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Introduction

Quorum-sensing (QS) systems, which rely on the production and detection of chemical signals

called autoinducers (AIs) made by the bacteria themselves, are classically thought to be employed

as a means to sense “self,” ensuring that bacteria cooperate and share resources to benefit their

kin. Thus, most QS receptors are found to be specific for their cognate AIs. Although stringent

signal specificity is considered fundamental to the fidelity of QS, receptors that respond broadly

to non-self AIs have been identified. These “promiscuous” QS receptors are thought to function

as interspecies signaling systems that are implicated in both competition and cooperation

between microbes in polymicrobial communities [1,2].

Additional signal-sensing strategies have evolved for the QS systems in pathogenic and

symbiotic bacteria which need to interact intimately with their hosts. Here, we discuss the

organization and functions of QS circuits that harbor a dual-sensing function by detecting

both endogenously produced AIs as well as chemical cues present inside the host. Co-opting

the use of QS circuits to incorporate both microbial and host-derived information into their

sensing repertoire allows proper spatial and temporal regulation of the expression of determi-

nants critical for pathogenesis and symbiosis.

AI-3/epinephrine sensing by EHEC QseC

The QseC histidine kinase (HK) of enterohemorrhagic Escherichia coli O157:H7 (EHEC) is the

earliest reported example of a QS receptor detecting both bacteria-made AIs and host-generated

signals [3]. EHEC colonizes the human colon, and virulence is dependent on Shiga toxin, fla-

gella/motility, and a type III secretion system (T3SS). Expression of the genes encoding these fac-

tors are all activated by QseC upon detection of various signals [4]. QseC is required for EHEC

motility by modulating the phosphorylation state of its cognate response regulator (RR) QseB.

Phosphorylated QseB binds to the regulatory region of flhDC (the master regulator of the flagel-

lar regulon) (Fig 1) [5]. The dephosphorylation of QseB by QseC is critical to derepress flhDC
and maintain motility gene expression, particularly since another HK PmrB also phosphorylates

QseB [6,7]. QseC also phosphorylates 2 additional RRs QseF and KdpE, and together, these 2

RRs activate the expression of T3SS genes on a pathogenicity island called locus of enterocyte

effacement (LEE) as well as the Shiga toxin gene stx2 (Fig 1) [4,8,9].

The kinase activity of QseC is modulated by multiple signals (Fig 1). QseC is activated by a

self-produced autoinducer AI-3, which consists of a group of molecules belonging to the
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pyrazinone family, whose biosynthesis depends on threonine dehydrogenase (TDH) [10]. Syn-

thetic AI-3 compounds added to EHEC cells activate virulence gene expression through QseC

with varying potencies and specificities; however, a direct ligand binding interaction between

AI-3 and QseC has not been demonstrated [10]. QseC also separately detects human adrenergic

hormones epinephrine (Epi) and norepinephrine (NE) [3,4,11]. Epi/NE directly activates the

kinase activity of QseC in vitro [11] and QseC-dependent virulence gene expression in EHEC

[4]. The in vivo role of QseC sensing of Epi/NE in host colonization was studied using Citrobac-
ter rodentium carrying a LEE island similar to that from EHEC [12]. C. rodentium is deficient

for colonizing dopamine β-hydroxylase knockout (Dbh−/−) mice, which do not produce Epi/

NE. Similarly, qseC null mutants were also impaired for colonizing the mouse intestine,

highlighting the importance of host signal sensing during host colonization [12]. Overall, these

studies have established that QseC acts a crucial link integrating both host-derived signals (Epi

and NE) and self-produced AI molecules (AI-3). It should also be noted that the exact regula-

tory mechanisms of QseC on target gene regulation are diverse among different E. coli subtypes.

For example, in uropathogenic E. coli (UPEC), QseB phosphorylation state can be cross-regu-

lated by another HK PmrB in response to iron to confer polymyxin resistance [7,13,14]. While

the role of Epi/NE sensing may not be universal among different E. coli strains and subtypes,

QseC signaling has been shown to be critical for virulence in many strains of enteric pathogens

such as Salmonella, UPEC, and enteroaggregative E. coli (EAEC) [4,15,16].

Fig 1. The AI-3/Epi/NE signaling pathway in EHEC. The HK QseC detects Epi and NE made by the host, as well as AI-3 produced by the

EHEC enzyme TDH. Binding of these molecules to the HK enables QseC to control the activity of the 3 RRs KdpE, QseB, and QseF, which

results in regulation of downstream virulence genes. AI-3, autoinducer-3; EHEC, enterohemorrhagic Escherichia coli O157:H7; Epi,

epinephrine; HK, histidine kinase; NE, norepinephrine; RRs, response regulator; TDH, threonine dehydrogenase. Created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1008934.g001
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Vibrio QS systems that detect host-generated signals

Many Vibrio species including Vibrio cholerae, Vibrio harveyi, and Vibrio fischeri spend part

of their life cycle inside animal hosts either as a pathogen or as a symbiont. These species use

multiple QS systems to regulate the expression of the genes involved in host colonization [17].

Emerging evidence suggests that Vibrio species, similar to EHEC, also integrate host-derived

chemical cues to modulate their overall QS responses. To illustrate this idea, we first focus on

the canonical QS circuit of V. cholerae composed of 4 HK receptors CqsS, LuxPQ, CqsR, and

VpsS [18] (Fig 2). At low cell density (LCD), these 4 HKs function in parallel to phosphorylate

RR LuxO through an intermediate phosphotransfer protein LuxU. Phosphorylated LuxO

promotes and inhibits the production of master transcriptional regulators AphA and HapR,

respectively, resulting in the activation of virulence and biofilm gene expression at LCD, which

is critical for V. cholerae host colonization [18]. At high cell density (HCD), binding of the cog-

nate signals to the receptors leads to kinase activity inhibition, resulting in dephosphorylation

of LuxO and expression of HCD QS genes. Some of the AIs detected by these QS receptors are

Fig 2. Vibrio signaling pathways for QS and host sensing. Various HK receptors in Vibrio species recognize distinct

signals produced by the bacterium (sensing “self”) and/or produced by host cells or neighboring bacteria (sensing

“other”). The conservation of the HKs varies among species, and this figure indicates the proteins and signals

determined in the literature for each species (V.h, Vibrio harveyi; V.c., Vibrio cholerae; V.p., Vibrio parahaemolyticus;
V.f., Vibrio fischeri). Signals produced by enzymes (if known) are indicated for each system. In the absence of cognate

signals, phosphorylation (P) of LuxU and LuxO leads to production of AphA and low production of LuxR (V.h.)/HapR

(V.c.)/OpaR (V.p.)/LitR (V.f.) and expression of biofilm, virulence, and type III secretion genes. In the presence of

signals, dephosphorylation of LuxU drives production of LuxR/HapR/OpaR/LitR and expression of bioluminescence,

proteases, and type VI secretion genes. The NO/H-NOX/HahK pathway in V.f. inhibits syp gene expression and

biofilm formation. The VqmA/DPO pathway inhibits biofilm formation in V.c. AI-2, autoinducer-2; CAI-1, cholera

autoinducer-1; CP, cytoplasm; DPO, 3,5-dimethyl-pyrazin-2-ol; HAI-1, harveyi autoinducer-1; HK, histidine kinase;

H-NOX, heme nitric oxide/oxygen binding; NO, nitric oxide; PP, periplasm; QS, quorum sensing. Created with

BioRender.com.

https://doi.org/10.1371/journal.ppat.1008934.g002
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well characterized: CqsS and LuxPQ detect the Vibrio-specific signal CAI-1 (S-3-hydroxytride-

can-4-one) and the “universal” signal AI-2 in its cyclic, borated form (S-2-methyl-2,3,3,4-tetra-

hydroxytetrahydrofuran-borate), respectively. AI-2 is made by many bacteria via the enzyme

LuxS and is considered an interspecies signal [19]. The 2 additional V. cholerae QS receptors,

CqsR and VpsS, have been demonstrated to respond to self-made chemicals present in spent

culture media; however, the identities of these signals remain unknown [18] (Fig 2). Similar

parallel circuit architecture is found in other Vibrio species; however, the receptors used for

signal perception can be variable. For example, the LuxN HKs in V. harveyi and Vibrio para-
haemolyticus, and AinR HK in V. fischeri, which are all absent in V. cholerae, detect acyl homo-

serine lactones (AHLs; Fig 2) [19] and are distinct from the cytosolic LuxR AHL receptor in V.

fischeri. Here, we will discuss how 2 host-derived signals, ethanolamine and nitric oxide (NO),

are detected and integrated into these parallel HK-based QS systems.

Integration of ethanolamine sensing into the QS circuit

Ethanolamine is a common intestinal metabolite generated during host and bacteria mem-

brane turnover. In an unbiased chemical screen, ethanolamine was found to specifically inter-

act with the periplasmic ligand-binding domain of CqsR. In V. cholerae mutants expressing

only CqsR but not the other 3 QS receptors, ethanolamine induces a premature HCD QS

response to inhibit virulence gene expression and limit host colonization [20]. Yet, V. cholerae
mutant defective in producing ethanolamine is still proficient in QS, suggesting ethanolamine

functions only as an external cue for CqsR, and additional signals must be endogenously made

by V. cholerae and detected by CqsR. While the exact physiological function of ethanolamine

sensing by CqsR remains unclear, the ethanolamine concentration is notably higher in the

large intestine than that in the small intestine [20], and therefore, ethanolamine could be used

as a proxy for niche identification. Interestingly, previous studies have demonstrated that etha-

nolamine both positively and negatively affects host colonization and virulence during infec-

tion with other enteric pathogens [21,22].

Integration of NO sensing into the QS circuit

NO is produced by a variety of animal cells as an antibacterial mechanism. Upon NO sensing,

some bacteria express a set of nitrosative response genes to counteract this toxic compound

[23]. Heme NO/O2 binding (H-NOX) proteins are a broadly conserved family of sensor pro-

teins that bind NO within an Fe(II)-heme domain [24]. H-NOX modulates the activity of a

HK called H-NOX-associated QS kinase (HqsK) encoded in the same operon as H-NOX [25–

27]. In V. harveyi and V. parahaemolyticus, HqsK feeds into the parallel QS circuitry made of

LuxPQ, CqsS, and LuxN described above (Fig 2). In the absence of NO, HqsK phosphorylates

LuxO via LuxU. When NO is present, it binds to H-NOX, and this complex inhibits the kinase

activity of HqsK. This decreases the pool of phosphorylated LuxU and LuxO, resulting in a

premature HCD QS response (e.g., increase in light production) in V. harveyi [25,26]. In V.

fischeri, H-NOX/NO inhibits the HqsK homolog, HahK (Fig 2), resulting in decreased biofilm

formation via inhibition of syp transcription [28] and decreased expression of genes encoding

hemin transport [29]. It is not yet clear if H-NOX influences HKs in the V. fischeri QS circuit,

although LuxPQ and the downstream components are conserved in V. fischeri (Fig 2).

NosP proteins are another class of NO-sensing proteins that are widely conserved in bacte-

ria and are also encoded in operons with cognate signaling proteins [30]. In V. cholerae, NosP

(also called VpsV) binds NO and inhibits the autokinase activity of VpsS (encoded in the same

operon) in vitro [30] (Fig 2). In this way, V. cholerae NosP bound to NO appears to function

analogously to V. harveyi H-NOX to inhibit phosphorylation of LuxU and could potentially
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feed into the QS pathway. However, the exact physiological role of NO sensing by NosP/VpsV

in V. cholerae QS gene regulation is unclear.

Because there are no identified NO synthase genes encoded in these Vibrio species, it is

hypothesized that NO acts as an interkingdom signaling molecule between bacterium and

host. For example, in V. fischeri, during early stages of colonization of the light organ in the

bobtail squid Euprymna scolopes, the surface epithelium of the squid secretes mucus that con-

tains NO [31]. V. fischeri cells first adhere to the mucus and form aggregates, and then the bac-

teria disperse and migrate through pores to eventually colonize the crypts of the light organ.

NO inhibits aggregation and biofilm formation, and other signals such as calcium positively

influence biofilm formation [28]. Thus, the integration of both NO and calcium signaling may

balance aggregation and biofilm formation to a level that enables the bacteria to disperse from

the aggregates to colonize the light organ. Additionally, the repression of hemin transport by

HahK likely prepares the bacteria for the iron limited environment of the host light organ. In

tandem, these results indicate that the V. fischeri bacteria rely on NO host signaling to colonize

and adjust to the environment in the light organ.

Concluding remarks and further perspectives

It is now clear that the bacterial QS response is not only regulated by self-made AIs, and the

boundary between “self-sensing” and other signaling networks becomes blurry. Combining

information about the environment together with QS, especially when the system is gov-

erned by a positive feedback loop, is proposed to be critical to coordinate bacterial group

behaviors within a heterogeneous environment [32]. In addition to the examples discussed

above, certain microbiota species affect V. cholerae virulence in an AI-2-dependent but

LuxP-independent manner [33]. Upon attack by bacteria, mammalian cells produce a mole-

cule that is structurally distinct but functionally similar to AI-2. In turn, this host-produced

AI-2 mimic is detected by the bacterial LuxPQ and LsrB QS receptors [34]. Yet, the impor-

tance of this reciprocal interkingdom communication pathway in pathogenesis and symbio-

sis is not clearly defined. Moreover, V. cholerae possesses an additional QS circuit detecting

an AI called 3,5-dimethyl-pyrazin-2-ol (DPO) with the receptor VqmA, separate from the

multi-HK receptor pathway [35] (Fig 2). Interestingly, both DPO and AI-3 depend on TDH

for biosynthesis, and DPO is a structural isomer of one of the compounds in the EHEC AI-3

family [10]. The VqmA/DPO system has been proposed as a bypass mechanism to optimize

QS functions within specific niches, such as within the host. Whether the Vqm system also

responds to host-derived signals remains to be studied.

What is the driving force for pathogenic and symbiotic bacteria to evolve to integrate both

self-made AIs and host-derived chemical cues into their QS circuit? We envision that although

the initial interactions between the host-derived signals and the QS receptors could be coinci-

dental as some of these host-derived compounds structurally resemble the cognate self-made

signal(s), one intriguing possibility is that these receptors might have evolved to serve as dual-

function sensors to use the host-derived signal as a proxy for locating different regions in the

animal host, as we have discussed in some of the Vibrio QS systems. Further investigation into

the binding capacity and modulatory effects of host metabolites with other QS receptors pres-

ent in different species could test this idea.
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