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Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular
processes within the organism. Consequently, plasma levels of calcium and
phosphate are tightly regulated. This occurs through the combined effects of
the phospho- and calciotropic hormones, parathyroid hormone (PTH), active
vitamin D , and fibroblast growth factor 23 (FGF23). The organs central to this
are the kidneys, intestine, and bone. In the kidney, the proximal tubule
reabsorbs the majority of filtered calcium and phosphate, which amounts to
more than 60% and 90%, respectively. The basic molecular mechanisms
responsible for phosphate reclamation are well described, and emerging work
is delineating the molecular identity of the paracellular shunt wherein calcium
permeates the proximal tubular epithelium. Significant experimental work has
delineated the molecular effects of PTH and FGF23 on these processes as well
as their regulation of active vitamin D  synthesis in this nephron segment. The
integrative effects of both phospho- and calciotropic hormones on proximal
tubular solute transport and subsequently whole body calcium-phosphate
balance thus have been further complicated. Here, we first review the
molecular mechanisms of calcium and phosphate reabsorption from the
proximal tubule and how they are influenced by the phospho- and calciotropic
hormones acting on this segment and then consider the implications on both
renal calcium and phosphate handling as well as whole body mineral balance.
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Introduction
The kidneys play a critical role in maintaining electrolyte  
balance, including both calcium and phosphate. They accom-
plish this by adjusting the urinary excretion of these minerals, 
thereby amending the amount in blood. In particular, the proximal 
tubule (PT) reabsorbs approximately 70% of filtered calcium and  
90% of filtered phosphate ions1. Failure to properly regulate PT  
reabsorption leads to abnormal calcium and phosphate homeos-
tasis, which may manifest as neuromuscular, cardiovascular, or  
gastrointestinal symptoms2. The molecular mechanisms mediating  
calcium and phosphate reabsorption in the PT, as well as the 
endocrine regulation of these processes, have been extensively 
studied. The endocrine factors involved in calcium and phos-
phate homeostasis are known as calciotropic and phosphotropic  
hormones, respectively. These hormones include parathyroid  
hormone (PTH), 1,25-dihydroxyvitamin D

3
 (that is, active  

vitamin D), and fibroblast growth factor 23 (FGF23). Previous 
review articles have primarily focused on the individual effects of 
PTH, active vitamin D, and FGF23 on either calcium or phosphate 
transport in the kidneys, and some have suggested an intercon-
nection between the two pathways1,3–6. However, emerging work 
demonstrates that PTH and FGF23 each have distinct effects on 
both phosphate and calcium homeostasis. They should thus be 
considered calciophosphotropic hormones, a term we will use  
for the remainder of this article. Here, we briefly review  
calcium and phosphate reabsorption and their dependence on 
sodium transport in the PT and then dissect the role of PTH and 
FGF23 on these processes.

Proximal tubule
The PT is the initial segment of the nephron wherein transport 
occurs. It is responsible for reabsorbing the majority of water 
and solutes that filter into this tubular segment from the glomer-
ulus. Anatomically, the PT is located in the renal cortex and can 
be divided into (i) the proximal convoluted tubule (PCT) and (ii) 
the proximal straight tubule (PST). The PT can be further sub-
divided into segments S1, S2, and S3 on the basis of molecular  
ultrastructure and expression profiles7–10. The PCT is comprised of 
S1 and part of S2, whereas the PST contains the remainder of the 
S2 segment as well as the S3 segment7,8. The majority of sodium, 
bicarbonate, and phosphate reabsorption from the PT occurs in the 
PCT, owing to the greater expression of select sodium-coupled  
cotransporters, larger microvilli surface area, and denser mito-
chondrial population. In contrast, calcium reabsorption occurs  
in the distal part of the PT due to a favourable electrochemical  
gradient there.

Proximal tubular function
The transport of solutes across the PT epithelium occurs via  
both transcellular and paracellular pathways. The transcellular  
pathway is generally a unidirectional, active process whereby  
substrates that are reabsorbed in the PT enter the epithelial cell 
across the apical membrane and subsequently are extruded across 
the basolateral membrane. The paracellular pathway in the PT 
is either a passive or secondarily active bidirectional process  
permitted by tight-junction proteins called claudins11. Transport 
via the paracellular pathway is determined by the transepithelial 
electrochemical gradient and the permeability of the tight junction. 

About 65% of transepithelial sodium reabsorption in the nephron 
occurs in the PT, and two thirds of it occurs via the transcellular 
pathway in a process coupled to bicarbonate reclamation12,13. As 
such, significant paracellular sodium reabsorption also takes place 
in this segment. Calcium reabsorption from the PT is primarily 
mediated by the paracellular pathway, while phosphate reabsorp-
tion occurs via the transcellular pathway14,15. Both calcium and 
phosphate reabsorption in the PT are dependent to some degree on 
the transepithelial transport of sodium.

The proximal tubule, a target of calciophosphotropic 
hormones
Electrolyte transport in the PT is regulated by multiple factors, 
including the calciophosphotropic hormones PTH and FGF23. 
These hormones interdependently regulate one another through the 
PTH-active vitamin D–FGF23 axes (Figure 1)16. The regulatory 
mechanisms within these axes are complex and beyond the scope 
of this review. (The reader is referred to several recent reviews  
covering this topic16–19.) Here, we focus on the effects of PTH, 
active vitamin D, and FGF23 on calcium and phosphate transport 
processes in the PT.

PTH is produced in the parathyroid gland and released when 
systemic calcium levels are reduced below the physiological set  
point. PTH increases serum calcium levels by directly increas-
ing calcium resorption from bone and reabsorption from kidneys, 
while it indirectly stimulates intestinal absorption by increasing 
the synthesis of active vitamin D in the kidneys20–23. Concomi-
tantly, PTH inhibits phosphate reabsorption in the PT, thereby  
increasing phosphate excretion into urine24. These actions on 
the PT are mediated by its direct interaction with the G protein– 
coupled type 1 PTH receptors (PTHRs) expressed on both apical 
and basolateral membranes25. The major effects of PTH binding to 
the PTHR in the PT are mediated by protein kinase A (PKA) and 
protein kinase C (PKC). These protein kinases are stimulated by 
the G

s
- and G

q/11
-protein pathways, respectively26. It is noteworthy  

that the apical PTHR preferentially signals through the PKC 
pathway25. Ultimately, these signalling pathways modulate both 
the expression and membrane localization of transport proteins 
involved in the reabsorption of sodium, calcium, and phosphate 
across the PT epithelium.

PTH also increases plasma levels of active vitamin D via a 
direct effect on PT epithelial cells17. The enzyme responsible for  
hydroxylating 25-hydroxyvitamin D

3
 at the 1α-position, CYP27B1 

or 1α-hydroxylase, is expressed in the PT and is upregulated 
by PTH27. Though traditionally thought of as a calciotropic  
hormone, active vitamin D is a phospho- and calciotropic hormone 
that increases both serum calcium and phosphate levels by stimu-
lating their intestinal absorption21. It also suppresses the release 
of PTH by downregulating PTH gene expression and increasing  
calcium-sensing receptor (CaSR) expression in the parathyroid 
gland28,29. Even though active vitamin D directly increases the 
expression of proteins involved in calcium reabsorption in the  
distal nephron, it is unclear whether it exerts a direct effect on  
electrolyte handling in the PT which is independent of its  
secondary effects on other hormones.
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Figure 1. Regulation of calcium and phosphate by parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3 (active vitamin D), and 
fibroblast growth factor 23 (FGF23). (A) Low plasma calcium stimulates release of PTH from the parathyroid glands. PTH stimulates 
resorption of bone, releasing calcium and phosphate into the plasma. In the kidney, PTH increases urinary calcium reabsorption and 
phosphate excretion. (B) PTH-dependent active calcium reabsorption takes place in the distal nephron but, in the proximal tubule (PT), 
stimulates 1α-hydroxylase to convert 25-hydroxyvitamin D3 into active vitamin D and reduces the reabsorption of sodium, calcium, and 
phosphate. Active vitamin D increases calcium absorption from the small intestine and stimulates FGF23 secretion from bone. (C) FGF23 
acts as a negative feedback modulator of activated vitamin D activation and increases distal nephron calcium reabsorption while decreasing 
phosphate reabsorption from PT.

FGF23 is a 251–amino acid peptide hormone synthesized and 
released from osteocytes and osteoblasts in response to elevations 
in systemic active vitamin D or phosphate or both16,19. The pri-
mary action of FGF23 is to reduce PT phosphate reabsorption via  
binding to specific FGF receptors (FGFRs), including 1, 3, and 4,  
which are expressed on the basolateral membrane throughout the 
PT30,31. Downstream signalling after FGFR activation reduces  
phosphate transporter expression and apical membrane locali-
zation in the PT. This signalling also depends on its cofactor, 
klotho, to activate the downstream signalling pathways. Though  
primarily thought of as a phosphotropic hormone, FGF23 is also a  
calciotropic hormone. With klotho as its cofactor, FGF23 directly 
modulates calcium reabsorption from the distal convoluted tubule 
(DCT)32,33. Of note, PTH stimulates FGF23 release in rodents29,34,35, 
while in contrast to PTH, FGF23 indirectly suppresses the  
1-hydroxylation of 25-dihydroxyvitamin D

3
17. Thus, like PTH and 

active vitamin D, FGF23 regulates both calcium and phosphate 
homeostasis and therefore can be considered a calciophosphotropic 
hormone6,36.

Calcium reabsorption from the proximal tubule
The kidney efficiently reabsorbs 98–99% of filtered calcium ions. 
More than 60% of this reabsorption occurs in the PT, which is 
largely driven by diffusion through the paracellular shunt37–39. 
Micropuncture studies in mammals show a parallel relationship 
between PT calcium reabsorption and sodium reabsorption, which 
does not dissociate under a variety of circumstances, including the 
administration of PTH, acetazolamide, furosemide, or hydrochlo-
rothiazide or with the induction of acute and chronic metabolic 
acidosis40–43. In addition, an active transcellular pathway is pro-
posed to account for less than 20% of calcium reabsorption from 
this segment37,44. Consistent with this, microperfusion experiments 
performed in the absence of a transepithelial potential difference 
found that not all calcium transport in the distal PT was passive 
and paracellular14. Moreover, similar studies in the PST (S2 and 
S3 regions) of rabbit kidney demonstrate significant calcium  
transport that is independent of sodium transport, implying the 
presence of a transcellular calcium reabsorption pathway in the 
later portion of the PT45,46. The molecular constituents of this  
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pathway remain to be elucidated. Towards this goal, an in vitro  
study using the L-type calcium channel blocker, nifedipine,  
abolished calcium flux in a rabbit PT cell model, implying the  
presence of functional apical L-type calcium channels in the PT47. 
In addition, cation-permeable transient receptor potential channel 
1 (TRPC1) has been localized to the apical membrane of PT cells 
in vitro and in vivo47,48. These studies support the presence of a  
transcellular pathway for calcium reabsorption in the PST;  
however, further study is required to delineate the molecular  
constituents.

Calcium transport in the proximal tubule is coupled to 
sodium and water transport
Calcium reabsorption in the PT is highly dependent on sodium 
transport. The kidneys filter more than 500 g of sodium and  
180 L of water daily, while approximately 4 g of filtered 
sodium and 1–2 L of water is excreted in the urine49. The PT  
reabsorbs about two thirds of the filtered sodium and water. Sodium  
reabsorption in the PT is primarily mediated by an active  
transcellular pathway (Figure 2A)50. Active reabsorption of sodium  
creates a small, albeit significant, osmotic gradient for water, 
which is reabsorbed trans- and paracellularly through the water-
selective channel aquaporin-1 and tight-junction pore claudin-2,  
respectively51. The majority of sodium transport across the  
apical membrane occurs via the sodium proton exchanger isoform 
3 (NHE3), encoded by the Slc9a3 gene, which is expressed along  
the PCT. Animals with a targeted deletion of Slc9a3 have a  
significant reduction in sodium and water reabsorption from the  
PT and display hypotension13,52–54. Though contributing mini-
mally to sodium reabsorption from the PT, other apical mem-
brane sodium-coupled cotransporters, including sodium-glucose, 
sodium-phosphate, and sodium–amino acid cotransporters, are 
expressed in this segment. These transporters account for less 
than 5% of total transcellular sodium reabsorption in the PT; thus,  
only those involved in phosphate transport will be discussed  
here.

Sodium is also reabsorbed from the PT through the paracellu-
lar pathway. The PT is very leaky, displaying a transepithelial  
resistance (TER) of 5–7 Ω⋅cm211. This leakiness is conferred by a 
tight-junction family of proteins called claudins. Claudin-2, -10a, and 
-17 are expressed in this nephron segment11,55,56. Claudin-2 forms 
a cation-selective, water-permeable pore, permitting paracellular  
diffusion of sodium, calcium, and water down their electrochemical  
gradients while restricting the diffusion of larger macromolecules57. 
In the early PCT (S1), the transepithelial potential difference is 
lumen-negative, generated by the electrogenic sodium-glucose 
cotransporter (SGLT2)58. Although this electrogenically favours 
paracellular cation secretion, this is overcome by the large amount 
of active sodium and consequent water reabsorption described 
above. The movement of water across the PT, when it occurs through 
the paracellular pore, can in turn carry other ions, including cal-
cium, even against their respective transepithelial electrochemical  

Figure 2. Proximal tubule (PT) calcium (Ca2+) reabsorption.  
(A) Calcium reabsorption from the PT occurs primarily by a 
paracellular route, likely mediated by claudin-2 (CLDN2). This 
is dependent on transcellular sodium reabsorption, driven by the 
sodium proton exchanger (NHE3) and sodium potassium ATPases. 
The reabsorption of sodium generates an osmotic gradient for  
water reabsorption, which in turn drags other solutes (including 
calcium) in a process known as solvent drag (top junction). In the 
late PT, the calcium concentration gradient favours reabsorption 
(from apical to basolateral) as the majority of sodium and water 
reabsorption occurs in the early PT (bottom junction). The 
transcellular calcium reabsorption pathway, present in late PT, 
is illustrated as a dashed line. (B) Parathyroid hormone (PTH) in 
the PT decreases calcium reabsorption by attenuating its driving 
force. PTH in both the tubular fluid and the blood binds its receptor  
(PTHR), which is expressed on both apical and basolateral 
membranes. This activates the downstream messengers protein 
kinase A (PKA) and protein kinase C (PKC). Note that apical PTHR 
preferentially activates PKC. Both pathways inhibit NHE3 activity and 
reduce abundance, but only PKC inhibits Na+/K+ ATPase activity. 
PTH also reduces tight-junction permeability in the PT and enhances 
active vitamin D3 synthesis. In contrast, fibroblast growth factor 23 
(FGF23) reduces active vitamin D3 levels.
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gradient, in a process known as solvent drag (Figure 2). This is sup-
ported by experiments using pharmacological blockade of NHE3 
in a PT cell model and NHE3 knockout mice that display increased 
urinary calcium excretion and reduced calcium transport across 
intestinal epithelia59–61. In contrast, the transepithelial potential dif-
ference across the late PT is lumen-positive, which is the result of 
reclamation of chloride ions and bicarbonate58. This electrochemi-
cal gradient thus favours the reabsorption of sodium and calcium58.  
As sodium and water are reabsorbed in the earlier portions of the 
PT, calcium in the tubular fluid becomes concentrated, generating 
a transepithelial chemical gradient that favours paracellular cal-
cium reabsorption37,40,41. These mechanisms in concert generate a  
transepithelial electrochemical gradient from lumen-to-blood that 
drives calcium reabsorption. Taken together, the majority of PT  
calcium reabsorption occurs via a paracellular pathway.

Regulation of sodium and calcium transport in the proximal 
tubule
PTH increases serum calcium in part by increasing the  
reabsorption of filtered calcium from the renal tubule, thereby 
reducing calcium excretion into urine. Paradoxically, micropunc-
ture studies in the dog revealed that PTH reduces sodium, fluid, 
and calcium reabsorption from the PT, even though it still lowered 
urinary calcium excretion43,62. This observation is reconciled by 
findings of enhanced calcium reabsorption in the later segments 
of the tubule following PTH administration62–64. Microperfusion 
of rabbit cortical thick ascending limb (TAL) in the presence of  
PTH led to an almost fivefold increase in calcium flux across  
the segment with similar findings in mice65,66. PTH also affects 
calcium reabsorption through a transcellular calcium transport 
pathway in the distal convolution, which relies on the calcium-
permeable transient receptor potential V5 channel (TRPV5)67–69. 
Consistent with this, PTH activates TRPV5 by increasing the 
open probability of the channel, membrane abundance, and total  
expression68–70. A secondary effect of PTH on the DCT is to 
increase the amount of TRPV5 indirectly by increasing circulating  
active vitamin D levels, as this hormone also enhances calcium  
reclamation in the DCT71,72.

A number of studies on animals demonstrate that the major effect 
of PTH on the PT is to inhibit sodium reabsorption, resulting in 
a natriuresis (Figure 2B)42,43,62,73. Various in vitro expression stud-
ies using opossum kidney (OK) cells found that acute and chronic 
incubation with PTH downregulates Slc9a3 at the transcriptional 
level, which is abolished by PKA inhibition (a downstream effec-
tor of PTH binding its receptor PTHR)74–76. These studies also 
revealed that PTH decreases NHE3 membrane abundance75,77. 
These cell culture studies are supported by in vivo work on 
PTH-infused rats that display significantly reduced renal NHE3  
expression78–80. Furthermore, microperfusion of rat PT after chronic 
PTH exposure found reduced transepithelial sodium transport along 
with increased sodium and water excretion78,79. Thus, PTH directly 
inhibits NHE3-dependent transport. The actions of PTH on NHE3 
are mediated by the phosphorylation of NHE3 at residue Ser605 
by PKA81. Although PKC activation results in NHE3 inhibition,  
this effect is mediated through an unknown mechanism that  
does not appear to require direct NHE3 phosphorylation82.  
Both PKA and PKC are thought to interact with NHE3 through 

its PDZ domain–containing linker protein, the sodium-hydrogen 
exchanger regulatory factor 1 (NHERF-1); however, the precise 
mode of interaction is incompletely understood83,84. Furthermore, 
the molecular details of PTH-mediated transcriptional regulation 
have not been fully elucidated74.

PTH also inhibits sodium/potassium ATPase activity in the PT, 
which would secondarily inhibit the apical sodium-dependent  
cotransporter fundamental to transcellular sodium reabsorption 
(Figure 2B). This occurs through the activation of PKC via a 
G

q/11
 protein–coupled pathway after PTHR binding85–87. Activated 

PKC translocates to the basolateral membrane and phosphorylates  
the alpha subunit of the sodium/potassium ATPase, inhibiting 
its activity88,89. Given the abovementioned role of NHE3 and the 
sodium/potassium ATPase in paracellular calcium reabsorp-
tion, their inhibition by PTH would inhibit sodium reabsorption  
from the PT, which would decrease paracellular calcium  
reabsorption. This seems in direct contrast to the primary role 
of PTH to increase serum calcium levels. The reasons for this 
remain unclear. A previous attempt to reconcile this observa-
tion suggested that NHE3 inhibition alkalinizes the tubular fluid 
via reduced hydrogen secretion, thereby reducing reabsorption of  
bicarbonate76,78. This hypothesis is supported by a micropuncture 
study, where acute administration of PTH increased distal deliv-
ery of bicarbonate, leading to an alkaline urine90. Since TRPV5,  
which is expressed in the distal nephron, is activated by alkaline 
pH, this could increase distal transcellular calcium reabsorption 
through TRPV576,78,91. Micropuncture data further demonstrate 
the uncoupling of sodium and calcium transport in the distal  
nephron42,43,62. However, direct in vivo measurements of tubular 
pH after PTH administration and the consequent effect on calcium  
reabsorption in the distal tubule have not been made.

Alternatively, PTH-mediated inhibition of PT sodium reab-
sorption might affect urinary calcium excretion by altering 
the glomerular filtration rate (GFR). Multiple in vivo studies 
found that  exogenous PTH administration decreases GFR92–94.  
Consistent with this, patients with primary hyperparathyroidism 
show significantly reduced GFR95. An explanation for this obser-
vation is that PTH stimulates tubuloglomerular feedback by 
increasing the distal delivery of chloride. The majority of chloride  
reclamation from the PT occurs through the paracellular pathway, 
driven by the transepithelial electrochemical gradient96. PTH- 
mediated inhibition of sodium reabsorption in the early PT would 
result in a more positive lumen, which in turn would favour 
retention of chloride and result in increased distal delivery of  
chloride. This would stimulate tubuloglomerular feedback, thereby 
decreasing GFR97. The PTH effect on GFR would not directly 
affect PT calcium transport. However, it would reduce the filtered 
calcium load and the amount of calcium in the ultrafiltrate. This 
would decrease the amount of calcium needed to be reabsorbed by 
active calcium transport in the distal nephron, thereby maximizing 
calcium reabsorption. Further studies are required to confirm this 
hypothesis.

The effect of calciophosphotropic hormones on ion transport in 
the cortical TAL98–100 and the distal convolution67–69,71,101 have been  
studied. However, there is a paucity of recent studies looking  
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at the PT. In particular, the potential regulation of tight-junction 
permeability by calciophosphotropic hormones, including PTH, 
has received little attention. Functional data suggest a relationship  
between PTH signalling and altered paracellular transport in the 
PT102. PTH administration to rats acutely decreased paracellu-
lar solute reabsorption from the PT102. This is further supported 
by a microperfusion study that showed reduced water-driven  
paracellular solute transport (that is, reduced solvent drag) 
across rabbit PCTs after infusion of cyclic AMP (a downstream  
second messenger of PTH-PTHR activation)103. Consistent with the  
abovementioned studies, inhibition of NHE3 in an intestinal cell 
culture model resulted in increased TER consistent with reduced 
tight-junction permeability104 as TER across a leaky epithelium 
is predominantly a reflection of paracellular ion permeability. 
Together, these studies suggest that PTH inhibits paracellular  
transport in the PT by decreasing tight-junction permeability,  
which likely also affects the permeation of calcium, although 
this has not been specifically tested. We are unaware of attempts 
to delineate the molecular components involved in regulation of  
paracellular permeability following PTH application. Further 
research is required to do so and to assess the effect of PTH on  
the transcellular calcium absorption pathway in the late PT.

FGF23 also affects PT solute transport by acting on sodium- 
phosphate cotransporters. However, given the relatively small 
amount of sodium reabsorbed via this pathway, this primarily 
decreases phosphate rather than sodium transport and therefore is 
discussed below. Currently, we are unaware of data demonstrat-
ing an effect of FGF23 on transcellular sodium transport or tight- 
junction permeability in the PT. It should be kept in mind,  
however, that FGF23 participates in calcium homeostasis through 
the enhancement of active vitamin D inactivation as well as by 
enhancing distal tubular calcium reabsorption through TRPV534.

There is evidence of calcium sensing by the PT. The CaSR 
detects elevated serum calcium. It signals through a G

q/11
 protein 

–coupled pathway inhibiting PTH release from the parathyroid 
gland and decreases calcium reabsorption from the TAL105,106.  
Several studies have reported CaSR expression in the brush  
border membrane of PT epithelial cells107,108, but another study  
contradicts this observation100. A recent study using both  
monoclonal and polyclonal antibodies against the CaSR found a 
low level of expression in PT109. Regardless, a functional study 
using conditionally immortalized PT epithelial cells isolated from 
the urine of healthy subjects revealed activation of the G

q/11
 path-

way with exposure to increased extracellular calcium as well as its  
allosteric agonist NPS-R568110. The physiological role of a CaSR 
in the PT appears to be to antagonize the inhibitory effects of  
PTH in PT transport processes. In microperfused late PT (S3 
region) and OK cells, the addition of the CaSR agonists gado-
linium and NPS R467 abolishes the phosphaturic effects of  
PTH108. Further microperfusion and micropuncture experiments  
on rat PT demonstrate a link between CaSR activation and  
NHE3. Increased fluid absorption and intracellular pH were seen  
in response to high luminal calcium or NPS-R568, an effect that 
was absent in CaSR knockout animals111. Together, these studies 
support the presence of a functional calcium-sensing mechanism  
in the PT, which antagonizes PTHR activation.

Human diseases with altered proximal tubular calcium 
transport
Global PT dysfunction results in glycosuria, aminoaciduria,  
low-molecular-weight proteinuria and renal tubular acidosis. 
This constellation of symptoms is called the Fanconi syndrome.  
Perhaps not surprisingly, the Fanconi syndrome often includes 
alteration in vitamin D metabolism112. Dent’s disease and the  
oculo-renal syndrome of Lowe’s disease are typically accompa-
nied by hypercalciuria and nephrocalcinosis113,114. These diseases 
are the result of mutations in CLCN5 or OCRL1115,116. The former 
gene encodes a transmembrane proton-chloride exchanger (also  
present intracellularly), and the latter a lipid phosphatase  
involved in the shuttling of lipid between endomembrane  
compartments117,118. Why these gene defects result in a PT calcium  
phenotype is unknown and is an area of research that requires  
exploring. Given the possible involvement of CLCN5 in luminal 
chloride and proton balance, it is possible that loss-of-function  
mutation in the CLCN5 gene alters the transepithelial electrical  
gradient in the PT, thus perturbing various solute transport  
processes117. However, further studies employing cell and animal 
models of CLCN5 and OCRL1 mutations will help delineate the 
pathophysiological mechanism of these syndromes.

Phosphate transport in proximal tubule
Phosphate reabsorption in the proximal tubule
Phosphate is vital to bone mineralization, maintaining cellular  
energy stores, and to cell signalling. The kidneys are essential  
to maintaining systemic phosphate levels, as the majority of  
ingested phosphate is absorbed from the intestine. Less than 1% 
of the body’s phosphorus exists in a solubilized form as either 
dihydrogen phosphate (H

2
PO

4
1−) or mono-hydrogen phosphate  

(HPO
4
2−), and the pH determines the fraction of each. The  

remaining fractions are stored either as part of hydroxyapatite in 
bone (~85%) or intracellularly (~15%)119. In adults, the kidneys  
filter approximately 200 mmoles of phosphate daily, and about  
90% of it is reabsorbed back into the bloodstream. Of this filtered 
fraction, 90% is reabsorbed from the PT.

In the PT, phosphate reabsorption occurs primarily via a trans-
cellular pathway (Figure 3). Paracellular phosphate reabsorption  
from this tubule segment has been described as insignificant 
in comparison with transcellular reabsorption4,5,120,121. Sodium- 
coupled phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2  
mediate the cellular entry of filtered phosphate ions from the  
lumen5. Apical phosphate entry is facilitated by secondary active 
transport of sodium, the electrochemical gradient of which is  
maintained by the basolateral sodium/potassium ATPase. The  
transport capacity of the PT for phosphate is determined primarily  
by the abundance of sodium-coupled phosphate transporters,  
which is due to the steep electrical gradient across the apical  
membrane (about −70 mV) and a low cytosolic sodium concen-
tration. Expression studies in rodent PT reveal that NaPi-IIa  
expression is high in the early PT and decreases along the length 
of this nephron segment, but the fact that NaPi-IIc and PiT-2 are 
expressed throughout the PT highlights the importance of the  
early PT to phosphate reabsorption122,123. The NaPi-II trans-
porter family shows preference for divalent phosphate (HPO

4
2−).  

NaPi-IIa is electrogenic (couples 3 Na+ to 1 phosphate), and  
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NaPi-IIc is electroneutral (couples 2 Na+ to 1 phosphate)124–126.  
In contrast, PiT-2 has greater affinity for monovalent phosphate 
ions (H

2
PO

4
−) and is electrogenic127,128. Genetic knockout studies 

in mice demonstrate that NaPi-IIa constitutes about 70% of phos-
phate reabsorption in the PT in this species129–131. Loss-of-function 
mutations in the NaPi-IIa cotransporter (SLC34A1) in humans, in 
contrast to rodents, causes renal calcification and generalized proxi-
mal-tubular dysfunction (that is, the Fanconi syndrome) rather than 
specific phosphate disturbances132,133. Moreover, NaPi-IIc in the 
human kidney likely contributes substantially to phosphate reab-
sorption, as patients with hereditary hypophosphatemic rickets 
with hypercalciuria—genetic mutations in the NaPi-IIc (SLC34A3 
gene)—show renal wasting of phosphate due to impaired NaPi-
IIc function134,135. After apical entry, subsequent intracellular  
diffusion and basolateral extrusion of phosphate complete rea-
bsorption across PT epithelia122. Although little is known about 
the basolateral extrusion mechanism, a recent nephron-specific  
knockout of the xenotropic and polytropic retroviral receptor  
gene (Xpr1) in mice resulted in hypophosphatemia and hyper-
phosphaturia, suggesting a role for this transporter in renal tubu-
lar phosphate reabsorption136. The protein product of Xpr1 also  
shares a sequence homology similar to that of a phosphate extru-
sion transporter in plants (PHO1). Additional experiments need  
to be carried out to confirm its role in transcellular phosphate  
reabsorption.

Regulation of phosphate transport in the proximal tubules
PTH and FGF23 regulate phosphate reabsorption in the PT, 
which in turn regulates plasma phosphate levels. Active vitamin D  
increases serum phosphate via enhanced intestinal absorption 
and potentially via increased PT reabsorption137,138. However, 
limited direct evidence of the effect on the PT and confounding 
effects of PTH and FGF23 complicates this interpretation1. PTH 
attenuates renal phosphate reabsorption by reducing the mem-
brane abundance of NaPi-IIa, NaPi-IIc, and PiT-2 cotransporters  
(Figure 3)139–141. PTH acutely decreases the abundance of  
apical NaPi-IIa cotransporters by stimulating endocytosis and  
ultimately their degradation142,143. PTH induces NaPi-IIa  
endocytosis through a complex intracellular pathway, which has 
been reviewed previously4,5. In short, the PTH-PTH1R interaction 
results in phosphorylation of PDZ domain–containing proteins— 
including NHERF-1—via activation of PKA and PKC, the signal-
ling pathways that inhibit NHE3. NHERF-1 anchors NaPi-IIa to 
the cytoskeleton and its phosphorylation releases the transporter,  
permitting endocytosis and degradation in response to  
PTH144–147. Patients with mutations in NHERF-1 (SLC9A3R1) 
display phosphaturia and nephrolithiasis but have otherwise  
normal PT function148,149. Interestingly, the mutations are not in the 
PDZ domain. Instead, these NHERF-1 mutants when expressed 
in vitro confer enhanced PTH-induced cAMP generation and  
inhibit phosphate transport, suggesting that NHERF-1 is a key 
component in PTH-mediated phosphaturic effects149. PTH is also 
implicated in the internalization of NaPi-IIc; however, it is not  
subsequently degraded140,141. The molecular pathway 

Figure 3. Proximal tubule (PT) phosphate reabsorption.  
(A) Phosphate reabsorption in the PT is mediated by the transcellular 
pathway. Apical entry occurs through the sodium-phosphate 
exchanger family (NaPi) subtypes IIa and IIc and sodium-
dependent phosphate transporter 2 (PiT-2). The stoichiometric ratio 
and preference of phosphate species are depicted. The basolateral 
extrusion of phosphate may occur through the xenotropic and 
polytropic retroviral receptor (XPR1). (B) Parathyroid hormone (PTH) 
and fibroblast growth factor 23 (FGF23) both attenuate phosphate 
reabsorption in the PT by inhibiting NaPi-II cotransporters. PTH in 
the tubular fluid and blood activates protein kinase A and C (PKA 
and PKC). These kinases phosphorylate the PDZ domain–containing 
scaffold protein sodium hydrogen exchanger regulatory factor 1 
(NHERF1), leading to internalization and degradation of NaPi-IIa. 
FGF23 in the blood binds to its receptor complex (which includes the 
cofactor, klotho). This leads to the activation of the mitogen-activated 
protein kinase (MAPK) pathway, resulting in phosphorylation of 
NHERF1. This signal cascade also decreases NaPi-IIa abundance. 
How PTH and FGF affect NaPi-IIc is currently unknown.
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whereby NaPi-IIc is downregulated is currently unknown.  
Nevertheless, like its effect on calcium handling, PTH decreases 
phosphate reabsorption in the PT. However, unlike calcium, 
where the distal tubule compensates for calcium loss in PT, 
the distal nephron has limited ability to reabsorb phosphate. 
Consequently, elevated PTH induces hyperphosphaturia and  
hypophosphatemia—symptoms commonly observed in patients 
with primary hyperparathyroidism150.

Osteocytes and osteoblasts produce FGF23 in response to an 
increase in plasma phosphate levels and in response to active  
vitamin D (Figure 1). FGF23 decreases serum phosphate levels, 
primarily by reducing phosphate reabsorption from the PT and 
by reducing intestinal phosphate reabsorption through the inac-
tivation of active vitamin D. In the kidney, FGF23 stimulates 
the internalization and subsequent degradation of NaPi-IIa and  
NaPi-IIc cotransporters by phosphorylation of NHERF-1 
in a process similar to PTH (Figure 3B)33,151,152. This occurs 
through mitogen-activated protein kinase (MAPK) and serum/ 
glucocorticoid-regulated kinase-1 (SGK-1) signalling pathways 
that are activated by FGFR 1, 3, and 4153–157. Unlike PTH, the 
FGF23-FGFR signalling pathway also downregulates transcrip-
tion and translation of NaPi-IIa and NaPi-IIc cotransporters, con-
tributing to a decrease in abundance of proteins in the PT33,158,159.  
Moreover, PTH-induced endocytosis of NaPi-IIa is abolished by 
inhibition of the MAPK pathway, suggesting a functional crosstalk  
mechanism between PTH and FGF23 signalling pathways  
in the PT160. Thus, the physiological actions of PTH on phos-
phate excretion and consequent reductions in serum phosphate  
level are complemented by the action of FGF23.

Direct phosphate sensing is another mechanism by which phos-
phate transport may be regulated in the PT. A phosphate-sensing  
mechanism has been observed in cell culture where increased 
extracellular phosphate activates the MAPK pathway161. This has 
also been observed in other cell lines, including human embry-
onic kidney 293 cells154,162 where increased extracellular phos-
phate activates the MAPK pathway that FGF23 stimulates, without  
altering expression of FGF, FGFR, or klotho154. This finding is 
not surprising when we consider the functional role of FGF23.  
As a phosphaturic hormone, FGF23 is released in response to  
high serum phosphate levels. Consequently, FGF23 signals the 
PT to attenuate the reabsorption of phosphate through NaPi-II  
cotransporters, inducing phosphate excretion. Therefore, it is  
likely that increased extracellular phosphate stimulates the same 
signalling pathway activated by FGF23. However, work remains 
to confirm this, including exploring the effects of high extracel-
lular phosphate on MAPK signalling in vivo, as well as whether  
phosphate directly regulates gene expression, trafficking, or  
activity (or a combination of these) of known phosphate trans-
porters in PT.

Integration of parathyroid hormone and fibroblast 
growth factor 23 signalling in the proximal tubule
It is evident that PTH and FGF23 have distinct effects in the  
PT. Both PTH and FGF23 decrease phosphate reabsorption.  
The mechanism by which PTH and FGF23 attenuate phosphate 

reabsorption is similar. Both lead to phosphorylation of  
NHERF-1, resulting in internalization and degradation of  
NaPi-IIa33,145–147,152. This raises the possibility that there is molecular  
crosstalk between the PTH and FGF23 signalling pathways4,163. 
Although PKA and PKC seem to be the predominant signalling 
mechanisms for PTH, they also activate the MAPK pathway, which 
is activated by FGF23 binding the FGFR160,164,165. Interestingly, the 
downstream effects of PTH (that is, internalization of NaPi-IIa) 
were only partially abolished by PKA and PKC inhibition, but inhi-
bition of MAPK completely abolished NaPi-IIa internalization142. 
This observation suggests a molecular connection between the 
PTH and FGF23 pathway, whereby the effect of PTH is depend-
ent on MAPK activation. A recent in vivo study by Andrukhova  
et al. revealed that, in mice without FGF23 and klotho,  
chronic PTH effects are blunted in the PT, an effect restored by 
recombinant FGF23 administration, further supporting the idea 
that the actions of PTH are dependent on FGF233. This led to the 
speculation that FGF23 signalling results in the phosphorylation of  
specific sites on NHERF-1, which are not phosphorylated by  
PKA or PKC (that is, the downstream mediators of PTH-PTHR). 
At a systemic level, a similar relationship was observed. FGF23  
knockout mice have normal serum PTH but display hyperphos-
phatemia, consistent with the phosphaturic effect of PTH being 
dependent on the presence of FGF23158. Conversely, parathyroid-
ectomized rats, when exposed to active vitamin D which stimu-
lates FGF23 release, do not significantly increase their fractional 
excretion of phosphate compared with controls, consistent with 
the FGF23 effect being dependent on PTH166. Similar effects are 
observed in hypoparathyroid patients who have high serum FGF23 
and phosphate levels167. Together, these studies suggest that there 
is molecular crosstalk between PTHR signalling and FGFR sig-
nalling, whereby the phosphaturic effect of PTH and FGF23  
is dependent on the other hormone. Overall, PTH and FGF reg-
ulation of phosphate balance is a complex process, and much 
remains to be answered: for example, the molecular mechanism  
of interaction between second messengers, and the presence of  
possible reciprocal regulatory mechanisms; that is, does FGF23 
signalling activate PKA and PKC?

Conclusions
PTH and FGF23 are important physiological regulators of cal-
cium and phosphate balance. Calcium reabsorption in the PT  
occurs primarily by the paracellular pathway, whereas phosphate 
reabsorption occurs through a transcellular pathway. Reabsorp-
tion of both minerals is coupled to sodium. Emerging work has  
implicated PTH in the direct inhibition of transcellular sodium  
transport and modulation of the paracellular pathway through 
which calcium is reabsorbed. Consequently, PTH inhibits cal-
cium reabsorption from the PT, increasing distal delivery, but 
overall decreases urinary calcium excretion by increasing calcium  
reclamation from the distal nephron. PTH and FGF23 directly 
inhibit transcellular phosphate transport in the PT, resulting in 
increased phosphate excretion. Significant further experimen-
tal work is required to fully elucidate the complex PTH-active  
vitamin D–FGF23 axes in regulating calcium and phosphate  
transport across the nephron. Of concern, many experimental mod-
els are limited by the confounding effects of individual hormones  
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and crosstalk between them. Consistent with this, it seems an 
unlikely coincidence that both PTH and FGF23 regulate active  
vitamin D levels via their effect on the PT. Furthermore, whether 
PTH, active vitamin D, or FGF23 has an effect on PT transcellu-
lar calcium transport is not known. Thus, further delineating the 
molecular pathways mediating calcium and phosphate transport 
across the PT in the presence and absence of these hormones will 
contribute to our understanding of renal regulation of calcium and 
phosphate in both health and disease.
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