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Abstract

The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data.
However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of
pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken.
Reassortment reshuffles the segments of different parent lineages upon a coinfection event, which means that the shared
history of viruses has to be represented by a network instead of a tree. Therefore, full genome analyses of such viruses are
complex or even impossible. Although this problem has been addressed for unstructured populations, it is still impossible
to account for population structure, such as induced by different host populations, whereas also accounting for reassort-
ment. We address this by extending the structured coalescent to account for reassortment and present a framework for
investigating possible ties between reassortment and migration (host jump) events. This method can accurately estimate
subpopulation dependent effective populations sizes, reassortment, and migration rates from simulated data.
Additionally, we apply the new model to avian influenza A/H5N1 sequences, sampled from two avian host types,
Anseriformes and Galliformes. We contrast our results with a structured coalescent without reassortment inference,
which assumes independently evolving segments. This reveals that taking into account segment reassortment and using
sequencing data from several viral segments for joint phylodynamic inference leads to different estimates for effective
population sizes, migration, and clock rates. This new model is implemented as the Structured Coalescent with
Reassortment package for BEAST 2.5 and is available at https://github.com/jugne/SCORE.
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Introduction
Influenza viruses are continuously evolving, escaping host im-
munity, or switching host species. Additionally, influenza di-
versity is promoted by intermediate mammalian hosts, such
as swine, which can serve as a mixing vessel for human, avian,
and its own influenza strains, with subsequent spillover back
to the human population (Khiabanian et al. 2009; Ma et al.
2009). This pattern manifests through reassortment—a form
of recombination in segmented viruses—where different
strains infect a single host cell and exchange genetic segments
upon replication (McDonald et al. 2016).

Like other forms of recombination, reassortment poses
challenges for phylodynamic inference methods that seek
to infer population dynamics from influenza virus sequences.
This is because, without an explicit model for the reassort-
ment process, the individual genomic segments of influenza
virus genomes must be analyzed in isolation to avoid making
incorrect assumptions about the degree to which ancestry is
shared between segments.

To address this, we recently introduced the coalescent
with reassortment model (motivated by the coalescent
with recombination model of Hudson [1983]), which explic-
itly accounts for reassortment between influenza genome
segments (Müller et al. 2020). Together with a Markov chain
Monte Carlo (MCMC) algorithm for sampling from the pos-
terior distribution of reassortment networks, this allows ge-
netic data from all genome segments to be incorporated into
a single Bayesian phylodynamic analysis, even in the presence
of substantial reassortment. The model ignores other possible
kinds of recombination (such as template-switching) and
treats viral segments as distinct molecules comprising the
RNA of the virus (McDonald et al. 2016). This means that
segment reassortment events have clear boundaries on the
genome.

Here, we extend this model in order to account for the
population structure that is introduced by having different
subpopulations. These subpopulations or types can, for ex-
ample, be different host species or coarse-grained geographic
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locations. To model this, we extend the structured coalescent
(Hudson 1990; Notohara 1990) to account for reassortment
(Müller et al. 2020). We develop both exact and approximate
approaches (Müller et al. 2017) for sampling from the poste-
rior distribution of reassortment networks, reassortment
rates, effective population sizes, and migration rates under
the combined model: the structured coalescent with reassort-
ment (SCoRe). In order to gain information about when and
where migration events occurred, we also implement a sto-
chastic mapping technique (Nielsen 2002; Huelsenbeck et al.
2003) that allows us to retrieve explicit migration events on
the reassortment networks.

Using simulated data, we first demonstrate that SCoRe is
able to correctly estimate the effective population sizes, reas-
sortment, and migration rates. We then show how assuming
independently evolving viral segments can bias the inference
of effective population sizes and migration rates. Next, we
apply the SCoRe to an avian influenza A/H5N1 data set
with isolates from two bird orders: Anseriformes and
Galliformes. This data set comprises sequences of influenza
segments Haemagglutinin (HA) and Neuraminidase (NA)
sampled in 2008–2016 from the highly pathogenic avian in-
fluenza (HPAI) virus A/H5N1 Gs/Gd lineage first detected in
China in 1996. The majority of the sequences are from Asia
(70.4%) and Africa (29.4%), with a small proportion from
Europe (0.2%) (see Materials and Methods for subsampling
procedure and supplementary table S1, Supplementary
Material online for breakdown by country and clade).

Anseriformes are water-fowl birds that have been previ-
ously identified as a reservoir for avian influenza viruses
(Webster et al. 2006; Kim et al. 2009). Migratory patterns of
wild Anseriformes facilitate the spread of influenza between
different locations, whereas domesticated Anseriformes (pri-
marily ducks) develop less pathogenic infection and play a
significant role in transmitting to other domestic poultry (Li
et al. 2004; Hulse-Post et al. 2005). Such spillover from
Anseriformes to Galliformes (ground-feeding, mostly domes-
ticated birds) in turn can cause further transmission to nona-
vian livestock as well as humans (Kaplan and Webby 2013).
Our analysis is able to recover this transmission pattern and
shows different estimates of model parameters than the ones
obtained when assuming independently evolving segments.
We also investigate the possible correlation between reassort-
ment and migration (host jump) events, setting a framework
for such studies on different influenza strains and host types.

New Approaches
Previously, performing model-based Bayesian phylogeo-
graphic inference of the migration patterns of segmented
viruses required either 1) assuming that reassortment is fre-
quent and thus that segments evolved according to indepen-
dent phylogenies; 2) assuming that reassortment is rare and
thus that all segments share a single phylogeny; or 3) limiting
the analysis to a single segment. The first two possibilities lead
to biased inference when broken, whereas the third discards
data from other segments, reducing the statistical power. To
address this, we introduce a SCoRe model that allows multi-
ple segments to be analyzed jointly without biasing

inferences. This model combines the structured coalescent
(Hudson 1990; Notohara 1990) and the coalescent with reas-
sortment (Müller et al. 2020). The SCoRe models a backwards
in time process where lineages can coalesce and reassort
within and migrate between different subpopulations.

To allow for efficient inference under this model, we ex-
tend the marginal approximation of the structured coales-
cent (MASCOT, Müller et al. [2017, 2018]) to account for
reassortment events. MASCOT ignores the correlations be-
tween lineage states (subpopulations) by assuming that they
are pairwise independent, given the tree, and integrates over
all possible migration histories by calculating the marginal
probability of a lineage being in any possible state from pre-
sent to past. In other words, instead of inferring the discrete
state of each lineage at any point in time, we compute its
probability of being in any state at any point in time. This is
done by numerically solving a set of differential equations
that describe how the probability of any lineage being in
any state changes over time (see Materials and Methods for
details). To account for reassortment events, we extend these
differential equations from trees to networks. This allows us
to compute the probability of observing a network under the
SCoRe given a set of effective population sizes, migration
rates, and reassortment rates, as well as sampling locations
of the individual tips. We then use a recently developed
MCMC algorithm for sampling reassortment networks
(Müller et al. 2020) that allows us to infer a posterior distri-
bution of these networks, the embedding of segments trees
within those networks, migration histories, and other associ-
ated parameters.

Integrating over the ancestral migration histories improves
the efficiency of the inference algorithm, but having explicit
migration events can often be useful to test hypotheses. This
can include whether migration events, that refer to host jump
events when the structure considered is host types, are cor-
related with reassortment events. Our MASCOT extension,
on its own, does not infer the individual migration events.
Thus, we also introduce a stochastic mapping algorithm to
impute these over the network. Once the mapping is com-
plete, each network sampled from the posterior distribution
is annotated with a possible sequence of reassortment, coa-
lescent, and migration events and can therefore be used to
investigate possible relationships and correlations between
these events.

An early version of this method was part of Master’s thesis
of the first author (Jankauskaite 2019).

Results

Implementation Validation and True Network
Parameter Estimation
We first ensure that our implementation of the exact variant
of SCoRe (SCoRe-exact) samples from the true distribution of
SCoRe. Additionally, we show that the implementation of the
approximate version of SCoRe does not qualitatively distort
shapes and summary statistics of these distributions. To do
this, we used our MCMC algorithm to produce ensembles of
reassortment networks under 1) SCoRe-exact and 2) SCoRe.
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We then used direct simulation (Gillespie 1976) to produce
one-third set of networks simulated under the same set of
parameter values. Next, we compared the frequency distribu-
tions of network height, length, and reassortment node count
from each of these ensembles (supplementary figs. S16 and
S17, Supplementary Material online). To measure the differ-
ence of distributions more precisely, we calculated the
Kolmogorov–Smirnov (KS) statistic as a function of the iter-
ation count. In the exact case, the KS differences asymptote to
around 0.01–0.003, and from this we conclude that distribu-
tions of network statistics match with high precision. For the
approximation, the KS differences are slightly larger (<0.1),
but the distributions maintain similar shapes and mean val-
ues. For the analyses below, we only apply the approximate
version of SCoRe, as it is substantially faster, allowing us to
apply it to considerably larger data sets (see Materials and
Methods).

To demonstrate that SCoRe allows us to estimate the
model parameters correctly, we considered two different
well-calibrated simulation studies. First, we show that
SCoRe is able to recover effective population sizes, reassort-
ment, and migration rates when the true network is known
and fixed (supplementary fig. S11, Supplementary Material
online). We then show the ability of SCoRe to jointly infer
the reassortment network and population parameters when
the evolutionary rate of the individual segments is either high,
low, or mixed for two different migration priors (see Materials
and Methods). Figure 1 shows the results for high evolution-
ary rate (5� 10�3 substitutions per site and year) and an
exponential migration rate prior. Supplementary figures S12–
S14, Supplementary Material online show the results for
remaining combinations of migration rate priors and clock
rates. Overall, between 91% and 98% of true parameter values
fell within the 95% HPD interval (supplementary table S2,
Supplementary Material online).

Joint Inference from Viral Segments Reduces the
Relative Error of Model Parameters
We next compared the relative error of effective population
size and migration rate posterior distributions inferred under
SCoRe when the true reassortment rate is known to the
distributions obtained assuming independent genomic seg-
ments under the structured coalescent model that does not
include reassortment (MASCOT package, Müller et al. [2018])
from simulated sequences. The true effective population sizes,
migration, and reassortment rates were randomly drawn
from their respective known prior distributions. We obtained
100 such sets of parameter values and simulated sequences
for four segments and two subpopulations repeatedly with
low (5� 10�4 substitutions per site and year) and high
(5� 10�3 substitutions per site and year) clock rates (see
Materials and Methods for more details).

We drew the true rate values from the prior distributions
of the effective population sizes and migration rates.
Additionally, we fixed the reassortment rates to the true
values when using SCoRe. Both methods had similar accuracy
for low clock rates, with the median relative error being
slightly smaller for SCoRe compared with MASCOT. In the

case of high clock rates, the difference was more pronounced,
with the median relative error being up to 5.4% smaller for
migration rates for SCoRe compared with MASCOT (supple-
mentary fig. S15, Supplementary Material online).

Network and Its Parameter Inference for Avian
Influenza A/H5N1
We next assembled a data set using genetic sequences of
influenza A/H5N1 viruses sampled between 2008 and 2016.
We then grouped the sequences into two host types, based
on whether they were isolated from Anseriformes or
Galliformes (see Materials and Methods for details). For
each of the samples we used the genetic sequences of the
two surface proteins HA and NA, for further analyses. Because
we only sample influenza A subtype H5N1, we cannot make
insights into HA and NA subtype labels at any particular
reassortment event. However, by inspecting the structure of
a network and embedded segment trees, we can evaluate the
overall segment evolution and reassortment accumulation
over time. We then randomly subsampled this data set into
ten smaller subsets, each containing 200 sequences and ran
three independent analyses for each subset under SCoRe and
MASCOT in BEAST 2.5 (Bouckaert et al. 2018), using parallel
tempering (Altekar et al. 2004; Müller and Bouckaert 2020).
For each segment, we allowed for different evolutionary rates
on the first two and the third codon position evolving under
an HKYþC4 (Hasegawa et al. 1985; Yang 1994) substitution
model.

The inferred posterior distributions for migration rates are
bimodal (fig. 2; supplementary figs. S1 and S2, “Unfiltered,”
Supplementary Material online) and the inferred bird order at
the root node of the segment trees (MASCOT) and the net-
work (SCoRe) varies with the two different modes.
Furthermore, the maximum clade credibility (MCC) and
maximum posterior networks show that the inferred root
state strongly correlates with the majority of the sampled
A/H5N1 evolution occurring in the same state (supplemen-
tary figs. S4 and S5, Supplementary Material online). Ewing
et al. (2004) discuss such bimodality in migration rates for
MCMC structured tree inference methods and suggest using
additional prior knowledge to weight one of the migration
directions. In this case, it has been shown that migratory
water-fowl birds (Anseriformes) are the main natural influ-
enza A/H5N1 reservoir (Olsen et al. 2006; Webster et al. 2006;
Kim et al. 2009; Trov~ao et al. 2015). Furthermore, H5N1 is
considered to be less pathogenic to domesticated ducks (also
Anseriformes) than other poultry, thus prolonging the disease
shedding period and promoting introduction into the do-
mesticated bird populations (Li et al. 2004; Hulse-Post et al.
2005). To obtain a conditioned posterior distribution, we
conditioned on the root node type. We filter the ensembles
produced by MCMC, retaining only those samples in which
both segment roots are associated with Anseriformes (see
Materials and Methods). Figure 2 and supplementary figures
S1 and S2, Supplementary Material online show that condi-
tioning completely removed bimodality of estimated migra-
tion rate distributions for most subsets with SCoRe and all
subsets with MASCOT. We rely on filtered posterior
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distributions in the further analyses and present equivalent
figures obtained before filtering for consistency.

With this conditioning in place, both SCoRe and MASCOT
recover the expected trajectory of the virus, with high back-
wards in time migration from ground-feeding birds
(Galliformes) to water-fowl (Anseriformes) (see supplemen-
tary fig. S3, Supplementary Material online). Backwards mi-
gration rate from Anseriformes to Galliformes is, in
comparison, minuscule. The root of the MCC network as
well as majority of the network length is in the
Anseriformes for all ten subsets (fig. 3; supplementary fig.
S6, Supplementary Material online).

Correlation between Reassortment and Migration
Events in Avian Influenza A/H5N1
Next, we investigated whether there is an association be-
tween reassortment events and host jump (migration)
events. To do so, we define a short-time window immediately
before each host jump event in the network. We then com-
pute the empirical rate of reassortment events within these
windows (“on-window”) and compare these to the corre-
sponding rates for all parts of the network that fall outside
of these windows (“off-window”). We computed these rates
for all networks sampled from the posterior distribution of

reassortment networks and then computed the difference
between the rates inside and outside of the window. If this
difference is above zero, the rate of reassortment is higher
within the windows, that is, before host jump events. If the
difference is below zero, this suggests lower rates of reassort-
ment before host jump events.

Additionally, we computed the same difference for networks
simulated under the SCoRe and the inferred parameters, that is,
for posterior predictive simulations. Because a fitness effect of
reassortment was shown previously from human influenza vi-
ruses (Müller et al. 2020), we also tried to disentangle general
fitness benefits of reassortment from its association with host
jumps. To do so, we split all networks into “fit” and “unfit” based
on how long the descendants of an edge persist into the future.
If they persist for more than 2 years, we classify an edge as fit and
as unfit otherwise. For edges in the two classes, we again com-
pute the difference between reassortment rates “on-” and “off-
windows” before the migration events as described above.

As shown in figure 4, we see a slight increase in reassort-
ment rates before host hump events for all ten subsets. In all
cases, however, the 95% highest posterior density (HPD) in-
terval still includes no increase in rates of reassortment before
host jump events. For most subsets, we also find a slight
increase in rates of reassortment before host jump events
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FIG. 1. Inference of effective population size (h), reassortment (q), and migration (l) rates from 100 simulated genetic sequence data for two types
with exponential migration rate prior and high clock rate (5� 10�3 substitutions per site and year for all four segments). First row of is for type 1
and second—for type 2 parameters. True (x-axis) versus estimated (y-axis) effective population sizes. Gray bars are 95% confidence intervals, red
marks the x¼ y curve.

Joint Inference of Migration and Reassortment Patterns for Segmented Viruses . doi:10.1093/molbev/msab342 MBE

4

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab342#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab342#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab342#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab342#supplementary-data


when looking only at fit versus unfit parts of the networks.
These estimates, however, are very uncertain and their 95%
HPD intervals include no association at all, as well.
Additionally, we looked at what happens when we change
the size of the window around host jump events, as well as
the definition of what constitutes a fit and unfit edge (see
supplementary figs. S7–S10, Supplementary Material online
for different window sizes and fitness distances), which shows
largely consistent results.

Discussion
The approach presented here enables inference of reassort-
ment networks from viruses with segmented genomes while
accounting for population structure. This is done by expand-
ing the structured coalescent approach, which was previously
described, validated and compared with the competing
methods in Müller et al. (2017, 2018), to the SCoRe. The
primary goal of this extension is to allow for joint estimation
of type trait evolution and reassortment in a unified frame-
work and without a loss in accuracy, and not to improve on
the computational speed of the existing inference methods
for structured coalescent.

Using simulation studies, we showed that, even though this
approach is approximate, our method can reliably recover

effective population sizes, reassortment, and migration rates.
Furthermore, we showed that by extending MASCOT and
jointly modeling coalescent, migration, and reassortment pro-
cesses, SCoRe does not suffer loss in accuracy and might im-
prove on it. The difference between the two approaches could,
however, be more dramatic when considering more segments.

We find that both of these approaches—accounting for
reassortment on the one hand, and assuming segments
evolve independently on the other—recover similar transmis-
sion dynamics for a data set of HA and NA avian influenza A/
H5N1 sequences with two host types. However, the assump-
tion of independent segments leads to quantitatively differ-
ent estimates for the evolutionary rate and backwards
migration rates than those obtained by SCoRe. This is con-
sistent with previous findings for the unstructured case
(Müller et al. 2020), where assuming independently evolving
segments also lead to higher evolutionary rate estimates.
Additionally, both models showed a strong bimodality in
the inferred migration rate distributions. This may be due
to insufficient data, the omission of intermediate host types
from the model, or falsely assuming constant effective pop-
ulation sizes and rates of migration. The first two possibilities
could be addressed by using a larger amount of sequences
and distinguishing between more host types or geographic
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FIG. 2. Two-dimensional density of backward in time migration rate posterior estimates for all ten subsets before and after segment root filtering
for MASCOT and SCoRe. Red contour line marks the 95% HPD area for the estimated 2D density.
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locations. The latter one requires extensions to the model, for
example, by allowing for effective population sizes to change
over time (Drummond et al. 2005).

We have also investigated possible associations between
reassortment and host jump events. Although we find some
evidence that reassortment rates are elevated prior to host
jumps, the credible intervals did not exclude the possibility of
not elevated rates. Using a data set that spans a longer time
window could potentially help increase the precision of these
estimates. Additionally, the role of reassortment in host
switching may be stronger for more distantly related species.
Although we do not find conclusive evidence for the role of
reassortment in host switching for the analyzed data set, we
present a framework to investigate such ties in the future.

Materials and Methods

The SCoRe
Here, we extend the coalescent with reassortment (Müller
et al. 2020) process to allow for the population structure
(fig. 5). Each lineage L of a network G, described by this

process, carries a full set of genomic segments, a subset of
which CðLÞ are ancestral to the samples. In addition, each
network lineage is in a particular type (member of a subpop-
ulation) and migration between types is allowed. At any
given time, we define a lineage L by its type l, which takes
values from a type set f1; 2; . . . ;mg and ancestral segments
CðLÞ it carries: L ¼ ½l; CðLÞ�. Given n coexisting lineages and
m types, there are mn possible network configurations
K :¼ fLi ¼ ½li; CðLiÞ�ji 2 f1; 2; . . . ; ngg, w.r.t. the type of
each lineage. We model the generation of SCoRe networks
as a continuous backward in time Markov chain, that gen-
erates the network configuration K (a state in the Markov
chain) by coalescent, migration, reassortment, and sampling
events.

Under a standard coalescent model, the probability per
unit of time that two coexisting lineages have a common
ancestor is equal to an inverse of effective population size
Ne. We only allow for coalescent events between lineages L
and L0 if they are in the same type a. Therefore, the pairwise
coalescent rate of type a, ka, is the inverse effective population
size Nea of each subpopulation. Immediately after a
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coalescent event, the parental lineage Lp carries ancestral
segments of both child lineages (Müller et al. 2020) and
inherits their type Lp ¼ ½a; CðLÞ [ CðL0Þ�. If kaðKÞ is the
number of lineages in type a for some configuration K,
then the total coalescent rate is the sum over all possible
types:

C ¼
Xm

a¼1
ka

kaðKÞ

2

 !
: (1)

Migration event at rate l, measured per lineage and
time unit, involves a single lineage and changes the type
of that lineage, but not which segments it carries. That is,
a migration event from type a to b on a lineage L changes
it from L ¼ ½a; CðLÞ� to L0 ¼ ½b; CðLÞ�. The rate of migration
event from a to b is given by lab, with laa ¼ 0. The
total migration rate for some configuration K is the sum
over all n lineages to change their current type li into any
other:

M¼
Xn

i¼1

Xm

a¼1
llia: (2)

Upon a reassortment event occurring, we observe a lineage L
and its two parents Lp1 and Lp2. Each segment of the child
lineage is being assigned to one of the two parental lineages
Lp1 with probability p or Lp2 with probability 1� p. Here, we
assume that this probability is equal for both parents: p ¼ 1=2,
though this assumption could be relaxed. A reassortment event
is observable, if at least one ancestral segment originated from a
different parent than all other segments: CðLÞ \ CðLp1Þ 6¼1;
CðLÞ \ CðLp2Þ 6¼1 and CðLp1Þ \ CðLp2Þ ¼1. This occurs

at a probability ð1� 2� 1
2

� �jCðLÞjÞ ¼ ð1� 1
2

� �jCðLÞj�1Þ, where

jCðLÞj is the number of ancestral segments carried by lineage L.
The rate of reassortment q is given in units per lineage and unit
of time. If qa is the reassortment rate at any lineage in type a

and PtðLj ¼ ajK;GÞ is an indicator probability of lineage Lj

being in the type a at time t, given the configuration K and
network G. Then, we can write total rate of observed reassort-
ment as:

R ¼
Xm

a¼1
qa

Xn

j¼1
Pt Lj ¼ ajK;G
� �

1� 1

2

� �C Ljð Þ�1
 !

:

(3)

As is standard in coalescent models, we condition on sam-
pling events.

Target Posterior Probability
In order to perform MCMC sampling, we describe the target
posterior distribution of networks using the Bayes theorem.

P G;M;K;R;cjR;Að Þ/P AjG;cð ÞP GjR;M;K;Rð ÞP M;K;R;cð Þ:
(4)

Here, A is the set of multiple sequence alignments for each
segment and R is the types of each sample. M;K, and R are,
respectively, sets of migration, coalescent, and reassortment
rates of the network. Finally, c is a set of substitution model
parameters.

The probability of a multiple sequence alignment (the
data) given the network and substitution rate parameters P
ðAjG; cÞ can be factored into a sum of probabilities given
the segment trees and calculated by the Felsenstein pruning
algorithm (Felsenstein 1981; Müller et al. 2020). We set
the joint probability of network parameters PðM;K; R; cÞ
to be equal to the multiplication of their independent prior
probabilities. Next, we explain how to obtain the probability
of the SCoRe network PðGjR;M;K; RÞ and use MASCOT
approximation (Müller et al. 2018) to make its calculation
feasible.
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The SCoRe as a Network Prior
As described by Müller et al. (2017), we seek to marginalize
over all possible migration histories H to obtain the probabil-
ity of a network G.

P GjR;M;K; Rð Þ ¼
ð

H

P G;HjR;M;K; Rð ÞdH: (5)

Equivalent to the tree case (Müller et al. 2017), the above
equation for networks can be described as:

PðGjR;M;K;RÞ¼
Xm

a¼1
Ptmrca
ðLroot¼½a;CðLrootÞ�;GÞ (6)

where PtðK;GÞ is a joint probability of the network G before
the time t and the network configuration K at this time.
When the time tmrca of the network root is reached, there
is only one lineage and the probability reduces to
Ptmrca
ðLroot¼½a;CðLrootÞ�;GÞ. The ancestral segment set of

the root lineage CðLrootÞ will always contain all segments an-
cestral to the samples.

Approximation of the SCoRe
To obtain Ptmrca

, we numerically integrate Pt until t ¼ tmrca,
where t¼ 0 is the time of the most recent sample and time
flows from present to past. Pt can be factored into the contri-
bution of network events (coalescent and reassortment) and
the intervals between them. Note that there is no contribution
of migration events because we marginalize over all possible
migration histories. We have derived the exact equations for Pt

ðK;GÞ in terms of network events and intervals contributions
(see Supplementary Material). However, in order to evaluate
them and account for all possible network type configurations

K, we need to numerically solve mn differential equations,
which becomes intractable for larger or highly structured
data sets. As in Müller et al. (2018), we assume that lineages
and their states are pairwise independent, given the tree.

PtðLi ¼ ½li; CðLiÞ�; Lj ¼ ½lj; CðLjÞ�jGÞ

¼MASCOT

Pt

�
Li ¼ ½li; CðLiÞ�jG

�
Pt

�
Lj ¼ ½lj; CðLjÞ�jG

�
:

This approximation eliminates the need to jointly account
for all possible lineage type configurations. Thus, it reduces
the number of equations from mn to m� n. Next, we show
how to extend this approach to the SCoRe and therefore
from trees to networks.

The previously derived ODEs needed to calculate structured
coalescent tree prior (Müller et al. 2017, 2018) involves migra-
tion and coalescent terms that are equivalent to the structured
network case. For completeness, we restate them and include
the necessary reassortment terms in order to obtain the ap-
proximate structured network prior. To evaluate the change in
a marginal lineage type probability PtðLi ¼ ½li; CðLiÞ�;GÞ
within a network interval, we obtain its derivative over time.
Furthermore, to avoid numerical instability caused by vanish-
ingly small values (Müller et al. 2018), we calculate PtðLi ¼ ½li
; CðLiÞ�jGÞ ¼ PtðLi ¼ ½li; CðLiÞ�;GÞ=PtðGÞ instead. The deriv-
ative of which is (see Supplementary Material for derivation):

d

dt
PtðLi¼½li;CðLiÞ�jGÞ¼

Xm

a¼1

�
lali PtðLi¼½a;CðLiÞ�jGÞ�lliaPtðLi¼½li;CðLiÞ�jGÞ

�

þPtðLi¼½li;CðLiÞ�jGÞ
Xm

a¼1

kaPtðLi¼½a;CðLiÞ�jGÞ
Xn

k6¼ik¼1

PtðLk¼½a;CðLkÞ�jGÞ

�PtðLi¼½li;CðLiÞ�jGÞkli

Xn

k 6¼ik¼1

PtðLk¼½li;CðLiÞ�jGÞ

þPtðLi¼½li;CðLiÞ�jGÞ
Xm

a¼1

qa 1� 1

2

� �jCðLiÞj�1
 !

PtðLi¼½a;CðLiÞ�jGÞ

�Pt

�
Li¼½li;CðLiÞ�jG

�
qli 1� 1

2

� �jCðLiÞj�1
 !

:

(7)

The migration, coalescent, and reassortment rates ðl; k; qÞ
are as described above.

Similarly, we add the reassortment term to the previously
derived differential equation (Müller et al. 2018) to compute
the probability for a network history G up to time t (see
Supplementary Material for derivation)

d

dt
PtðGÞ¼�PtðGÞ

Xm

a¼1

ka

2

Xn

j¼1

X
k6¼jk¼1

PtðLj¼½a;CðLjÞ�jGÞPtðLk¼½a;CðLkÞ�jGÞ

�PtðGÞ
Xm

a¼1

qa

Xn

j¼1

1� 1

2

� �jCðLjÞj�1
 !

Pt

�
Lj¼½a;CðLjÞ�jG

�
:

(8)

Finally, the above probability will be modified at each co-
alescent or reassortment event. As in Müller et al. (2018), we
wrote for the coalescent event between two lineages i and j:

no sampled descendents

type I type II

type II

has sampled descendents

present

Coalescent

Network Events:

Coalescent

Reassortment

Reassortment

Coalescent

Coalescent

past

Migration

Migration

Migration

FIG. 5. Example SCoRe network. Network has two types (subpopulations)
and three samples: one of type I (light yellow) and two of type II (light
purple). It tracks the evolution of three genetic segments, denoted by
green, red, and blue and, besides sampling, can have three kinds of events:
reassortment, migration, and coalescent. Segments that are not ancestral
to our samples are shown in dashed lines. Time increases into the past.
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Pafter
t Gð Þ ¼ Pbefore

t Gð Þ
Xm

a¼1
kaPt Li ¼ a; C Lið Þ½ �jGð ÞPt Lj ¼ a; C Lj

� �� 	
jG

� �
:

(9)

If there is a reassortment event on lineage i, we write:

Pafter
t Gð Þ¼Pbefore

t Gð Þ
Xm

a¼1
qaPt Li¼ a;C Lið Þ½ �jGð Þ 1� 1

2

� �C Lið Þ�1
 !

:

(10)

Numerical Integration
To numerically integrate the above differential equation, we
employ second-order Taylor approximation with the numer-
ical integration step size estimated by the third derivative.
More details can be found in Müller et al. (2018), and the
necessary derivatives are given in the Supplementary Material.

Sampling Lineage Types
We use a stochastic mapping technique (Nielsen 2002;
Huelsenbeck et al. 2003) to sample the migration (type
change) history on top of a network. That is, we first
perform backwards in time integration, as described
above, and obtain the root node type probability distribution
p ¼ ðp1; . . . ; pmÞ. Then, we sample a type pmrca for the root
node from p and simulate migration as a continuous time-
inhomogeneous Markov process along the network branches
forward in time. The times and types of the endpoints (net-
work leaves) are assumed to be known. We add an additional
constraint that both parents of a reassortment event must be
in the same type immediately prior to the reassortment
event. If either of the two last conditions is not met, the
mapped history is rejected. Briefly, the forward simulation
algorithm on a network interval between time t0 and time
t1 is:

• Let Q be a time-dependent generator matrix with off-
diagonal entries qab > 0 and diagonal entries
qaa ¼ �

P
a6¼b qab.

• For each coexisting lineage Li with current type li draw an
exponential waiting time si � ExponentialðQiÞ.

• If mini si > t1, all lineages retain their types. If the node at
time t1 is a reassortment node, we check that its parent
lineages have the same simulated type at time t1. If not,
we reject the simulation and start from the root node
again. Otherwise, continue with time t0 :¼ t1 and t1 reset
as the end of the next network interval.

• If sx ¼ mini si < t1 simulate the new type y for a lineage
Lx, from a distribution with probabilities�qx

lxy=qx
lxlx

, such
that Lx configuration changes from ½lx; CðLxÞ� to
½y; CðLxÞ�. Set t0 ¼ sx and repeat from the first step.

The equations needed to obtain the generator matrix Q
are given in the Supplementary Material. We implemented
this stochastic mapping for both BEAST2 packages, SCoRe
and MASCOT.

Root State Conditioning for the Structured Segment
Trees and Networks
First, we will discuss the filtering of the posterior distribution
for segment trees obtained by MASCOT. Let fa; gg be the two
possible types of the segment root node and pi

a — a proba-
bility of segment tree i having the root node in type a. In order
to filter the posterior tree distribution, for each pair of segment
trees we sample a combination of root types ðaa; ga; ag; ggÞ
given by the probabilities ðpi

apj
a; p

i
gpj

a; p
i
apj

g; p
i
gpj

gÞ
and accept the trees if sample is equal to aa. Note that the
required root type probabilities are already calculated by
MASCOT.

In order to filter a posterior distribution of structured net-
works obtained by SCoRe, we first obtain the network nodes
corresponding to the root of each segment tree. Then, we
accept such a network if both nodes were mapped to desired
type by the stochastic mapping algorithm (see Sampling
Lineage Types).

Implementation
We implemented SCoRe as a BEAST 2.5 (Bouckaert et al. 2018)
package that depends on the two packages CoalRe (Müller
et al. 2020) and MASCOT (Müller et al. 2018). For the
MCMC inference, we largely rely on the operators of CoalRe
to propose new reassortment networks. However, we have to
adjust parameter values supplied to the operator which resi-
mulates unstructured network above the most recent com-
mon ancestor of all segment trees as this section of the
network is not informed by the sequencing data (see “Gibbs
operator” in Müller et al. [2020] for more details). In the un-
structured setting, we resimulate with the most recent update
of the parameter values. The network proposed by this oper-
ator would always be accepted as its Hastings ratio is the in-
verse ratio for the density of the current and proposed
networks.

The source code can be found here: https://github.com/
jugne/SCORE and includes tools to obtain summarized MCC
networks and investigate reassortment and migration correla-
tions. The MCC networks can be visualized with https://icytree.
org (Vaughan 2017) or using baltic package (https://github.
com/evogytis/baltic): https://github.com/jugne/score-paper-
material.git. A tutorial on how to install and use SCoRe can
be found here: https://github.com/jugne/SCoRe-tutorial.

Simulation Study Setup
We have run two well-calibrated simulation studies: 1)
assuming known fixed structured coalescent network and
inferring its respective effective population sizes, migration,
and reassortment rates; 2) inferring both—the network
and its parameters. Genetic sequences for each segment
were simulated according to JC69 (Jukes and Cantor 1969)
substitution model. In the fixed network setting, we simulated
1,000 networks with 100 taxa, each carrying four segments,
and being in one out of two types. For every simulation,
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effective population sizes, reassortment, and migration
rates are randomly drawn from log-normal distributions,
Nea
� LogNormalðm ¼ 5;r2 ¼ 0:25Þ; qa � LogNormalðm ¼ 0:1;

r2 ¼ 0:25Þ; lab � LogNormalðm ¼ 0:2;r2 ¼ 0:25Þ, for any
type a;b 2 f1; 2g and a 6¼ b. Note that here m denotes the
mean of a real variable. The mean for the natural logarithm of
this variable can be calculated as lnðmÞ� ðr2=2Þ. Then, we
inferred the parameter values, given the simulated networks,
using the above parameter distributions as priors.

For the joint network and parameters inference, we simu-
lated 100 networks and embedding of the segment trees for
100 taxa with four segments. The types and sampling times
were drawn as described above. Clock rates were set to either
high (5� 10�3 substitutions per site and year), low
(5� 10�4 substitutions per site and year), or mixed (two
segments with high and two with low). The prior distribution
of a reassortment rate was the same as above, whereas we set
a mean of two for the log-normal distribution of effective
population sizes. For migration rates, we studied cases where
the prior distributions were the same as detailed above and
where it was the exponential distribution with a mean of 0.2.
The different migration prior was studied because we noticed
it to be a more natural choice when applying the model
to the real seasonal influenza data set. Each inference was
run for 48 h, and we used only those runs for which the
effective sample size of posterior probability was higher
than 100.

Finally, we investigated the relative error in parameter esti-
mates obtained by SCoRe and MASCOT. We again simulated
100 networks with 100 taxa and four segments, each simulation
repeated with high and low clock rates. The parameters were
drawn from the following distributions: Nea

� LogNormalðm
¼ 2; r2 ¼ 0:25Þ; qa � LogNormalðm ¼ 0:5;r2 ¼ 0:25Þ;
lab � LogNormalðm ¼ 0:2; r2 ¼ 0:25Þ, for any type a; b 2
f1; 2g and a 6¼ b. Higher reassortment rates were chosen to
model a case where reassortment highly influences the evolu-
tion of a virus. We used the same parameter priors for both
methods and additionally set the reassortment rate to the true
value in SCoRe. The relative error was calculated as
j ptrue�pestimated

ptrue
j, where ptrue is the true parameter value and pesti-

mated is the median parameter estimate obtained by SCoRe or
MASCOT.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank the anonymous reviewers for their insightful feed-
back on the manuscript. We thank Claire Guinat and Sophie
Seidel for valuable comments and discussions. We also thank
the authors, originating and submitting laboratories who gen-
erously contributed influenza A/H5N1 sequence data to
GISAID’s EpiFlu Database (Shu and McCauley 2017) and
the Influenza Research Database (Zhang et al. 2017). N.F.M.
is funded by the Swiss National Science Foundation

(P2EZP3191891). U.S., T.G.V., and T.S. thank ETH Zürich for
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H5N1 segment HA and NA sequences for Galliformes (822)
and Anseriformes (588) with complete sampling dates be-
tween 2008 and 2016 from GISAID (Shu and McCauley
2017; https://www.gisaid.org/) and the Influenza Research
Database (Zhang et al. 2017; http://www.fludb.org) (see sup-
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des.csv, Supplementary Material online). Then, we iterate
over all sampling times, and pool sequences that are 1)
from the same geographic location, 2) of the same bird order,
and 3) are within 30 days distance. There were 123 such
location-order-date pools for Anseriformes and 159 for
Galliformes. Then we randomly sampled one sequence per
pool and discarded the remaining sequences in this pool.
Finally, we further reduce this subsample to 100 segment
sequence pairs for Anseriformes and Galliformes. The last
step is done by weighted subsampling with regard to date
and location. We repeat this procedure ten times, thus
obtaining ten random subsamples of our data. Given random
sampling from the location-order-date pools and further ran-
dom reduction, ten subsampled data sets may overlap but
are not identical. The BEAST2 XML files, which include se-
quence names, can be found on https://github.com/jugne/
score-paper-material.git.
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