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Abstract

Many methods applied to data acquired by various imaging modalities have been

evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative

epilepsy patients. No approach has proven to be a stand-alone method with suffi-

ciently high sensitivity and specificity. The presented study addresses the potential

benefit of the automated fusion of results of individual methods in presurgical evalu-

ation. We collected electrophysiological, MR, and nuclear imaging data from

137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A sub-

group of 32 patients underwent surgical treatment with known postsurgical out-

comes and histopathology. We employed a Gaussian mixture model to reveal several

classes of gray matter tissue. Classes specific to epileptogenic tissue were identified

and validated using the surgery subgroup divided into two disjoint sets. We evalu-

ated the classification accuracy of the proposed method at a voxel-wise level and

assessed the effect of individual methods. The training of the classifier resulted in six

classes of gray matter tissue. We found a subset of two classes specific to tissue

located in resected areas. The average classification accuracy (i.e., the probability of

correct classification) was significantly higher than the level of chance in the training

group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imag-

ing, diffusion-weighted imaging, and source localization of interictal epileptic dis-

charges were the strongest methods for classification accuracy. We showed that the

automatic fusion of results can identify brain areas that show epileptogenic gray mat-

ter tissue features. The method might enhance the presurgical evaluations of MR-

negative epilepsy patients.
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1 | INTRODUCTION

Epileptic seizures can be suppressed with medication in most patients.

In 30% of cases, the seizures are resistant to antiepileptic drugs and

surgery is considered as an optimal treatment option (Guerrini, Sicca, &

Parmeggiani, 2003) in indicated patients, in particular in those with

lesions that are clearly visible on magnetic resonance (MR) images.

During the presurgical evaluation process, some candidates are rev-

ealed to be unsuitable for epileptic surgery, often due to the absence

of any conclusive detectable lesion in standard presurgical MR. In

these nonlesional focal epilepsy (NLE) patients, surgical resective

treatment is possible, but invasive exploration is required and the

postsurgical outcome is inferior to the results in patients with evident

structural lesions (Smith et al., 1997).

Epilepsy is a network disease (Tellez-Zenteno, Ronquillo, Moien-

Afshari, & Wiebe, 2010; Vytvarova, Marecek, Fousek, Strycek, &

Rektor, 2017); nevertheless, a seizure onset zone (SOZ) based on a

lesion is the primary cause of epileptic seizures in focal epilepsy and

also in NLE cases (Dachet et al., 2015).

The precise identification of a lesion has long been a research

goal in neuroscience. A series of imaging methods were evaluated for

their potential benefits in localizing lesions or SOZ (Kini, Gee, &

Litt, 2016). To the knowledge of the authors, no method has yet been

published that has been widely accepted as a stand-alone method for

lesion detection in NLE. The usual conclusion is that some individual

methods can significantly contribute to presurgical evaluation and that

a fusion of results from a set of methods and modalities is desirable.

During the last decade, the fusion of results from a set of

methods has moved from clinical consultations to automatic

processing using statistical methods developed for solving general sta-

tistical problems of classification. The approach works well in patients

who have lesions that are visible in standard clinical MR. Several stud-

ies that fused various metrics describing cortex geometry and local

characteristics of gray matter showed up to 80% accuracy in classify-

ing a subject as a healthy control (HC) or as a patient with or without

mesial temporal sclerosis (Lai, Guo, Cheng, & Wang, 2017; Rudie,

Colby, & Salamon, 2015). Even higher accuracy—up to 90%—was

reported in studies that fuse various metrics of cortex morphology for

automatic delineation of visible lesions (Ahmed et al., 2014; El Azami,

Hammers, Costes, & Lartizien, 2013; Fellah et al., 2012).

The identification of SOZ has been less explored in NLE patients.

A study with 13 NLE showed concordance with clinical hypothesis

in 46% of cases by fusing T1 and FLAIR images (Kotikalapudi

et al., 2018). Another study examined 15 pharmacoresistant patients

by fusing quantitative T1, T2, and tissue fraction maps. The authors

identified lesions in four NLE patients that were highly concordant

with the patients' electroclinical presentations (Ma et al., 2019).

Remarkably, very few studies with NLE offer validation either by

surgery treatment outcome, ensuing histopathology, or invasive elec-

troencephalography (EEG). Moreover, almost all fusing studies employ

rather small sets of methods, usually based on a single recording

modality, and thus capture the tissue features with limited view

angles.

We collected clinical, electrophysiological, MR, and nuclear imag-

ing data from 150 patients with pharmacoresistant epilepsy who were

diagnosed as NLE or had inconclusive MR findings. We fused a series

of neuroimaging methods within the frame of a classification problem

to reveal several classes of gray matter tissue. We used two disjoint

subsets of a group of 32 patients who underwent surgical treatment

with known postsurgical outcomes and histopathology to identify and

validate classes that are specific for epileptogenic tissue. The main

aim was to evaluate the classification accuracy of the proposed

method at a voxel-wise level, that is, at the scale of millimeters. Fur-

ther, we evaluated the contribution of individual methods to the iden-

tification of epileptogenic tissue and recommended a battery of

methods for identifying the SOZ in patients with focal MR-negative

epilepsy.

2 | METHODS

2.1 | Subjects

We recruited patients with refractory focal epilepsy who had been

referred to the Brno Epilepsy Center as epilepsy surgery candidates.

The whole cohort of patients comprised 150 subjects. A majority

(127 patients) were ranked as NLE cases due to negative findings pro-

vided by an experienced neuroradiologist based on presurgical MR

epilepsy imaging. In a minority subgroup (18 patients), the reading of

MR imaging was either inconclusive, that is, the radiologist could nei-

ther fully confirm nor negate a lesion, or there was a suspected lesion

(5 patients) that could not be identified as epileptogenic due to the

divergence from other diagnostic methods, in particular ictal video-

EEG. Further, we recruited a group of 110 age- and gender-matched

HC subjects. For details on the HC group, see Supplementary

Methods. All subjects signed an informed consent form before enter-

ing the study. The study was approved by a local ethic committee.

Out of the 150 patients, a subgroup of 32 underwent surgery

treatment (surgery group). We evaluated the outcomes after at least

6 months of follow-up care and collected the results of histopatholog-

ical examination (Table S1). The other subgroup of 118 patients did

not undergo surgery because they had inconclusive presurgical evalu-

ation results, they were still on a waiting list, or the testing of new

drugs was not yet closed (nonsurgery group).

We divided all patients to form reasonable groups for the classifi-

cation task. We compiled a final training group (TRG) from the non-

surgery group, and patients from the surgery group who had either an

outcome other than ENGEL I with positive histology findings or any

ENGEL outcome with negative histology findings. The large cohort of

TRG subjects enabled a robust estimation of the set of gray matter tis-

sue classes. A subgroup from TRG—those patients with an outcome

other than ENGEL I with positive histology findings (17), testing group

A (TEGA)—was then used to identify classes that are specific to tissue

with proven pathology. The other patients from the surgery group—

those with an outcome of ENGEL I with positive histology findings

(11), testing group B (TEGB)—was the crucial subgroup of patients in
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whom surgery successfully targeted the SOZ; this group was used to

validate the identified epileptogenic gray matter tissue classes.

We excluded 13 patients due to insufficient data (technical prob-

lems during data acquisition or poor quality). The details on each

group are presented in Table 1. The grouping is depicted in Figure 1.

2.2 | Data

2.2.1 | Methods of interest

The battery of methods used in the presented study was set according

to several rules. All data were acquired using neuroimaging modalities

widely available in epilepsy centers, that is, MR, high-density scalp EEG

(HDEEG), positron emission tomography (PET), and single-proton emis-

sion computed tomography (SPECT). The methods capture tissue fea-

tures that might be formed during the long-term effects of epilepsy or

by tissue activity specific for epilepsy in ictal or interictal states. We

excluded methods that in principle reflect the instantaneous functional

states of the brain during interictal periods with ambiguous relations to

epilepsy, such as resting-state functional MRI (fMRI) or any connectivity

measures based on fMRI or HDEEG. Considering that the proposed

method aims on nonlesional cases, there is no prior information on

localization. We would have to deal with whole brain activity that might

be an intractable problem. Finally, each method's outcome had to be in

the form of a voxel-wise parametric spatial map to facilitate method

fusion. Our battery of methods comprised MR-based methods,

HDEEG-based methods, and nuclear imaging methods.

2.2.2 | MR-based methods

We employed a voxel-based morphometry approach (Ashburner &

Friston, 2005; Kotikalapudi et al., 2018; Muhlau et al., 2009). It is

based on the automatic segmentation of high-resolution T1 into tissue

compartments and can reveal gray matter changes in individual sub-

jects (Kini et al., 2016). We included methods sensitive to local gray

matter intensity changes (GMC) and local gray matter volume (GMV)

changes. The segmentation outcome can be further used to assess

gray-white matter boundary blurring. The method called junction

(JUN) can identify subtle blurring in focal cortical dysplasia (FCD)

lesions (Bernasconi & Bernasconi, 2011; Colliot, Antel, Naessens,

Bernasconi, & Bernasconi, 2006).

We used arterial spin labeling (ASL), which quantifies cerebral

blood flow (Boscolo Galazzo et al., 2015) and has a potential to reveal

perfusion abnormalities in patients with focal seizures (Lee, Kwon, &

Lee, 2019).

Further, we acquired diffusion-weighted imaging (DWI) data.

DWI is sensitive to the extent and direction of water molecule

diffusion and provides unique information on tissue microstructure

measured in-vivo (Colombo, Salamon, Raybaud, Ozkara, & Barkovich,

2009). We used fraction anisotropy (FA) and mean diffusivity

(MD) methods that were shown to reveal diffusion alterations in gray

matter in patients with temporal lobe epilepsy (Winston et al., 2020).

Further, we used mean kurtosis (MK). The MK has been reported to

identify gray matter microstructure alterations in temporal lobe epi-

lepsy (Bonilha et al., 2015).

2.2.3 | HDEEG-based methods

HDEEG in combination with electrical source imaging algorithms

(Michel & Brunet, 2019) mitigate the statement about low spatial res-

olution of scalp EEG. In the last decade, HDEEG has often been used

to localize interictal epileptiform discharges (IED) generators

(Megevand & Seeck, 2020).

2.2.4 | Nuclear imaging methods

PET imaging is an established method widely used to localize SOZ. It

shows high sensitivity to the hypometabolism specific to epilepto-

genic tissue (Juhasz & John, 2020). Interictal and ictal SPECT imaging

can provide valuable information on SOZ localization (Krsek

et al., 2013). We utilized a variant called STATISCOM that subtracts

ictal and interictal SPECT and compares the resulting image with data

from an HC cohort (Sulc et al., 2014).

TABLE 1 Details on study groups

# Subjects

Age (years)

median (Q2–Q3)

Gender

M/F

All patients 137 33 (25–39) 78/59

TRG 126 33 (25–39) 74/52

TEGA 17 30 (21–39) 13/4

TEGB 11 33 (25–44) 4/7

Abbreviations: F, female; M, male; TEGA, testing Group A; TEGB, testing

Group B; TRG, training group; Q, quartile.

F IGURE 1 The details on grouping of patients. NRES,
nonresected; RES, resected; H+, positive histology; H−, negative
histology; TRG, training group; TEGA, testing Group A; TEGB, testing
Group B; the numbers denote number of patients in each group
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All but one of these methods resulted in voxel-wise T-value sta-

tistical maps that show the normalized deviation of a single patient's

data from a norm estimated based on cohorts of HC subjects. We

based all ensuing processing on T-values as they inherently take into

account the size of control cohort and suppress the potential bias that

could be introduced by control cohorts' sizes variability over methods.

The IED is the only method that is based solely on the patient's inter-

ictal HDEEG data. Table 2 summarizes all 10 methods used in our

study. For details on the preprocessing and statistical analyses for

each method, see Supplementary Methods.

2.2.5 | Data acquisition

The nuclear imaging data were acquired during the clinical evaluation

of the patients (for details, please see Supplementary Methods).

All other imaging and electrophysiology data were acquired at

CEITEC Masaryk University Neuroscience Center, which is equipped

with a 3T Prisma Siemens MR machine and MR compatible 256 chan-

nel EGI EEG system. For details, please see Supplementary Methods.

2.2.6 | Data preparation

The resulting statistical maps from all 10 methods differed in spatial

resolution and the amount of smoothness due to the unequally set

Gaussian spatial filters within the stage of individual method

processing. To unify all data, we resampled each image into a space

with an isotropic voxel-size of 1.5 mm and smoothed it by a spatial fil-

ter with a Gaussian kernel (FWHM = 15 mm). The reason for

smoothing was three-fold: the smoothing helped to minimize the

mutual intermethods registration inaccuracies (Mikl et al., 2008;

Salmond et al., 2002), the Gaussian filter renders all data more nor-

mally distributed, and the equalization of smoothness ensures fairly

the same impact on results smoothness. For details on smoothing,

please see Supplementary Methods.

Finally, the data were restricted to voxels belonging to the cortex,

hippocampi, and amygdale according to the gray matter template

included in the SPM12 toolbox (www.fil.ion.ucl.ac.uk/spm/software/

spm12/, probability threshold >0.1). We excluded the basal ganglia,

thalamus, midbrain, and cerebellum as unlikely locations of SOZ.

The IED data were intensity normalized by the individual subject's

maximal value.

2.2.7 | Surgery mask

We constructed a surgery mask (SM) image for each subject from the

testing groups. The SM had the character of a binary image that

encloses the resected region. The SM was created by the manual

delineation of postsurgery imaging.

2.3 | Gray matter tissue classes estimation

2.3.1 | Training process

We used a Gaussian mixture model to extract latent classes of gray

matter tissue from the complete TRG. We employed an algorithm that

can handle missing data (Delalleau, Courville, & Bengio, 2018)

TABLE 2 The list of methods

Abbreviation Modality Method

Interpretation from the patient data perspective,

relative to HC (excluding IED)

GMC MR Local gray matter concentration Increase: Alterations in intensity of gray matter in

structural images

GMV MR Local gray matter volume Decrease: Gray matter atrophy

JUN MR Gray–white matter boundary blurring Increase: Augmented intensity gradient between gray

and white matter in structural images

ASL MR Quantified cerebral blood flow Decrease: Decreased perfusion

IED HDEEG Source localization of interictal epileptic discharges

PET PET Metabolism alteration Decrease: Hypometabolism

SPE SPECT STATISCOM—Evaluation of ictal vs. interictal perfusion Increase: Source of early ictal activity

FA MR FA Decrease: Decrease in directionality of molecule

diffusion, unspecific microstructure alterations

MD MR MD Increase: Enhancement of molecule diffusion,

unspecific microstructure alterations

MK MR MK Decrease: Enhancement of molecule diffusion due to

loosing barriers, unspecific microstructure alterations

Abbreviations: ASL, arterial spin labeling; FA, fraction anisotropy; GMC, gray matter concentration; GMV, gray matter volume; HDEEG, high density

electroencephalography; IED, interictal epileptic discharges; JUN, junction; MD, mean diffusivity; MK, mean kurtosis; MR, magnetic resonance; PET,

positron emission tomography; SPE, single proton emission. SPECT, single-proton emission computed tomography; STATISCOM, statistical ictal SPECT

coregistered to MRI.
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implemented in-house in MATLAB R2017a (MathWorks, Inc.). We

estimated the model for single to 10 classes and 10 times with

randomly initialized parameters to preclude convergence into a

local minimum. Each estimation was ended either when an average

relative change in parameters dropped below 0.1% and a relative

change in free energy dropped below 0.001% or when the algo-

rithm failed to converge within 1,000 iterations. We watched

Bayesian information criterion (BIC). An optimal number of classes

(NC) was defined as the number where the BIC had the knee

point, that is, where an additional class (and thus additional model

parameters) does not explain notable part of previously

unexplained variability; the solution with the optimal NC and the

lowest BIC was used in ensuing analyses.

2.3.2 | Voxel classification

We classified each voxel from each TEGA and TEGB subject using

parameters of estimated classes (i.e., means and covariance matrices

over methods). Each voxel was assigned probabilities of belonging to

individual classes. As a result, we obtained a set of NC spatial proba-

bility maps for each subject.

2.4 | Epileptogenic gray matter tissue classes

2.4.1 | Selection of epileptogenic gray matter
tissue classes

The selection and all ensuing testing and comparisons were based on

the receiver operating characteristic (ROC) and area under ROC curve

(AUC) approach: voxels inside SM were considered as actual positives;

voxels outside SM were considered as actual negatives.

We computed ROC and AUC for each subject in TEGA based on

its SM and class probability maps. This was repeated for each possible

subset from the NC classes. When the subset comprised more than a

single class, the voxel-wise maximal probability value over classes was

considered. We looked for an optimal subset of classes (OSC) with

the highest average AUC over TEGA. We used a one-sample t test to

assess whether the AUC was significantly higher than 0.5, that is, bet-

ter than random classification. The level of statistical significance was

set to p < .05, Bonferroni corrected for the number of possible sub-

sets (2^NC-1).

2.4.2 | Validation of epileptogenic gray matter
tissue classes

The previously identified epileptogenic gray matter tissue classes, that

is, the members of OSC, were validated using the TEGB group. We

computed the AUC and statistics for the OSC in the same way as for

TEGA group.

2.4.3 | Methods importance evaluation

Using the OSC and all subjects from the testing groups (TEGA + TEGB),

we computed AUC for all possible combinations of methods. We

intended to examine the effect of missing data from a method and

thus the importance of each method for the classification. We

assessed the method's importance from two perspectives: What is the

AUC change when data from a method is completely missing? and What

is the systematic contribution of a method to the AUC level? The former

question was addressed by a one-sample t test applied to the differ-

ences between AUC computed with or without a method. To answer

the latter question, we employed a linear mixed-effects model that

included interception, fixed effect factor for each method (with two

levels for existing and missing data), and a subject factor as predictors

and AUC values as response variable. The model was applied to the

data with a subtracted value of 0.5. This transformation gave the

intercept an interpretation of whether the overall classification was

better than chance. The choice of the model was determined by the

fact of missing data that precluded usage of simple N-way repeated

measures analysis of variance. The level of statistical significance was

set to p < .05, corrected for the number of methods.

3 | RESULTS

3.1 | Subjects

The TRG and TEGB did not differ in age (Mann–Whitney Z = 0.483,

p = .63) or in gender balance (Fisher's exact, Chi2(1) = 2.06, p = .15).

3.2 | Data

All patients had available data from at least five methods (TRG 7, 7–8,

median, quartiles; TEGA 8, 7–9; TEGB 8, 7–9). The amount of avail-

able data in TRG did not differ from TEGB (Mann–Whitney Z = 1.32,

p = .21). No method was unequally frequent in TEGA versus TEGB

(GMC, GMV, JUN: Fisher's exact Chi2(1) = 0, p = 1; ASL:

Chi2(1) = 1.01, p = .31; IED: Chi2(1) = 1.62, p = .20; PET:

Chi2(1) = 0.67, p = .41; SPE: Chi2(1) = 0.05, p = .82; FA, MD, MK:

Chi2(1) = 0.001, p = .97), Figure S1.

3.3 | Gray matter tissue classes estimation

3.3.1 | Training process

The training algorithm converged before the maximal allowed itera-

tions in all solutions. According the BIC, the optimal NC was six

(Figure S2). Figure S3 shows resulting classes C1 to C6 from the best

solution and their frequency in TRG data. The C2 class had a notably

lower frequency of occurrence than the others.
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3.4 | Epileptogenic gray matter tissue classes

3.4.1 | Selection of epileptogenic gray matter
tissue classes

The OSC with respect to voxel classification in TEGA was the combi-

nation of C2 and C4 with the AUC = 0.73 ± 0.18. The AUC was signif-

icantly higher than 0.5 (one-sample t test: T(16) = 5.40, one-sided

p < .001). The C2 class comprises voxels with high deviation from HC

in GMV (gray matter loss in patients), ASL (decreased perfusion), PET

(strong hypometabolism), SPE (ictal perfusion higher than interictal),

MK (decrease of barriers for water diffusion), and MD (enhancement

of water diffusion). The C4 class comprises voxels with a high

deviation from HC in SPE, MK, and MD. Moreover, C4 voxels had

high values in IED, that is, likely source of IEDs (Figure 2).

3.4.2 | Validation of epileptogenic gray matter
tissue classes

The OSC showed even better classification in the TEGB group results

than in TEGA: AUC = 0.82 ± 0.14. It was significantly higher than 0.5

(one-sample t test: T(10) = 7.66, one-sided p < .001). An outcome of

voxel classification is depicted in Figure 3 (whole brain situation in

Figure S4, results overlaid on standard clinical MR images in Figure S5).

3.4.3 | Methods importance evaluation

We estimated AUC for TEGA and TEGB subjects for all possible com-

binations of methods to simulate the missing data from each method.

Considering just relevant cases, the total amount of AUC values

through all subjects was 8,804 out of 28,644 (210 = 1,023 combina-

tions of methods × TEGA(17) + TEGB(11) = 28 subjects). PET was the

only method that caused a significant decrease in AUC when missing

(Table 3a).

The results of a linear mixed effect model showed significant

effects of intercept, PET, SPE, and MD on a level of AUC. For all three

methods, the effect was positive, that is, the presence of the method's

data significantly increased the accuracy of voxel-wise classification.

The significant positive intercept proves that overall, the classification

is higher than 0.5, that is, better than chance (Table 3b).

We also computed the linear mixed effect model in a variant

without PET and SPE data. The results showed a significant and posi-

tive effect of intercept, IED, and MD (Table 3c). Please note that the

F IGURE 2 Epileptogenic gray matter tissue classes C2 (red dots)
and C4 (violet dots). The upper plot depicts each method's deviation
from the healthy control norm in terms of T values. The lower plot
depicts normalized current density estimated by source localization of
interictal epilepsy discharges. The dots and lines depict mean and SD
of the distribution over training voxels belonging to each respective
class. For abbreviations, please see Table 2

F IGURE 3 Results of voxel classification in patients with ENGEL I surgery outcome and proven pathology (11 subjects from the testing group).
The images show voxels belonging to epileptogenic gray matter tissue classes (C2 and C4; voxels where the highest probability had C2 are in orange
and C4 are in violet; threshold set to show 1% voxels with highest values). The surgery extent is delineated by a yellow line. The top row shows cases
with proven hippocampal sclerosis, the bottom row at left are cases with focal cortical dysplasia, and the rest are cases with gliosis
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overall accuracy of classification decreased only slightly, from 0.64 to

0.61 (intercept +0.5).

4 | DISCUSSION

The search for appropriate surgical targets in patients with

pharmacoresistant epilepsy has a long history. It started with the sep-

arate evaluations of various methods. Developments in this area have

since shifted to the fusion of results derived from a set of methods

(Kini et al., 2016). Interestingly, the studies thus far have comprised

limited selections of methods restricted mostly to methods from sin-

gle modalities. The studies have been rather vague in terms of the

localization of the focus. Mostly they aim at differential diagnoses (Lai

et al., 2017; Rudie et al., 2015) or the localization is assessed at the

lobar level (Lascano et al., 2016).

We present results on automated fused data from several differ-

ent modalities and derived methods. The proposed approach fuses

the individual methods directly at the voxel level and assigns each

voxel a membership in either a healthy or an epileptogenic gray mat-

ter tissue class. We analyzed data from 137 patients with

pharmacoresistant epilepsy who were ranked as nonlesional, that is,

MR negative or with inconclusive MR finding. In five patients, there

was a suspected lesion that could not be identified as being epilepto-

genic due to the divergence with other diagnostic methods, in particu-

lar ictal video-EEG. The analysis comprised postprocessing of

structural MR images, MR perfusion images, MR DWI, source localiza-

tion of IED, and nuclear imaging. We employed a Gaussian mixture

model to reveal six latent classes of gray matter tissue in a large train-

ing subset of 126 subjects. The method was completely blind to the

input data, that is, no clinical information regarding the considered

localization of focus was supplied. Using a subgroup of patients with

surgery outcome and known histopathology, we identified two classes

that are specific for epileptogenic tissue. The voxel classification into

epileptogenic or other class was 82% accurate in the patients with

favorable outcome.

4.1 | Epileptogenic gray matter classes

We identified two classes. The C2 class comprises voxels where

patients had gray matter loss, decreased perfusion, hypometabolism,

higher perfusion in ictal state compared to interictal state, decrease of

barriers for water diffusion, and enhanced water diffusion. This is in

accordance with previous findings: the GMV loss was shown espe-

cially in temporal-lobe patients with HS (Bernhardt, Hong,

Bernasconi, & Bernasconi, 2015); decreased perfusion was reported in

children (Lee et al., 2019); the hypometabolism seen in PET and inter-

ictal/ictal-specific perfusion assessed by SPECT are well-known

markers of epileptogenic tissue (Krsek et al., 2013; Rathore,

Dickson, Teotonio, Ell, & Duncan, 2014); and microstructure abnor-

malities in epileptogenic tissue identified by diffusivity metrics were

reported to be sensitive to FCD (Feindel, 2013; Winston

et al., 2020). The C4 class is similar to that of C2. The difference

is that it demonstrates voxels with high values in IED, which can

be interpreted as an irritative zone, that is, a source of IEDs. Those

two classes merged had the highest accuracy of classification. In a

majority of the successfully operated (TEGB) patients, the C4 local-

ized the surgery region. In two patients, it was C2. In all but one

patient, the method identified a region inside the resected area. In

subject S22, the identified region was located within proximity to

the resected area.

4.2 | Implications for clinical evaluation of patients

Our study shows that the automated fusing of methods can result in

highly accurate SOZ identification, up to 82% in our data. Importantly,

this result was achieved with no prior information on SOZ localization

and even at the voxel level.

Further, we showed that in our data that nuclear and DWI

methods, specifically, PET, STATISCOM, and MD, make the highest

contribution to classification accuracy. This is in line with published

high positive predictive value for accurate lobe identification using

TABLE 3 (a) Decrease of classification accuracy in simulated situations with missing methods. The simulated missing PET significantly
decreased classification accuracy (one-sample T test; p < .05, Bonf. corrected, df =27). (b) Effect of each method on classification accuracy.
(c) Effect of each method on classification accuracy with discarded data from nuclear imaging methods. For (b) and (c), the denoted methods
significantly increase the accuracy (linear mixed effect model, p < .05, Bonf. corrected, df = 8,793). On average, the classification accuracy is
better than chance as represented by significant effect of intercept

Method Intercept GMC GMV JUN ASL IED PET SPE FA MD MK

(a) EE — 0.006 −0.008 0.003 0.034 −0.053 −0.056 −0.015 0.002 −0.013 0.002

p-Value — .34 .52 .58 .02 .34 .004 .20 .82 .25 .77

(b) EE 0.140 −0.001 0.007 <0.001 −0.062 0.048 0.076 0.043 −0.006 0.047 −0.003

p-Value <.001 .92 .55 .99 .01 .22 <.001 <.001 .68 .001 .69

(c) EE 0.110 0.003 0.011 0.006 −0.022 0.154 — — 0.012 0.069 0.001

p-Value <.001 .76 .45 .57 .11 <.001 — — .51 <.001 —

Note: All significant p-values are in bold.

Abbreviations: ASL, arterial spin labeling; EE, effect's estimate; FA, fraction anisotropy; GMC, gray matter concentration; GMV, gray matter volume; IED,

interictal epileptic discharges; JUN, junction; MD, mean diffusivity; MK, mean kurtosis; PET, positron emission tomography; SPE, single proton emission.
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PET and SPECT data (Lascano et al., 2016). Other publications found

increased intra cortical MD in patients with epilepsy (Winston

et al., 2020). Our results suggest that even if nuclear imaging is

achievable, it is worth supplying DWI. In our dataset, the MD marker

significantly improves the classification accuracy beyond the level of

PET and SPECT alone. On the other hand, nuclear imaging is invasive

method that exposes the patient to radiation. Ictal SPECT imaging

requires nonstop patient monitoring and precise timing of tracer

administration and ensuing data acquisition. The analysis of the

importance of methods using the discarded data from nuclear

imaging methods showed only a slight decrease in classification

accuracy; MD and source localization of IED emerged as a

method that significantly increases accuracy. This is in accordance

with Lascano et al., who showed that the source localization of

IED with MR imaging was the best combination of methods

(Lascano et al., 2016). Overall, our results suggest favoring nuclear

imaging, high-quality DWI, and source localization of IED when

planning advanced imaging in the stage of searching for epilepto-

genic focus in nonlesional, MR-negative epilepsy. We recommend

to use also the other methods, including morphometry metrics,

ASL, FA, and MK because they may become important for classi-

fication when the data from nuclear imaging, DWI and HDEEG

are not available.

We consider our results as a proof of concept. Although the two

identified classes are specific to our facility, our environment, and

even our patient cohort, and are not directly transferable to other

centers, we suppose that very similar epileptogenic classes would

result from another epilepsy center's data. We recommend esta-

blishing site-specific norms using HC groups and to train the GMM

classifier with site-specific epilepsy cohorts, ensuring all data are mea-

sured at the same machines.

4.3 | Technical considerations

4.3.1 | Missing data

The missing data situation was very frequent in our dataset. Overall,

there were an average of eight accessible methods out of the

10 for TEGA and TEGB subjects. Therefore, we chose an algorithm

that can handle missing data (Delalleau et al., 2018). As a conse-

quence, the algorithm effectively widens the less frequent methods'

SDs and thus decreases their impact in deciding which class a voxel

belongs to (see Figure 2, SPE method). On the other hand, it

allowed for the inclusion of almost all patients in the training and

testing process.

4.3.2 | Number of classes

The optimal number of six classes was chosen according to BIC

criteria. We identified a number where the change in BIC reached

its plateau. This was to some extent a subjective selection. We

have therefore examined the results of classification with five

and seven classes. We were able to identify classes very similar

to C2 and C4 with similar classification results (Supplementary

Results).

4.3.3 | Smoothing

The presmoothing of the input data had several impacts on the

results. While it could suppress some interesting localized effects,

we believe the benefits it brought were more important (e.g., the

reduction of intersubject and intermethod spatial registration inac-

curacies). It is even recommended to apply rather strong spatial

filtering when producing single subject versus group comparisons

(Salmond et al., 2002), which is a predominant strategy in

our data.

4.3.4 | Methods selection

The selection of methods is a limitation of presented study. We

restricted ourselves to methods that are commonly used in epi-

lepsy, have an established methodology, and are easily

implemented at the voxel-wise representation level. We are aware

that other methods have been published with promising impacts

on lesion detection. Most importantly, we have not included

surface-based morphology metrics (Ahmed et al., 2014; Whelan

et al., 2018) or T1/T2 intensity alterations metrics (Noth

et al., 2020; Shultz, O'Brien, Stefanidou, & Kuzniecky, 2014). We

also did not include simultaneous EEG–fMRI methods due to a lack

of IED in almost all EEG data acquired during fMRI sessions

(Pardoe & Kuzniecky, 2014; Yamazoe et al., 2019). All these

methods might improve classification accuracy or could render

some classes to be specific to any pathology.

5 | CONCLUSION

We showed that the automatic fusion of results from a battery of

individual methods results in highly accurate epileptogenic tissue

localization. Importantly, the proposed method works at the voxel

level, that is, at the scale of millimeters. The data and MATLAB code

are available upon request from authors.
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