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a b s t r a c t 

Background Context: Finite element modeling (FEM) is an established tool to analyze the biomechanics of complex 
systems. Advances in computational techniques have led to the increasing use of spinal cord FEMs to study cervical 
spinal cord pathology. There is considerable variability in the creation of cervical spinal cord FEMs and to date 
there has been no systematic review of the technique. The aim of this study was to review the uses, techniques, 
limitations, and applications of FEMs of the human cervical spinal cord. 
Methods: A literature search was performed through PubMed and Scopus using the words finite element analysis, 
spinal cord, and biomechanics. Studies were selected based on the following inclusion criteria: (1) use of human 
spinal cord modeling at the cervical level; (2) model the cervical spinal cord with or without the osteoligamentous 
spine; and (3) the study should describe an application of the spinal cord FEM. 
Results: Our search resulted in 369 total publications, 49 underwent reviews of the abstract and full text, and 
23 were included in the study. Spinal cord FEMs are used to study spinal cord injury and trauma, pathologic 
processes, and spine surgery. Considerable variation exists in the derivation of spinal cord geometries, mathe- 
matical models, and material properties. Less than 50% of the FEMs incorporate the dura mater, cerebrospinal 
fluid, nerve roots, and denticulate ligaments. Von Mises stress, and strain of the spinal cord are the most common 
outputs studied. FEM offers the opportunity for dynamic simulation, but this has been used in only four studies. 
Conclusions: Spinal cord FEM provides unique insight into the stress and strain of the cervical spinal cord in 
various pathological conditions and allows for the simulation of surgical procedures. Standardization of modeling 
parameters, anatomical structures and inclusion of patient-specific data are necessary to improve the clinical 
translation. 
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Finite element modeling (FEM) is an established technique to un-
erstand the biomechanics of complex systems including human neu-
oanatomy. Finite element modeling breaks down complex anatomical
eometries into small elements with specific material properties, which
llows computational analyses to be conducted with simulated loads.
iomechanical testing using FEM overcomes the limitations of cadaver
odels and can be used to measure intrinsic tissue forces where clin-

cal testing is not feasible [1–4] . Traditional biomechanical testing of
he spine requires testing of cadaver preparations of the spine often
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ithout the paraspinal muscles. Specifically, the spinal cord cannot be
ested in cadaver models since spinal cord tissue properties are not main-
ained during cadaver preparation and intrinsic stress cannot be mea-
ured. Limitations of cadaver models that are overcome by FEM include
iological variability, difficulty with procurement, sophisticated testing
apabilities, and costs. While a single cadaver can only simulate a single
urgical intervention, FEMs can simulate and compare multiple surgical
nterventions in a single model because of its absolute repeatability and
bility to explore the responses for the specific anatomical-geometrical
haracteristics of each patient using patient imaging such as computed
omography (CT) or magnetic resonance imaging (MRI). 
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Finite element modeling’s of the vertebral column is used extensively
o study biomechanical responses of the human spine to loading, injury,
nd surgical intervention. Advancement in computational modeling as
ell as knowledge of the material properties of neural tissues has led

o the development of FEMs of the spinal cord. The development of a
pinal cord FEM requires several inputs, which contribute to the accu-
acy and validity of the model. To begin with, accurate MRI-derived
pinal cord geometries need to be obtained. Cervical spine and spinal
ord geometries need to be recorded from medical imaging data such as
RI or CT scans. The segmented components must be discretized with

ptimal element formulation and an appropriate number of elements.
n addition, the material properties of the bone, ligament, and soft tis-
ues are modeled with different constituents of materials, which are ob-
ained from experimental studies. Furthermore, boundary conditions,
onstraints, and contacts are established between components to reflect
ealistic physiological conditions and interactions. Finally, the external
orces and moments applied to the FE model must be determined to
imulate the physiological conditions being studied. This technique is
ow used to study spinal cord stress and strain states due to spinal cord
athology and traumatic injuries. Finite element modeling’s of the hu-
an spinal cord enable quantification of spinal cord forces in dynamic

nvironments as well as after simulated surgical interventions. 
The application of FEM to spinal cord biomechanics research started

round the 1980s. At first, these models were predominantly 2D due
o computational limitations. During this time, FEMs provided valuable
nsights into the behavior of the spinal cord under various physiolog-
cal conditions. Coburn et al. [5] used a 2D model to understand the
ffect of epidural electrode-induced electrical stimulation on the spinal
ord. In the early 2000s, advancements in computational capacities al-
owed for a shift toward 3D FEMs. These 3D models provided a more
ccurate representation of the anatomical and biomechanical complex-
ties of the spinal cord [6] . Over the past decade, FEMs have been em-
loyed to study more complex and diverse clinical scenarios. This in-
ludes analyzing the stress in the spinal cord due to degenerative cer-
ical myelopathy [7] , understanding the impact of cerebrospinal fluid
epresentation during transverse impacts [8] , and investigating the ef-
ects of contusion load on the cervical spinal cord [9] . Some studies also
xplored the biomechanics of surgical interventions [10] and surgical
reatment for cervical myelopathy [11] . Recently, more sophisticated
odeling techniques have been developed, such as hyper-viscoelastic
ultiphysics finite element models [12] , and patient-specific finite ele-
ent models [13] for the cervical spinal cord. These advancements have

xpanded our understanding of cervical spinal cord biomechanics and
old promise for guiding surgical strategies, understanding spinal cord
athobiology and driving innovations in the field. There is considerable
ariability in methodology as well as applications of cervical spinal cord
EMs and to date there has been no review summarizing the current sta-
us, capabilities and limitations of human cervical spinal cord FEMs. 

In this review of human cervical spinal cord FEMs, we address model
evelopment, material properties, testing environment, and clinical ap-
lications. We aim to define the current state, areas of need, and future
irections of human spinal cord FEM for clinical applications. 

ethods 

A systematic review was performed through PubMed and Scopus
ccording to the PRISMA 2020 guidelines. The following terms were
earched: (1) Finite element analysis, and (2) spinal cord, and (3) biome-
hanics. The results were initially screened by their titles. The abstracts
ere then reviewed followed by a review of the full article. Studies were
valuated for the following inclusion criteria: (1) Human spinal cord
odeling at the cervical level; (2) the study should model the spinal cord
ith or without the osteoligamentous spine; and (3) the study should
escribe an application of the spinal cord FEM. Review articles, articles
ot in English, studies that only modeled the osteoligamentous spine,
2 
tudies that focused on thoracic and lumbar regions of the spinal cord,
nd studies on animal spinal cord FEMs were excluded from this study.

Selected studies were evaluated for the disease process that was stud-
ed, model development, material properties used, outputs, and limita-
ions of the models. 

esults 

The search yielded 369 total results. After screening titles and re-
oving duplicates, 49 results remained. Twenty-six more studies that
id not satisfy the inclusion criteria were removed after reading through
bstracts or full texts ( Fig. 1 ). Seven studies were removed because these
id not model the spinal cord [14–20] , 5 studies were removed since
hey modeled nonhuman spinal cords [21–25] , 3 studies did not use fi-
ite element analysis [26–28] , and 2 studies were not in English [ 29 , 30 ].
even studies were removed because they focused on the thoracic or
umbar spinal cord [31–37] . One study was removed because it mod-
led the head-neck complex without a focus on the spinal cord [38] .
ne study was removed because it described the creation of a validated
odel but did not evaluate spinal pathology [39] . 

isease process 

Nine studies (39%) looked at spinal cord injury and trauma [ 9 ,
0–47 ]. Ten studies (43%) looked at the effect of pathologic processes
degenerative disease or trauma) on spinal cord biomechanics [ 7 , 48–
6 ]. Four studies (17%) looked at stress and strain on the spinal cord
fter spine surgery [ 10 , 57–59 ]. 

erivation of spinal cord geometries 

Studies had considerable variation in the methodology of FEM de-
elopment for the osteoligamentous spine and spinal cord. Geometric
easurements to model the neuroanatomy were obtained from neu-

oimaging in most studies. Eleven models (48%) were created using
maging of the human spinal cord [ 7 , 9 , 41 , 47–49 , 52–54 , 57 , 58 ]. Seven
30%) of these were CT scans [ 7 , 41 , 48 , 52–54 , 57 ] and 3 (13%) were MR
maging [ 9 , 49 , 56 ]. One study (4%) used both CT and MR imaging [47] .
ix models (26%) used morphologic cross-sections from cadaveric hu-
an spinal cords [ 10 , 40 , 42 , 45 , 55 , 59 ]. Three models (13%) were based

n institutional or published anatomical data [ 7 , 44 , 46 ]. Three models
13%) did not specify where the spinal cord geometries were derived
rom [ 43 , 50 , 51 ]. 

Nineteen studies (83%) modeled the grey and white matter of
he spinal cord as separate elements with distinct material properties
 7 , 9 , 40 , 41 , 43 , 45–51 , 53–59 ]. Four studies (17%) modeled the spinal
ord as a single structure, without segmenting white and gray matter
 10 , 42 , 44 , 52 ]. 

issue material properties 

The material properties of the spinal cord were obtained from animal
r human cadaver tissue testing. Eighteen studies (78%) used bovine
pinal cord tissue material properties [ 10 , 40–43 , 45 , 47–51 , 53–59 ]. One
tudy (4%) used material properties from cat spinal cords [52] . One
tudy (4%) used dog and cat spinal cord tissues [44] . One study (4%)
sed material properties from human cadaveric spinal cords [46] . Two
tudies (9%) did not specify how the material properties were derived
 7 , 9 ]. 

The spinal cord was modeled according to different mathemat-
cal models. Nine studies (39%) used a nonlinear hyperplastic ma-
erial model [ 9 , 10 , 41 , 52 , 53 , 56–59 ]. Ten studies (43%) modeled the
pinal cord using linear elastic material properties [ 7 , 42 , 44 , 45 , 47–
9 , 54 , 55 ]. Four studies (17%) incorporated viscoelastic material prop-
rties [ 40 , 43 , 50 , 51 ]. 
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Fig. 1. Flow chart illustrating the literature review and selection process. 
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natomical structures modeled 

Eleven studies (48%) incorporated dura mater [ 10 , 40 , 41 , 44 , 46–
8 , 52 , 53 , 57–59 ] and twelve (52%) incorporated pia mater into their
odels of the spinal cord [ 9 , 10 , 40 , 43 , 47–51 , 54 , 55 , 57 ]. Denticulate lig-

ments were modeled around the spinal cord in ten studies (43%)
 10 , 40 , 44 , 46–48 , 53 , 57–59 ]. Nerve roots were incorporated in eight
odels (35%) [ 41 , 46 , 48 , 52 , 53 , 57–59 ] Eight studies (35%) included

erebrospinal fluid [ 10 , 41 , 46 , 52 , 53 , 57–59 ]. CSF was modeled as a fluid
lement in all studies. The osteoligamentous spine also been modeled
n addition to the spinal cord. These included intervertebral discs in
3 studies (57%) [ 7 , 40 , 43 , 44 , 46 , 48 , 50–52 , 55–58 ]. Eight studies (35%)
ncluded one or more vertebral ligaments including the ligamentum
avum or posterior longitudinal ligaments [ 7 , 40 , 44 , 46 , 48 , 49 , 52 , 53 ].
ony vertebrae were included in 13 models (57%) [ 7 , 40 , 41 , 44 , 46–
8 , 52 , 54 , 56–59 ]. 
s  

3 
se of patient-specific anatomy or generic anatomy of the spinal cord 

Fourteen studies (61%) developed FEM based on generic spine and
pinal cord anatomy ( Fig. 2 ) [ 10 , 40 , 42–46 , 48–51 , 54–56 ]. Nine models
39%) [ 7 , 9 , 41 , 52–54 , 57–59 ] used CT-derived patient-specific anatomy
f the osteoligamentous spine, but generic geometries were used to de-
elop the spinal cord FEM. Two studies (9%) used MRI-derived geome-
ries from a healthy subject to construct gray and white matter elements,
owever, the authors stated that symmetry of the gray and white mat-
er was assumed; so subject-specific geometries of the gray and white
atter were not incorporated in the model [ 9 , 47 ]. No study used MRI-
erived patient-specific geometries of the spinal cord ( Table 1 , Fig. 3 ). 

ertebral segments modeled 

Twenty studies (87%) modeled the cervical spinal cord. Five of these
tudies (22%) modeled the entire cervical spinal cord [ 42 , 45 , 47 , 54 , 57 ].
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Table 1 

Summary of cervical spinal cord FEM studies. 

Study Disease process Spinal cord geometries Tissue material 
properties 

Type of model Anatomical structures Subject-specific 
or generic spinal 

cord anatomy 

Anatomical 
region 

Outputs 

Yang et al. [7] Cervical spondylotic 
myelopathy 

CT imaging Not specified linear elastic Cortical bone, cancellous bone, boney 
endplate, pedicle, small joints, gray 
matter of the spinal cord, ALL, PLL, 
LF, soft backbone, nucleus proposes, 
fiber ring, white matter of spinal cord 

Generic Cervical von Mises stress 

Xue et al. [57] Effect of cervical 
rotatory manipulation on 
the biomechanics of a 
healthy spinal cord 

CT imaging Bovine nonlinear 
hyperelastic 

C1-C7 vertebral bodies, intervertebral 
disc, zygapophysial cartilage, nerve 
root complex, and vertebral contents 
included grey matter, white matter, 
pia matter, dura matter, denticulate 
ligaments, nerve roots, and CSF 

Generic Cervical CSA, sagital diameter, 
von Mises stress 

Levy et al. [48] Degenerative cervical 
myelopathy 

CT imaging Bovine linear elastic Grey matter, white matter, pia mater, 
dura, spinal roots, dentates, IVD, 
vertebrae, ligaments (ALL PLL nuchal 
ligament LF, joint capsule, 
interspinous) 

Generic Cervical Shear stress, stress, von 
Mises stress 

Zhu et al. [9] Contusion loading MR Imaging Not specified nonlinear 
hyperelastic 

grey matter white matter and pia Subject-specific Three segment von Mises stress 

Stoner et al. [10] Cervical myelopathy Cadaveric histologic 
cross sections 

Bovine nonlinear 
hyperelastic 

grey and white matter of the spinal 
cord grouped together, dura, pia 
dentate ligaments, CSF 

Generic Cervical Strain, von Mises stress 

Bailly et al. [40] Central cord syndrome Cadaveric histologic 
cross sections 

Bovine viscoelastic vertebrae, IVD, 6 spinal ligaments 
(ALL PLL zygapophyseal joint 
ligaments, LF, interspinous ligaments 
and nuchal ligaments), white matter, 
grey matter, denticulate ligaments, 
pia, and dura 

Generic Cervical Strain, stress 

Khuyagbaatar et al. [41] Contusion, dislocation, 
and distraction SCI 
mechanisms 

CT imaging Bovine nonlinear 
hyperelastic 

Vertebrae, white matter, grey matter, 
dura mate with nerve roots, and CSF‘ 

Subject-specific Cervical CSA, strain, stress, von 
Mises stress 

Khuyagbaatar et al. [52] Ossification of the 
posterior longitudinal 
ligament 

CT imaging Cat nonlinear 
hyperelastic 

Vertebrae, IVD, PLL, LF, nerve roots, 
grey and white matter, dura, nerve 
root CSF 

Generic Cervical CSA, stress, volume, von 
Mises stress 

Nishida et al. [49] Cervical spondylotic 
myelopathy 

MR Imaging Bovine linear elastic grey matter, white matter, pia, and LF Generic Cervical Stress 

( continued on next page ) 
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Table 1 ( continued ) 

Study Disease process Spinal cord geometries Tissue material 
properties 

Type of model Anatomical structures Subject-specific 
or generic spinal 

cord anatomy 

Anatomical 
region 

Outputs 

Li et al. [42] Acute central cord 
syndrome 

Cadaveric Histologic 
cross sections 

Bovine linear elastic spinal cord Generic Cervical von Mises stress 

Kato et al. [50] Myelopathy due to OPLL Not specified Bovine viscoelastic grey matter white matter pia matter 
and IVD 

Generic Two segment Stress 

Kato et al. [43] SCI in OPLL Not specified Bovine viscoelastic grey matter white matter pia matter 
and IVD 

Generic Two segment Stress 

Li et al. [45] Hyperextension injury Cadaver, Histologic cross 
sections 

Bovine linear elastic grey matter and white matter Generic Cervical Stress, von Mises stress 

Greaves et al. [44] Spinal cord injury anatomic descriptions Dog and cat linear elastic Vertebrae, spinal cord, dura, ALL PLL, 
joint capsule, LF, interspinous 
ligament, IVD, denticulate ligaments, 
and dural attachments 

Generic Cervical Shear strain, strain, von 
Mises strain 

Kato et al. [50] Cervical flexion 
myelopathy 

Not specified Bovine viscoelastic grey matter, white matter, pia mater, 
and IVD 

Generic Cervical Stress 

Khuyagbaatar et al. [53] Ossification of the 
posterior longitudinal 
ligament 

CT Imaging Bovine Nonlinear 
hyperelastic 

Dura, denticulate ligaments, CSF, 
nerve roots, ligaments 

Generic Cervical Von mises stress, stress, 
CSA 

Nishida et al. [54] Brown-Séquard 
Syndrome 

CT imaging Bovine Linear elastic Pia, vertebrae Generic Cervical Stress 

Scifert et al. [46] Spinal cord injury Anatomic descriptions Human Linear elastic Vertebrae, ligaments, IVD, nerve 
roots, CSF, denticulate ligaments 

Generic Cervical von Mises stress, strain 

Czyz et al. [47] Spinal cord injury from 

burst fracture 
MRI imaging Bovine Linear elastic Pia, dura, denticulate ligaments, 

vertebrae 
Subject-specific Cervical Deformation, stress, 

shear stress, strain 
Liang et al. [55] Herniated cervical IVD Histologic cross sections Bovine linear elastic Pia, IVD Generic Cervical Stress 
Khuyagbaatar et al. [59] OPLL Histologic cross sections Bovine nonlinear 

hyperelastic 
Vertebrae, nerve roots, denticulate 
ligaments, CSF dura 

Generic Cervical Displacement, stress, von 
Mises stress 

Khuyagbaatar et al. [58] OPLL CT Imaging Bovine nonlinear 
hyperelastic 

Vertebrae, nerve roots, denticulate 
ligaments, CSF, dura, IVD 

Generic Cervical von Mises stress, strain, 
displacement 

Taso et al. [56] Cervical myelopathy MR imaging Bovine nonlinear 
hyperelastic 

Vertebrae, IVD, CSF Generic Cervical von Mises stress, shear 
stress 

ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament; LF, ligamentum flavum; CSF, cerebrospinal fluid; IVD, intervertebral disc; SCI, spinal cord injury; OPLL, ossification of the posterior longitudinal 
ligament. 
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Fig. 2. (A) FEMs created by Yang et al [7] showing patient-specific bony anatomy but generic spinal cord anatomy and compressive pathology, (B) FEM by Zhu 
et al. [9] showing generic spinal cord morphology without osteoligamentous anatomy, (C) FEM by Khuyagbaatar et al. [52] showing patient-specific CT-derived 
bony anatomy with generic spinal cord and nerve root morphology. 
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our studies (17%) included the cord from C2 to C7 [ 41 , 52 , 53 , 58 ].
hree studies (9%) modeled the cord from C2 to T1 [ 10 , 40 , 59 ]. One
tudy (4%) modeled three segments of the cervical spinal cord [9] .
our studies (17%) modeled 2 segments of the cervical spinal cord
 44 , 49 , 50 , 56 ]. Four studies (17%) used single-segment cervical mod-
ls [ 7 , 46 , 48 , 55 ]. One study (4%) described a 2-segment model in an
nspecified region [43] . 

utputs 

The most common FEM outputs include von Mises stress in
4 studies (61%) [ 7 , 9 , 10 , 41 , 42 , 45 , 46 , 48 , 52 , 53 , 56–59 ], stress in 14
tudies (61%) [ 40 , 41 , 43 , 45 , 47–55 , 59 ], strain in 7 studies (30%)
 10 , 40 , 41 , 44 , 46 , 47 , 58 ], and cross-sectional area in 4 studies (17%)
 41 , 52 , 53 , 57 ]. Shear stress was measured in 3 studies (13%) [ 47 , 48 , 56 ].
hear strain [44] and von Mises strain [44] were measured in 1 study
ach (4%). Displacement of the spinal cord was measured in 2 stud-
es (9%) [ 58 , 59 ]. Volume [52] , sagittal diameter [57] , and deformation
47] were measured in one study each (4%). 
6 
ynamic simulation 

Two studies (9%) looked at dynamic simulation. One study (4%)
odeled the stress distribution of the spinal cord with flexion speeds

hat varied from 0.5 degrees per second to 50 degrees per second [43] .
ne study (4%) modeled loading by applying an imposed velocity to the

VD at 0.05 mm/ms for 25 microseconds [56] . 

iscussion 

There is considerable variability in how FEMs are constructed to
tudy the cervical spinal cord [60–62] . Some models have been sim-
lified to conserve computational power by modeling the spinal cord as
 homogenous element while others separated grey and white matter.
chihara et al. [61] . showed that there is increased rigidity in the grey
atter, however, other authors have suggested that there is no signifi-

ant difference in biomechanical properties between the gray and white
atter [63] . Overall, less than 50% of the studies in this review included
ura mater, pia mater, and cerebrospinal fluid, which are essential to ac-
urately simulate the biomechanical responses of the spinal cord [64] .
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Fig. 3. Example of a patient-specific FEM developed from sagittal and axial T2-weighted MRI with individual spinal cord components, and patient-specific spinal 
cord morphology. Modified generic FEMs include pathology (disk herniation) without incorporating global spinal alignment or geometries. Sagittal and axial (C5–C6 
level) generic, modified generic and patient-specific FEMs are compared with show substantial differences in spinal cord morphology. 
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his highlights the challenge in comparing results between studies and
he need for standardization of modeling parameters for human cervical
pinal cord FEMs. 

In vitro mechanical testing of the human cervical spinal cord shows
hat the spinal cord exhibits a nonlinear J-shaped elastic response to
ensile loading [65] , and therefore a quasilinear viscoelastic or hypere-
astic model can capture nonlinear material behavior of the spinal cord.
lthough the majority of studies used a hyperelastic [ 9 , 10 , 41 , 52 , 53 , 56–
9 ] or viscoelastic model [ 40 , 43 , 50 , 51 ], 10 studies (44%) measured
pinal cord responses using a linear elastic model [ 7 , 42 , 44–49 , 54 , 55 ].
inear elastic models assume that the material properties of the spinal
ord remain constant and the relationship between stress and strain is
inear. They are computationally efficient and relatively simple to im-
lement. However, they may not accurately capture the nonlinear be-
avior of the spinal cord under large deformations or complex loading
onditions. Hyperelastic models account for the nonlinear stress-strain
elationship exhibited by the spinal cord. These models can provide a
ore accurate representation of the mechanical response of the spinal

ord under various loading conditions. However, they can be compu-
ationally demanding and require accurate material parameters, which
ay not always be available. Viscoelastic models incorporate both elas-

ic and viscous properties, capturing the time-dependent behavior of
he spinal cord. These models can simulate the response of the spinal
ord to dynamic loading conditions, such as impacts or cyclic loads.
he main limitation of viscoelastic models is their increased complexity
nd the need for additional material parameters, which can be diffi-
ult to obtain experimentally. The optimal model for the spinal cord
ould be one that balances accuracy, computational efficiency, ease of

mplementation and would depend on the specific research question or
linical application being addressed. The complexity of the spinal cord,
hich includes white matter, gray matter, and blood vessels, makes it
ifficult to create an accurate model. The consequences of assuming
 homogeneous model may reduce accuracy, loss of material-specific
ehavior, and inadequate representation of load distribution. Homoge-
eous models assume uniform material properties, oversimplifying the
omplex and varied nature of biological tissues, leading to inaccurate
rediction of biomechanical response. However, creating a heteroge-
7 
eous model demands more detailed input data, heightened computa-
ional power, and validation through experimental evidence. When de-
iding between homogeneous and heterogeneous models, it is important
o consider the trade-offs between simplicity and accuracy, depending
n the study’s specific goals and requirements. 

At present, there is no consensus on the type of metric (eg, peak
on Mises stress) that best explains the response of the cord to physi-
logical loading. Different metrics have been employed depending on
he specific application and desired outcomes. Common biomechani-
al outputs include stress, strain, displacement, pressure, spinal cord
iameter, and cross-sectional area. Clinicians often use spinal cord di-
meter and cross-sectional area to quantify spinal cord compression, as
hese can be measured using MRI. Experimental studies investigating the
pinal cord’s mechanical responses under mechanical loading are lim-
ted; however, they often focus on changes in length and the resulting
train. Computational research typically uses stress and strain outputs
o examine the spinal cord’s mechanical response under various load-
ng conditions. These outputs help understand intrinsic responses and
dentify regions susceptible to injury. The choice of output is driven by
he need to validate the model against experimental data or compare
esults with previous studies. Ultimately, the choice of output hinges on
he specific application, availability of experimental data for validation,
esired outcomes, and limitations of the FEM design. Enhancing our
nderstanding of the relationships between various metrics and their
pplicability in different contexts will support the development of more
ccurate and effective spinal cord models. 

Finite element modeling can simulate surgical interventions and pre-
ict the effect of surgery on spinal cord biomechanics. This can be useful
n determining whether a surgical intervention improves the dynamic
tress and strain within the spinal cord. Stoner et al. [10] compared
pinal cord stress and strain outputs for anterior cervical diskectomy
nd fusion, anterior cervical diskectomy and fusion with laminectomy,
nd double-door laminoplasty. The authors found that all surgical tech-
iques reduced spinal cord stress/strain at the surgical site, but only
he anterior cervical diskectomy and fusion model was associated with
ncreased adjacent segment spinal cord stress. A recent study by Vedan-
am et al. [13] also confirmed increased adjacent segment spinal cord
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tress after anterior cervical diskectomy and fusion, which was greater
n multilevel compared with single level fusion. Together, these stud-
es highlight the utility of FEM in simulating treatment paradigms and
ssociated cervical spinal cord responses. 

The use of patient-specific data in FEM development is essential to
ccurately define intrinsic spinal cord forces for the individual patient
nd this approach is needed to enhance clinical translation. Computed
omography imaging provides excellent contrast for bony anatomy;
owever, spinal cord anatomy and contents of the vertebral canal are
est visualized on MRI. Magnetic resonance imaging-derived spinal cord
eometries, therefore, are necessary to create accurate patient-specific
pinal cord FEMs ( Fig. 3 ). Additionally, the inclusion of all structures in
he spinal canal (dura mater, pia mater, cerebrospinal fluid, ligamentum
avum, and posterior longitudinal ligament) is necessary to accurately
stimate spinal cord responses. Automated segmentation and meshing
rom presurgical magnetic resonance imaging will be integral to opti-
izing and accelerating spinal cord FEM development for clinical use.

n addition to incorporating patient-specific geometries, future models
ill need to use individualized cervical spine range of motion (measured
sing dynamic x-rays or goniometers) to determine simulated dynamic
orces. 

Although FEMs of the human spinal cord incorporate diverse
natomical structures, they are several limitations to this approach. Lim-
tations of the FEM approach to study spinal cord biomechanics include
oftware accessibility, cost, and expertise required to develop and run
he models. While the dimensions and tissue properties can be adapted
rom prior studies, commonly used FE software packages are not open
ource and software license costs remain a barrier to widespread use
f this technique. Generation of accurate spinal cord FE models require
nowledge of anatomy, mechanics, and material science. Optimal com-
utational processing power is necessary to generate FEMs. Importantly,
nput from physicians is necessary to ensure clinical relevance and util-
ty. In vivo validation of all stress and strain outputs is not feasible in
umans. Stoner et al. [10] described MRI-derived measurement of cer-
ical spinal cord strain, yet other outputs including stress could not be
easured. Magnetic resonance imaging-derived measurements cannot

e applied to traumatic spinal cord injury with spinal instability, severe
pinal cord compression, or patients with limited neck range of motion.
urrently, tissue material properties of the white and gray matter of
he human spinal cord are not available. Chronic spinal cord compres-
ion is known to cause myelomalacia and a change in tissue properties
f the spinal cord parenchyma. Accurately quantifying the change in
issue properties due to pathology may impact how accurately FEM out-
uts reflect true stress and strain in the spinal cord. Most importantly,
t is necessary to determine how spinal cord FEM outputs correlate with
he patient’s clinical status as well as clinical outcomes after surgery or
rauma. This further emphasizes the need for patient-specific FEMs over
eneric and simulated pathological models. 

onclusion 

This review describes the current role of human cervical spinal cord
EM in studying spinal cord stress and strain states in the presence
f cervical spinal cord pathology. There is considerable variation in
natomical structures and tissue material properties included in spinal
ord model development. Current cervical spinal cord FEMs, however,
o not include patient-specific spinal cord geometries. This review is
n important addition to the literature and focuses on an innovative
dvancement of the finite element technique that is not routinely stud-
ed. Our review also provides guidance on areas of improvement as well
s limitations that will need to be overcome in the future. Spinal cord
EMs provide a unique insight into biomechanical spinal cord responses
n pathological states, and can supplement conventional clinical imag-
ng. Improvements in automated model development and the inclusion
f patient-specific data are expected to improve the generalizability and
linical translation of this technique. 
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