman labels with 60-nm

GNPs for selective binding of captured proteins to produce

large SERS signals. The application of Raman spectroscopy in

the analysis of food and pharmaceutical nanomaterials was

recently reviewed by Li and Church [36]. The development of

Raman label was based on spontaneous adsorption of sulfur

compounds onto GNPs, followed by 5,50-dithiobis(succini-
midyl-2-nitrobenzoate) (DSNB) adlayer formation on the sur-

face of nanoparticle, which can tether antibodies, resulting in

the formation of a biospecific label [35]. The detection was

based on quantitation of intensity of strong ns(NO2) of the

DSNB-derived monolayer. This Raman label-incorporated

SERS-based immunoassay was able to detect MAP within 24

hours at a level as low as 100 ng/mL in PBS and 200 ng/mL in

pasteurized whole milk through integration of 13E1

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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monoclonal antibody as recognition element in SERS. A high

reproducibility shown by this method could be attributed to

the formation of uniform nanoparticles and preparation of

optimized Raman labels [35].

2.5. Pseudomonas aeruginosa

The common Gram-negative P. aeruginosa bacterium is known

for its ability to cause inflammation and sepsis. Most impor-

tantly, its colonization in certain organs such as the lung,

urinary tract, and kidney can be lethal. It is also responsible

for cross infections in hospital and clinical equipment such as

catheters. The ability of gold nanorods to selectively destroy P.

aeruginosa was explored by Norman et al [37]. The amine-

terminated gold nanorods were covalently linked with car-

boxylic acids of anti-P. aeruginosa primary antibodies in the

presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

through carbodiimide chemistry. Then, the suspension con-

taining antibodyenanorod conjugate and bacteria was irra-

diated with near-infrared (NIR) light (785 nm; 50 mW) for 10

minutes, followed by staining with live (green)/dead (red)

stains and counting of live versus dead cells. Compared with

the 80% cell viability shown for both NIR-exposed cells

without nanorods and cells with nanorods unexposed to NIR,

the exposure of nanorod-coated P. aeruginosa cells to NIR ra-

diation exhibited a 75% decrease in cell viability [37].

2.6. Vibrio parahaemolyticus

Food poisoning associated with V. parahaemolyticus is com-

mon among people consuming raw and undercooked shellfish

in diet [2,3]. Taking advantage of the recent progress in

analytical nanotechnology, Zhao et al [38] have developed a

disposable enzyme immunosensor based on a screen-printed

electrode coated with agarose-doped GNPs for detection of V.

parahaemolyticus. The GNPs provided a short conduction

pathway for efficient and direct electron transfer because of

drastic reduction in the distance between the active site and

electrode. Upon incubation of V. parahaemolyticus-incorpo-

rated sensor for 30 minutes at 25�C, the bacterium formed an

immunocomplex with horseradish peroxidase (HRP) and anti-

V. parahaemolyticus on the sensor surface and the ampero-

metric detection was based on reduction in cathodic peak

current caused by inhibition of enzyme activity, which was

responsible for oxidation of thionine by H2O2 [38]. The authors

have also demonstrated high selectivity in the presence of

some other common food pathogens such as E. coli O157:H7,

Salmonella pullorum, and S. aureus, but failed to validate the

method in real food samples.

2.7. Multiplex detection of bacterial pathogens

The multiplexing capability of a method for simultaneous

detection of multiple bacterial pathogens is particularly

attractive. Taking multiple detection of E. coli O157:H7, S.

typhimurium, and B. cereus as an example, Zhao et al [39] used

antibody-conjugated dye-doped silica nanoparticles for incu-

bation of bacteria, followed by removing any unbound nano-

particles through centrifugation, and detecting bacteria by the

plate-counting method. This method could not only be
completed within 20 minutes, but also facilitated accurate

quantitation of E. coli O157:H7 in spiked ground beef samples

with the detection limit being 1e400 cells. In addition, some

other bacterial species such as S. typhimurium and B. cereus

could be quantified, indicating the wide application of this

method for detecting both Gram-negative and Gram-positive

microorganisms [39]. Although both gold-standard plate-

counting and fluorescent-nanoparticle methods provided

similar results, the latter was faster, compared with plate

counting, which required 16 hours. Furthermore, this method

facilitated high-throughput capability with detection even

down to single bacterial cell, and thus, its application could be

envisaged for ultrasensitive detection of disease markers and

infectious agents. In a similar study, the GNPs were conju-

gated with p-conjugated polymer poly(para-phenylene

ethynylene) for positive identification of 12 different

bacterial strains within a few minutes [40]. Upon nano-

particleebacteria interaction, the bound fluorescent polymer

was released from GNP quencher emitting fluorescence.

Moreover, the negatively charged bacterial cell membrane

could also displace the polymer from GNPs thereby further

enhancing the fluorescence emission. Three different nano-

particle preparations were prepared by the authors and

distinct fluorescence could be observed for each bacterium

including Amycolatopsis azurea, Amycolatopsis orientalis, Bacillus

licheniformis, Bacillus subtilis, some E. coli strains (BL21DE3,

DH5a, and XL1-Blue), Lactobacillus lactis, Lactobacillus planta-

rum, Pseudomonas putida, Streptomyces coelicolor, and Strepto-

myces griseus [40]. For quantitation, a signature plot was

constructed for pattern recognition through linear discrimi-

nant analysis. The major advantage of this method is its

affordability and robust bacterial identification capability

without the need for heat-labile antibody-conjugated probes.

However, its detection limit is high (1 � 109 CFU/mL). The

sensitivity of this method can be improved by further opti-

mization of conditions and employing some other polymer

conjugates [40]. More recently, Huang et al [41] prepared

amine-functionalized MNPs (AF-MNPs) for rapid and high ef-

ficiency (88.5e99.1%) capture of both Gram-negative and

Gram-positive bacteria from water, food matrices, and urine.

A high-affinity adsorption toward eight bacteria including

Sarcina lutea, S. aureus, E. coli, B. cereus, B. subtilis, Salmonella, P.

vulgaris, and P. aeruginosa was shown to occur based on the

electrostatic interaction between positively charged AF-MNPs

and negatively charged sites of the bacterial surface. The

amount of AF-MNPs, pH of phosphate buffer, and ionic

strength were shown to be crucial in mediating fast and

effective interaction [41]. The advantages of this method are

short incubation time and high capture efficiency requiring no

further modification of biomolecules on AF-MNPs. However,

the major pitfall is less specificity/selectivity when compared

with some other methods using antibody conjugates.
3. Nanomaterial-based sensors for detection
of bacterial and food toxins

Table 2 shows a collection of some reported studies on

nanomaterial-based sensors used for detection of bacterial

and food toxins.

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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Table 2 e Some reported nanomaterial-based sensors for detection of different bacterial and food toxins.

Toxin Nanomaterial
support

Recognition element/detection technique Detection limit/working range Reference

Cholera CNTs MABePEDTeMWCNT on GCE and

ABeganglioside@liposome; voltammetry

10�16 g/mL; 10�14e10�7 g/mL [39]

GNPs GNPseganglioside@lipid bilayer support; fluorescence

method

10e100pM; 10pMe100nM [40]

GNPs Thiolated lactoseeGNPs; UVeVIS spectroscopy 3 mg/mL [41]

Staphylococcal enterotoxin CNTs ABeAB(HRP)eCNTs; fluorescence method 0.1 ng/mL; 0.1e100 ng/mL [42]

GNPs ABeGNPs on polycarbonate surface; ELISA coupled with

ECL detection

0.01 ng/mL [43]

Shiga toxin GNPs GlyconanoparticleseGNPs; SPR competition assay d [44]

GPNPs Chromatic sensor; UVeVIS spectroscopy 1200 U/mL; 1200e7200 U/mL [45]

Ricin GNPs Thiolated b-lactosylceramide ligandeGNPs; UVeVIS

spectroscopy

<3.3 mg/mL in 10 min, 1.7 mg/mL in 30 min [46]

GNPs GM1 receptorebiotinestreptavidineGNPs; UVeVIS

spectroscopy

0.83e5.83nM [47]

Brevetoxins GNPs BTX(BSA)eGNPsePAADs and HRPeAB; competitive-type

electrochemical immunosensor

0.01 ng/mL; 0.03e8 ng/mL [48]

Cholera, Shiga toxin, ricin, and

staphylococcal enterotoxin B

QDs ABeCdSeeZnS@QDs; fluoroimmunoassay d [49]

Escherichia coli O157:H7, Salmonella

enterica, and staphylococcal

enterotoxin B

MNPs DNAeABeMNPs; fluorescence method 2.4 � 103 CFU/mL (E. coli), 1.9 � 104 CFU/mL

(S. enterica), 0.11 ng/mL (staphylococcal enterotoxin B) (in

buffer and milk samples)

[50]

AB¼ antibody; BSA¼ bovine serum albumin; BTX¼ brevetoxins; CFU¼ colony forming units; CNTs¼ carbon nanotubes; ECL¼ enhanced chemiluminescence; ELISA¼ enzyme-linked immunosorbent

assay; GCE ¼ glass carbon electrode; GM1¼ ganglioside-monosialic acid 1; GNPs ¼ gold nanoparticles; GPNPs¼ glycopolydiacetylene nanoparticles; HRP¼ horseradish peroxidase; MAB¼monoclonal

antibody; MNPs ¼ magnetic nanoparticles; MWCNT ¼ multiwalled carbon nanotubes; PAADs ¼ polyamidoamine dendrimers; PEDT ¼ poly(3,4-ethylenedioxythiophene); QDs ¼ quantum dots;

SPR ¼ surface plasmon resonance; UVeVIS ¼ ultravioletevisible.
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3.1. Cholera toxin

Cholera toxin (CT), a protein complex secreted by the bacte-

rium Vibrio cholera, is responsible for the watery diarrhea

during cholera infection. Structurally, it is an oligomeric

complex denoted by AB5 and composed of six protein subunits

(a single copy of the A subunit and five copies of the B subunit)

[6,9]. Recent developments in nanoparticle application in

sensor devices enabled Viswanathan et al [42] to develop a

sensitivemethod for detection of CT using an electrochemical

immunosensor with liposomic magnification by linking an

anti-CT-B subunit monoclonal antibody with poly(3,4-

ethylenedioxythiophene) coated on Nafion-supported multi-

walled CNT film in a glassy carbon electrode. The detection

was based on sandwich-type assay involving electronic

transducers in which the toxin is first bound to the anti-CT

antibody followed by conjugation with ganglioside-

functionalized liposome. The potassium ferrocyanide mole-

cules released from liposomes bound onto electrode were

measured by adsorptive square-wave stripping voltammetry.

The detection limit and linear working range of CT were

10�16 g/mL and 10�14e10�7 g/mL, respectively [39]. In another

study, GNPs were tethered on supported ganglioside-

containing lipid bilayer for detection of CT [43]. A 100-fold

improvement in sensitivity could be achieved by this

method when compared with other typical fluorescent im-

munoassays (5nM), with the detection limit and linear dy-

namic range being 10e100pM and 10pMe100nM, respectively

[43]. In a colorimetric bioassay developed by Schofield et al

[44], a thiolated-lactose derivative self-assembled on GNPs

(16 nm) aggregated upon binding to the CT-B subunit, and the

detection principle was based on a color change from red to

purple. The limit of detection was estimated to be 3 mg/mL.

3.2. Staphylococcal enterotoxin

Staphylococcal enterotoxins (SEs), an important group of 21

heat-stable toxins produced by S. aureus, are associated with

foodborne diseases resulting from consumption of contami-

nated foods [9,45,46]. The food poisoning due to SEs causes

anorexia, nausea, vomiting, and diarrhea even at low levels

(20e100 ng/person) of exposure [9]. In addition, SEs have been

associated with the occurrence of diseases such as atopic

eczema, rheumatoid arthritis, and toxic shock syndrome

[45,46]. Although the existing detection methods such as

ELISA and some other immunological assays provide speed

and high throughput, they do not provide sufficient sensitivity

in all applications. To overcome this drawback, Yang et al [45]

developed an optical immunosensor using CNTs for detection

of SEs through binding with anti-SE primary antibody immo-

bilized on CNT followed by binding of HRP-labeled secondary

antibody and detection of HRP fluorescence. This sandwich

immunosensor-based assay could provide a signal six to eight

times larger than that of the standard-type immunosensor

with the detection limit and linear dynamic range being

0.1 ng/mL and 0.1e100 ng/mL, respectively. However, the

application of this assay to real food samples such as soymilk,

apple juice, meat, and baby food required an additional sam-

ple purification step by carboxymethyl cellulose chromatog-

raphy [45]. In a later study, the same research group evaluated
the GNPs-based enhanced chemiluminescence (ECL) immu-

nosensor for detection of SEs in food [46]. The anti-SE primary

antibody was immobilized onto a GNP surface through phys-

ical adsorption, and the antibodyeGNPs conjugate was

immobilized onto a polycarbonate surface. The sandwich-

type ELISA developed was based on detection using second-

ary antibody (HRP-conjugated antirabbit IgG) for ECL detection

[46]. The limit of detection (0.01 ng/mL) of this method was

found to be 10 times more sensitive than the traditional ELISA

method as well as the CNT-based immunosensor assay as

described earlier [45,46]. More importantly, GNPs are not only

less toxic than CNTs, but also do not require shortening and

acid functionalization, thereby making the preparation of

GNPs-based immunosensor much easier.

3.3. Shiga toxin

Shiga-like toxins, belonging to the same family as the CT, are

produced by E. coli, especially the foodborne pathogen E. coli

0157:H7. Interestingly, the B subunit of Shiga-like toxin pro-

duced by E. coli 0157:H7 specifically recognizes the globotriose

(Pk) blood group antigen, which contains the trisaccharide

aGal(1/4)bGal(1/4)bGlc, and each of five B subunits has

three available binding sites for Pk [6,47]. By exploiting this

phenomenon, Chien et al [47] developed an SPR competition

assay using glyconanoparticles obtained by self-assembling

two derivatives of Pk onto GNPs of different sizes (4 nm,

13 nm, and 20 nm). The longer chain length was shown to

enhance binding affinity of the Pk moiety, resulting in a

greater flexibility of Pk ligand to bind onto more sites on the

toxin surface. Likewise, a greater binding affinity was shown

by the Pkegold derivatives prepared with GNPs of larger

diameter, which was attributed to the lower curvature of

GNPs. Based on these outcomes, a chip-based assay was

developed through the incorporation of glyconanoparticles

[47]. In another study, Nagy et al [48] further developed a

chromatic sensor with Gal-a1,4-Gal glycopolydiacetylene as

nanoparticle for selective detection of Shiga toxin-producing

E. coli O157:H7. The well plates containing Shiga toxin-

producing E. coli O157:H7 could change the color from purple

to brown within 5 minutes, whereas the non-Shiga toxin

producing E. coli solution remained purple upon addition of

glycopolydiacetylene nanoparticles. This method was shown

to be highly selective, rapid, and sensitive, with the limit of

detection and linear dynamic range being 1200 U/mL and

1200e7200 U/mL, respectively [48].

3.4. Ricin

Owing to its illegal use, ricin (Ricinus communis), a highly toxic

lectin, is now considered a bioterrorism threat. The mecha-

nism of toxicity arises from binding of its two carbohydrate

active sites to b-D-galactopyranose or b-D-N-acetylgalactos-

amine residues on the surface of the host cell [6,49]. Based on

this toxicity mechanism, Uzawa et al [49] developed a facile

and sensitive colorimetric assay for ricin using GNPs func-

tionalized with a thiolated b-lactosylceramide ligand. Upon

addition of ricin (RCA60) or its surrogate agglutinin RCA120 to

glycol nanoparticles, a visual change of color from red to

purple occurred and this color change was not observed in the

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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presence of several other plant lectins including those from

jack bean, soybean, peanut, clary sage, osage orange, and

Amur maackia trees, as well as in the presence of

noncarbohydrate-binding proteins [bovine serum albumin

(BSA) and g-globulin]. This bioassay could detect ricin at

concentrations less than 3.3 mg/mL in 10 minutes or 1.7 mg/mL

in 30minutes. In another study, Taylor et al [50] combined the

sensitivity of SPR and facile construction of microfluidic de-

vices from polydimethylsiloxane by tethering ganglioside-

monosialic acid 1 receptor-containing lipid vesicles on gold

nanoglassified surface through anchoring the vesicle's biotin

moieties to the surface-interacting streptavidin molecules.

Although the detection limit (0.83e5.83nM) obtained by this

method was not as sensitive as the other methods, further

improvements in both device designing and signal amplifi-

cation could significantly enhance its sensitivity and multi-

plexing capability.

3.5. Brevetoxins

Brevetoxins (BTXs) are cyclic polyether ladder neurotoxins

produced by the dinoflagellate Karenia brevis (marine micro-

organism), which can bind to voltage-sensitive sodium

channels in cell membranes, leading to neurotoxic shellfish

poisoning characterized by paresthesia, reversal of hotecold

temperature sensation, muscle pain, vertigo, loss of coordi-

nation, abdominal pain, nausea, diarrhea, headache, slow

heart rate, dilated pupils, and respiratory irritation [9]. For

rapid screening of BTX-B in food samples, Tang et al [51]

developed a sensitive electrochemical immunosensor by

immobilizing BTX-BeBSA conjugate on GNPs-decorated

amine-terminated polyamidoamine dendrimers

(GNPePAADs). On the basis of the competitive-type immu-

noassay format with the HRP-labeled anti-BTX antibodies as

sensor label, a low detection limit of 0.01 ng/mL was obtained

with a wide working linear range of 0.03e8 ng/mL BTX-B. The

incorporation of GNPs and three-dimensional PAADs could

substantially enhance the conductivity of PAADs and surface

coverage of biomolecules on the electrode, respectively [51].

3.6. Multiplex detection of bacterial and food toxins

In an attempt to simultaneously detect multiple toxins, mul-

tiplexed fluoroimmunoassays were developed by conjugating

highly luminescent semiconductor nanocrystals (CdSeeZnS

core-shell QDs) and antibodies for analyzing CT, ricin, Shiga-

like toxin, and SE B [52]. This sandwich immunoassay could

quantify all the four toxins in a single sample by a high-

throughput format. Although this method overcomes the

multiple isolation and incubation steps as required in any

typical immunoassay, the cross-reactivity was shown to be

problematic. However, it was suggested that through the

careful optimization of assay conditions and selection of the

antibody reagent, the problem associated with cross-

reactivity could be solved for attaining reliability and robust-

ness. In a previous study, Branen et al [53] developed an

enzyme bionanotransduction assay for simultaneous detec-

tion of E. coli O157:H7, S. enterica serovar typhimurium, and SE B

in both buffer and milk with the limit of detection obtained

being 2.4 � 103 CFU/mL, 1.9 � 104 CFU/mL, and 0.11 ng/mL,
respectively. This fluorescence-based assay could quantify all

the three toxins through adsorption onto antibodyeMNPs

conjugate and amplification of DNA templates bound onto the

antibody.
4. Nanomaterial-based detection of pork
adulteration in meat products

More recently, the GNPs have been successfully demonstrated

as a potential sensor for detection of pork adulteration in beef

and chickenmeatball preparations [11e14]. On the basis of an

interesting noncross-linking method [54,55], Ali et al [13]

developed an analytical method using 20-nm citrate-coated

GNPs to determine pork adulteration in beef and chicken

meatball preparations. The basic principle for analysis

involved measurement of change in color of GNPs from red to

purple grey in vials containing swine DNA,with red remaining

unchanged in nonpork samples (chicken or beef). More elab-

orately, the GNPs were well dispersed in deionized water

without incubation and also dispersed in 3mM PBS after a 3-

minute incubation of GNPs with 3nM single-stranded DNA

probe at 50�C. In contrast, the GNPs aggregated in 3mM PBS

without incubation and also aggregated in 3mM PBS after a 3-

minute incubation of GNPs with 3nM double-stranded DNA

probe at 25�C, resulting in a change in color of GNPs from red

to purple grey (Fig. 1A and 1B) [13]. In general, the negative

coatings of citrate ions on the GNP surface electrostatically

repel each other providing good dispersion of GNPs in deion-

ized water. Likewise, the single-stranded DNA adsorbed on

GNPs by van derWaals interactions providesmore phosphate-

negative charges on GNP surfaces further stabilizing the GNPs.

However, the aggregation of GNPs in PBS can be attributed to

the reduction of repulsive negative charges between individ-

ual GNPs. In addition, unlike single-stranded DNA, the double-

stranded DNA could not protect the GNPs from salt-induced

aggregation because of the highly stable and uncoiled nature

of the latter (Fig. 1B). This phenomenon could be clearly

visualized in transmission electron microscopy (TEM) images

and in the absorption spectra as shown in Fig. 1A [13].

Application to real samples involvedmixing and annealing

(50�C) of a 25-nucleotide (nt) single-stranded DNA probe with

95�C-denatured DNA from different meatballs differentiated

well between perfectly matched swine cytb gene and

mismatched hybridization (13- and 14-nt mismatching with

bovine and chicken cytb genes, respectively) [13]. Conse-

quently, the vials containing nonpork DNA did not engulf

probes due to mismatches and single-stranded DNA adsorbed

on GNPs protected GNPs from salt-induced aggregation,

whereas the probes were completely consumed by perfect

hybridization in vials containing pork in pure and mixed

forms, accompanied by a color change of GNPs from red to

grey due to aggregation, leading to an eventual red shift in SPR

peak from 525 nm to 575 nm and appearance of an additional

peak at 610 nm (Fig. 1C) [13]. Similarly, the original pinkish red

color that appeared in 1% pork was considerably reduced in

3e5% pork containing vials resulting in a wavelength shift

from 525 to 535 nm and appearance of a stronger absorption

between 550 and 650 nm due to partial aggregation. Whereas,

a complete aggregation occurred in 10% and 15% pork

http://dx.doi.org/10.1016/j.jfda.2015.05.001
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Fig. 1 e Identification and quantitation of pork adulteration in meatball formulations. (A) TEM images of GNPs before and

after salt-induced aggregation. Panels A1 and A2 denote GNPs dispersed in deionized water and in 3mM PBS after a 3-

minute incubation with 3nM single-stranded DNA, respectively. Panels A3 and A4 indicate GNPs aggregated in 3mM PBS

and in 3mM PBS after a 3-minute incubation with 3nM double-stranded DNA probe. (B) Absorption spectra of aggregated
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containing vials as evident from the change in color from

pinkish red into purple grey (Fig. 1D) [13]. In another study, a

species-specific nanobiosensorwas fabricated by integrating a

27-nt AluI fragment with 3-nm citrateetannate-coated GNPs

[12]. Structurally, the nanobiosensor was composed of a

single-stranded DNA covalently linked to 3-nm GNPs via sul-

furegold bond at one end and a fluorescent dye at the other

end. The higher the fluorescence emission, the greater the

degree of target DNA binding, with the baseline and

maximum fluorescence being observed in the absence of any

target DNA and by saturating the probe with target DNA,

respectively. The underlying mechanism of this method in-

volves three oligonucleotide probes flanked by a hexyl-A

spacer at both sides, while the alkane thiol cap at one end

and fluorophore at the other end are shown to self-organize in

a constrained arch-like structure [12]. In the absence of any

complementary target, the fluorophore is quenched by GNPs.

However, upon target binding, the structure of probe is

transformed into a rod-like conformation emitting fluores-

cence due to separation of fluorescence dye from the nano-

particle. In addition, the distinct change in fluorescence

intensity was shown to occur among noncomplementary,

complementary, and single mismatched targets as compared

with that for free probe, demonstrating the high specificity of

this method (Fig. 1E). Moreover, this swine-specific biosensor

could detect 100% pork and 1e50% pork in ready-to-eat

meatballs prepared from porkebeef mixtures with high

sensitivity and specificity. Commercial meatballs made from

beef, chicken, mutton, and chevon also showed significant

difference in fluorescence intensity when compared with free

probe (Fig. 1F) [12].

Differently sized GNPs have been reported to affect the

limit of detection of swine DNA in pork-adulterated meatball

preparations. In three different studies, the GNPs of different

sizes such as 40 nm, 20 nm, and 3 nm were shown to detect
and nonaggregated GNPs with blue and pink curves representi

3mM PBS, respectively, whereas red and green curves denote GN

3nM single-stranded DNA and aggregated in 3mM PBS after a 3

Identification of swine DNA inmixedmeatball with comparison

as well as vials (aef) indicating GNPs color in genomic DNA ext

(w/w) mixtures of porkebeef, (c) porkechicken, (d) chickenebeef

absorption spectra. (D) Determination of limit of detection for po

the GNPs color in (a) 1%, (b) 3%, (c) 5%, (d) 10%, and (e) 15% pork D

corresponding absorption spectra. (E) The probe and oligonucle

fluorescence detection of specific DNA sequences and single nu

probes at excitation wavelength of 545 nm. (F) Fluorescence sp

detection in ready-to-eat portebeef mixed and commercial meat

sequences of different species with swine oligo probe shown a
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pork adulteration with different sensitivity yielding a limit of

detection value of 6 mg/mL, 4 mg/mL, and 0.23 mg/mL of swine

DNA in 20%, 10%, and 1% pork-containing meatballs, respec-

tively [11e13]. The limit of detection can be further reduced by

increasing the amount of DNA mixtures to ensure sufficient

targets for the probe, which should not be a problem espe-

cially in food analysis where the sample scarcity is not amajor

concern. Furthermore, it has been demonstrated that the 20-

nm GNPs could produce a more pronounced change in color

and absorption spectra compared with their 40-nm counter-

parts [11e13]. This method provides a simple, sensitive, and

selective detection at an affordable cost using the commonly

available UVevisible spectrophotometer. In addition,

compared with conventional PCR methods, this method is

rapid (<10 minutes) and highly sensitive, which requires only

shorter DNA targets and possesses the ability to analyze

highly degraded samples. However, themajor disadvantage of

this nanobiosensor assay is that it fails to provide quantitative

information of the target DNA [11e13].

Most of the available DNA sequence-detecting assays rely

on PCR followed by electrophoretic visualization of PCR

products. However, the PCR-based assays require high reagent

and instrument costs as well as subsequent analysis by re-

striction fragment length polymorphism for authentication of

specific sequences in PCR products [11e14]. In addition, the

complicated synthetic chemistry required to modify the DNA,

substrates, or nanoparticles and for hybridization on surfaces

could impose serious steric constraints, making the analysis

of PCR products both expensive and time consuming because

of low and inefficient binding of probe and target [11,14]. For

many years, the distinct optical property (SPR) exhibited by

colloidal GNPs has been studied for sensing specific oligonu-

cleotide sequences in several fields including biodiagnostics,

genetics, and food analysis [11e14]. Nevertheless, all these

studies based on cross-linking mechanism require surface
ng GNPs dispersed in deionized water and aggregated in

Ps dispersed in 3mM PBS after a 3-minute incubation with

-minute incubation with 3nM double-stranded DNA. (C)

of probe sequences andmismatch bases shown in red color

racted from meatballs prepared from (a) pure pork, (b) 1:1

, (e) pure beef, and (f) pure chicken and their corresponding
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NA extracted from processed porkebeef meatballs and their

otide sequences (5′/3′) used and the corresponding

cleotide mismatches by swine-specific nanobiosensor

ectra at excitation wavelength of 545 nm depicting pork

balls as well as the corresponding comparison of nucleotide

long with mismatched bases in red. Note. Fig. 1A and 1B:

f food contaminants,” by S.K. Sonawane, S.S. Arya, J.G.
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Creative Commons Attribution License and published by

. 1E and 1F: Reference 12 are from “Listeriolysin O: a key

Kayal and A. Charbit, 2006, FEMS Microbiol Rev 9, p. 76e85.

d nanoparticles; PBS ¼ phosphate-buffered saline;

http://dx.doi.org/10.1016/j.jfda.2015.05.001
http://dx.doi.org/10.1016/j.jfda.2015.05.001


j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 4 ( 2 0 1 6 ) 1 5e2 826
modification of GNPs to immobilize two DNA probes, followed

by further cross-linking using a complementary target to

induce aggregation. This limitation could be overcome

through detection of nucleotide sequences using a noncross-

linking method pioneered by Sato et al [54] as well as by Li

and Rothberg [55]. More importantly, the nanoparticle-based

assay described above for detection of pork adulteration is

based on the noncross-linking method, which does not

require any modification chemistry or target hybridization.

Thus, it may be envisaged that the analyticalmethod based on

noncross-linking could be adopted to solve problems in a wide

variety of biological scenarios in the future.

Overall, the much needed effective detection of pathogens

in clinical, food, and environmental samples can be facilitated

by nanomaterial-based sensors. Although several new detec-

tion methods such as radiometric (BACTEC) and the Micro-ID

procedures have considerably reduced the incubation time,

the nanomaterial-based sensors can detect pathogens and

toxins at very low concentrations as they can react and pro-

duce a strong signal in a very short incubation time. However,

there is still a need for critical evaluation of the toxicity of

nanomaterials used in analytical methods as pointed out in

several articles [56e62]. In addition, based on the conclusion

drawn out of a 10-year BioWatch project (2003e2013) con-

ducted by the U.S. Department of Homeland Security, it is

important to emphasize that the detection of pathogens and

toxins under a controlled laboratory environment can be quite

different compared with the same analytical technique

applied in a real-time field test [63]. For example, several fac-

tors associated with meat such as types of meat, methods of

raising and handling of animals by different farmers/workers,

variations among different subspecies of animals, and various

degrees of endogenous microbial population in the meat can

cause significant variations in sample matrix and eventual

complexity in detection. Thus, the detection of foodborne

pathogens and toxins by nanomaterial-based sensors should

predominantly focus on validating themethod in real samples

as well as evaluating purification and isolation steps for ab-

solute identification of pathogens in samples containing

diverse matrix.
5. Conclusion and future perspective

This review has highlighted the promising role of nano-

materials and their potential in the field of food analysis.

Nanomaterial-based sensors involve binding or reaction of

biological components with target species and transforming

eventually into detectable signals, thereby enabling rapid

detection of food contaminants and ensuring food safety for

prompt preventive action. In addition, they provide advan-

tages of rapid, sensitive, and user-friendly detection, enabling

portability for in-field application. However, several issues

including interference in real-sample analysis, reproduc-

ibility, and toxicity of nanomaterials remain to be solved.

Besides, as most of the studies have focused mainly on GNPs,

the feasibility of several other nanomaterials such as QDs,

CNTs, metal oxide/metal nanoparticles, nanowires, and

nanorods still need to be evaluated in designing nanosensors

for possible application in food analysis.
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