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The exponentially increasing advances in robotics and machine learning are facilitating

the transition of robots from being confined to controlled industrial spaces to performing

novel everyday tasks in domestic and urban environments. In order to make the presence

of robots safe as well as comfortable for humans, and to facilitate their acceptance

in public environments, they are often equipped with social abilities for navigation and

interaction. Socially compliant robot navigation is increasingly being learned from human

observations or demonstrations. We argue that these techniques that typically aim

to mimic human behavior do not guarantee fair behavior. As a consequence, social

navigation models can replicate, promote, and amplify societal unfairness, such as

discrimination and segregation. In this work, we investigate a framework for diminishing

bias in social robot navigation models so that robots are equipped with the capability

to plan as well as adapt their paths based on both physical and social demands. Our

proposed framework consists of two components: learning which incorporates social

context into the learning process to account for safety and comfort, and relearning to

detect and correct potentially harmful outcomes before the onset. We provide both

technological and societal analysis using three diverse case studies in different social

scenarios of interaction. Moreover, we present ethical implications of deploying robots in

social environments and propose potential solutions. Through this study, we highlight the

importance and advocate for fairness in human-robot interactions in order to promote

more equitable social relationships, roles, and dynamics and consequently positively

influence our society.

Keywords: social robot navigation, robot learning, fairness-aware learning, algorithmic fairness, ethics,

responsible innovation

1. INTRODUCTION

The last decade has brought numerous breakthroughs in the development of autonomous robots
which is evident from the manufacturing and service industries. More interesting are the advances
that are essential enablers of several innovative applications, such as robot-assisted surgery (Tewari
et al., 2002), transportation (Thrun, 1995), environmental monitoring (Valada et al., 2012),
planetary exploration (Toupet et al., 2020), and disaster relief (Mittal et al., 2019). Novel machine
learning algorithms accompanied by the boost in computational capacity and availability of
large annotated datasets have primarily fostered the progress in this field. Machine learning and
reinforcement learning techniques enable robots to learn complex tasks directly from raw sensory
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input. One such task of navigation has seen tremendous progress
over the years. Robots today have the capability to autonomously
plan paths to reach a certain location and even make decisions
based on the scene dynamics, avoiding collisions with people
and objects (Boniardi et al., 2016; Gaydashenko et al., 2018;
Jamshidi et al., 2019; Hurtado et al., 2020). Advancing robot
navigation abilities is crucial for robots to effectively operate in
real-world environments.

Robot navigation is a complex task that requires a high
degree of autonomy. For a robot to successfully navigate the
real-world, it is essential to fulfill high accuracy, efficacy, and
efficiency requirements. Additionally, it is critical to consider
safety standards while developing robots that navigate around
humans. To carry out this task, robots are equipped with
sensors that allow them to perceive the environment and a
path planning system that enables them to compute a feasible
route to achieve the navigation goal. So far, mobile robots
have been successfully employed in various applications, such
as material transportation, patrolling, rescue operation, cleaning,
guidance, warehouse automation, among others (Nolfi and
Floreano, 2002; Poudel, 2013; Hasan et al., 2014; Bogue, 2016).
This also elucidates that mobile robot applications are moving
closer from the industry to everyday tasks in households,
offices, and public spaces. Robot navigation models tailored
to solely reach a goal location efficiently are insufficient in
these spaces where robots cohabitate with humans. Other
complex considerations, such as social context, norms, and
conventions are essential to ensure that the presence and
movements of robots are safe and comfortable. These additional
considerations of sociability play an indispensable role in the
acceptance of robots in human spaces. Nevertheless, modeling
the social policies that represent humans is a challenging
task. To better capture the social behavior of navigation,
several learning approaches have been proposed with the
goal of directly imitating human navigation or learning from
demonstrations (Silver et al., 2010; Wittrock, 2010; Bicchi and
Tamburrini, 2015; Khambhaita and Alami, 2020). With the aim
of incorporating social context in learning algorithms, socially-
aware robot navigation extends the traditional objective of
reaching a certain location to also reflect social behavior in the
decision making process (Kretzschmar et al., 2016). This can
be achieved with learning methodologies based on social and
cultural norms. These social characteristics can be incorporated
into the learning process as social constraints (Wittrock, 2010;
Bicchi and Tamburrini, 2015; Khambhaita and Alami, 2020) or
via imitation and demonstrations (Silver et al., 2010). As the role
of robots within society is that of a social agent, they should
follow social conventions for better acceptability in human
environments. Following such conventions will enable them
to generate actions that are influenced by respecting personal
spaces, perceiving emotions, gestures, and expressions (Luber
et al., 2012; Ferrer et al., 2013; Kruse et al., 2013; Kretzschmar
et al., 2016).

However, despite significant advances that enable
incorporating social conventions into navigation models, there
is still no guarantee that a socially-aware robot will always make
fair decisions. We can extensively observe in other applications

of machine learning and Artificial Intelligence (AI), how learning
algorithms replicate, promote, amplify injustice, unequal roles
in society, and many other societal as well as historical biases.
Numerous cases have been identified in face recognition, gender
classification, and natural language processing methods (Garcia,
2016; Buolamwini and Gebru, 2018; Benthall and Haynes, 2019;
Costa-jussà, 2019; Wilson et al., 2019; Lu et al., 2020; Wang
et al., 2020). Similar to these cases, learning social behavior from
real-world observations will not prevent discrimination. This is
of special concern in service and caregiving applications where
robots physically interact with humans.

There are multiple social and technical factors that can lead
to bias while learning social robot navigation models. First,
learning techniques require guidance to optimize the navigation
model. Supervised approaches utilize datasets gathered from
simulations, controlled experiments, or the real-world. Other
approaches, such as imitation learning and reinforcement
learning, obtain guidance directly from real experiences. It is
important to consider that real-world data can always include
bias reflecting unwanted humans behaviors. Additionally,
simulations and controlled experiments cannot contain sufficient
diverse information about diverse groups of people and their
interactions for the robot to learn the large number of potential
unfair situations that it can encounter. Therefore, current
learning algorithms can significantly replicate, promote, and
amplify unfair situations. Besides data-related issues, learning
algorithms tend to find certain features that make it easier
to optimize for a task and rely on these attributes to learn
the function or policy. This can lead to mechanisms that
depend on these potential bias inducing features related to a
particular characteristic, such as race, age, or gender. Another
issue encompasses fairness measurements. Thus far, there are no
standard fairness definitions or metrics for the optimization of
learning-based navigation algorithms or even to detect biased or
unfair situations. Furthermore, robots are typically deployed with
models that have been pre-trained and do not have the ability
to automatically update their parameters or their policy online if
they encounter a discrimination scenario.

Recently, several strategies to mitigate unfair outcomes in
learning algorithms for tasks, such as classification or recognition
have been proposed (Woodworth et al., 2017; Zafar et al.,
2017; Agarwal et al., 2018; Dixon et al., 2018). Nevertheless,
learning fair social navigation models for robotics is substantially
lesser studied. Particularly, investigating fairness in mobile
robot navigation presents more complex challenges that are not
manifested in other data-driven tasks in computer vision and
machine learning. In learning-based mobile robot navigation,
fairness behavior not only depends on data but also on the future
actions of the humans around the robot and other factors of
the environment. In this case, it is impractical to anticipate all
the possible actions in advance during the development of these
models. With these considerations in mind, socially-aware robot
navigation, besides learning social skills, should also account for
non-discriminatory and fair behavior that makes the interaction
safer for diverse groups of people.

In the case of humans, the learning process is not fixed but
rather continuous. This allows humans to have both physical
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and social adaptability. We refer to this adaptive learning from
experiences as relearning in this work. We, as humans, not
only relearn about the physical world to react to unexpected
obstacles in our path, but we also develop adaptability in
terms of interaction. This generally prevents us from causing
harm to others with our actions and enables us to correct our
behavior when we encounter unfair situations. Within this social
adaptation, we learn to behave socially and fairly with those with
whom we relate to (Goodwin, 2000; Hutchins, 2006; McDonald
et al., 2008). The relearning process allows us to reason about
what we are experiencing and develop a personality defined
by certain moral values, ethical values, beliefs, and ideologies,
which in turn influences the way we interact with others (Jarvis,
2006). Humans decide how to navigate in public spaces while
taking both social conventions and ethical aspects into account,
such as empathy, solidarity, recognition, respect for people, and
recognizing behaviors that lead to discrimination. Accordingly,
learning and relearning are important processes for humans to
acquire the capabilities that are required for navigating in the
environment and cohabitate in society.

Inspired by the learning and relearning processes in humans,
we propose a framework for diminishing bias in social robot
navigation. Our framework consists of two components. During
robot development, we introduce social context based on social
norms and skills while learning navigation models so that
the robot acquires social conventions. We then incorporate a
relearning mechanism that detects systematic bias in control
decisions made by the robot during navigation. This enables
the robot to update its navigation model when unfair situations
are detected during the operation. Our proposed framework
facilitates diminishing bias in the behavior of the robot and
generates early warnings of discrimination after the deployment.
More importantly, it enables the adaptation of the robot’s
navigation model to new cultural and social conditions that are
not considered during training.

In this work, we describe the motivation and the technical
approach for implementing our proposed Learning-Relearning
framework for social robot navigation. We then highlight the
risks and propose potential solutions that include specific
fairness considerations for mobile robots that navigate in social
environments. Furthermore, we analyze the ethical and societal
implications of deploying mobile robots in social environments.
To this end, we investigate the behavior of mobile robots in
terms of fairness in three specific service and caregiving scenarios
with different levels of human-robot interaction. There are
other social scenarios where the mobility of the robot directly
depends on the human’s control action, such as autonomous
wheelchairs (Johnson and Kuipers, 2018) or robotic guide
canes (Ulrich and Borenstein, 2001). Nevertheless, in this work,
we only consider scenarios where the robot navigates as an
independent machine that interacts with multiple humans in
the surrounding environment at different levels of priority.
We provide examples that show cases where models that
are only based on learning social navigation are insufficient
to obtain fair behavior, and we discuss how the relearning
mechanism can extend those models to yield fair behavior.
Finally, we analyze scenarios in which learning social behavior

and accounting for fair behavior play an important role in
the real-world.

To the best of our knowledge, this is the first work to
investigate the societal implications of bias in learned socially-
aware robot navigation models, and the framework that we
present is the first to demonstrate a feasible solution for learning
fair socially compliant robot navigation models. Even though our
work targets socially-aware robot navigation, the framework that
we propose can also be extended to other aspects of human-robot
interaction, which would benefit from the presented insights. As
a result of the social perspective, we provide a comprehensive
understanding of fairness in human-robot interactions. This is an
important step toward diminishing bias and amplifying healthy
social conventions to positively influence the society. With this
work, we aim to create awareness that robots should positively
impact society and should never cause harm, especially against
individuals or groups who have been historically marginalized
and who disproportionately suffer the unwanted consequences of
algorithmic bias.

In summary, the primary contributions of this paper are:

• We introduce a framework for diminishing bias in social robot
navigation, consisting of two stages: Learning and Relearning.
We present the technical concept and introduce methods that
can be used to implement our framework.

• We present a societal and technical analysis of the
social abilities and bias considerations in learning robot
navigation models.

• We present the social implications of socially-aware robot
navigation models and provide a set of fairness considerations.

• We provide detailed case studies that analyze the impact of
bias in different service and caregiving robot applications and
discuss mitigation strategies.

2. ETHICAL ASPECTS AND FAIRNESS
IMPLICATIONS

The growing impact that AI and robotics have in the daily lives of
people has led to the increase in ethical discussions about current
machine learning algorithms and how to handle new research
toward an equal and positive impact of technology for diverse
groups of people. Consequently, recent works in both social
sciences and machine learning have highlighted the challenges
in socio-cultural structures that are reflected and amplified by
learning algorithms. As a result, many guidelines from the
technical (Cath, 2018; Silberg and Manyika, 2019; Hagendorff,
2020a; Piano, 2020) and social perspectives (Verbeek, 2008; Liu
and Zawieska, 2017; Birhane and Cummins, 2019) have been
presented. These guidelines (Vayena et al., 2018; Hagendorff,
2020b; Piano, 2020) are aimed toward mitigating the adverse
effects and advocating for ethical principles, such as fairness,
trust, privacy, liability, data management, transparency, equality,
justice, truth, and welfare. Similar efforts have been made by
the European Robotics Research Network (Euronet) in the
Euronet Roboethics Atelier project in 2005, and the British
Standards Institute which published the World’s First Standard
on Ethical Guidelines in 2016 (Torresen, 2018). Moreover,
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FIGURE 1 | Comparison of the number of publications on Robot Navigation (blue), Social Robot Navigation (red), and Fair Robot Navigation (green) from 2011 to

2020. Although the rate at which fairness is being considered in robot navigation methods is increasing, there is a growing gap with the number of works that address

robot navigation each year.

some works in robotics (Anderson and Anderson, 2010; Lin
et al., 2012; BSI-2016, 2016; Boden et al., 2017) have also
investigated the importance of addressing ethical issues for safe
and responsible development.

These ethical guidelines (Reed et al., 2016; Goodman and
Flaxman, 2017; Johnson et al., 2019; Arrieta et al., 2020) share
the value of robots effectively and safely assisting people, and
under no circumstance cause harm or endanger their physical
integrity (De Santis et al., 2008; Riek and Howard, 2014;
Vandemeulebroucke et al., 2020). The impact of human-robot
interactions has also been studied to a lesser extent in mobile
robotics, e.g., providing recommendations on road safety,
privacy, fairness, explainability, and responsibility (Bonnefon
et al., 2020), or studying fairness in path planning algorithms of
robots during emergency situations (Brandão et al., 2020).
Similarly, such ethical discussions should be contrived
while developing socially-aware robot navigation models.
As shown in Figure 1, although the number of publications
that consider fairness in robot navigation is slowly increasing,
it is still over five-times lesser than the overall number
of publications that address robot navigation. In this
section, we present a series of ethical aspects and social
implications that can arise from bias in socially aware-
robot navigation algorithms. Additionally, we analyze the
impact that these social navigation algorithms can have in
human environments.

2.1. Fairness Implications
The cultural and social knowledge in humans is transferred
from generations as a cumulative inheritance that allows each
member of the society to incorporate moral, political, economic,
and social structures that not only have a positive but also
a negative value (Castro and Toro, 2004). These inheritance
conditions have perpetuated historical discrimination against
individuals and groups of people. The data collected in
machine learning and AI come from these historical inheritance
structures; consequently, social-historical discrimination can
also be reflected or even amplified by learning algorithms. In
recent years, several unexpected outcomes have been observed
in learning algorithms that have caused discrimination and
prejudice in society. Numerous examples demonstrate how social
prejudices are reflected in machine learning algorithms (Garcia,
2016; Wang et al., 2020). One clear example that was observed
in natural language processing was the racial and gender biases
while learning language from text (Costa-jussà, 2019; Lu et al.,
2020). Another recent example is the automated risk assessments
used by U.S. judges to determine bail and sentencing limits. It
was shown that it can generate incorrect conclusions, resulting
in large cumulative effects on certain groups, such as longer
prison sentences or higher bails imposed on darker-skinned
users (Benthall and Haynes, 2019). Moreover, another study
shows how biased algorithms affect the performance of vision-
based object detectors employed in autonomous vehicles. Their
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work demonstrates that pedestrians with dark-skinned tones
presented higher recognition errors (Wilson et al., 2019). There
have also been numerous cases of algorithmic bias that have
been observed in algorithms used in healthcare. For example,
algorithms trained with gender-imbalanced data have shown
higher error at reading chest x-rays for an underrepresented
gender (Kaushal et al., 2020).

The numerous cases of discrimination observed in learning
algorithms employed in various applications are a source
of concern for robotics. In the case of robots that employ
learning algorithms to effectively interact, navigate and assist
people, it is essential to foresee possible unfair situations.
Specifically, as a result of learning socially-aware robot navigation
strategies, these trained models can enhance the social impact
in terms of human acceptance of mobile robots, daily use,
comfort, security, protection, and cooperation (Thrun et al.,
2000). Providing robots with a more natural navigation ability
also increases their usability. Although incorporating social
navigation models in robots improves their usability, comfort,
and safety in human spaces, social abilities by themselves
do not ensure fair robot decisions, especially while using
learning algorithms to imitate or follow human conventions
and behaviors. In human social interactions, a series of direct
and indirect discrimination behaviors and decisions are often
present (Forshaw and Pilgerstorfer, 2008; Zhang et al., 2016; Yu,
2019). Using learning algorithms can negatively affect society,
individuals, or groups if unwanted social behavior is replicated
and reflected in the actions of the robot. Therefore, this highlights
the need to implement fairness considerations andmeasures. The
ability of an agent to dynamically make fair decisions among
different people is a fundamental basis for trust in human-
robot interaction (Ötting et al., 2017; Claure et al., 2019). If
robots after their deployment present an unfair behavior, it will
continue to perpetuate discriminatory structures that will be
reflected in the way that people are assisted. Moreover, this will
cause serious consequences, such as a large population not being
benefited by the robots and being reticent to use them. These
factors suggest that the robot would only be beneficial for certain
groups of people, which would continue to reinforce large social
inequalities. Robots should influence society in a positive way
by promoting healthier relationships, roles, and dynamics after
their deployment in different places with diverse people. This
requires the creation of a more reflective, equitable, and inclusive
learning methods accompanied by extensive studies from the
social perspective.

2.2. Fairness Measures
Fairness is a complex ethical principle that relates to avoiding
any form of systematic discrimination against certain individuals
or groups of individuals based on the use of particular
attributes, such as race, sexual orientation, gender, disability,
socioeconomic, and sociodemographic position (Silberg and
Manyika, 2019). However, the definition of fairness tends to
be dynamic, mobile, and contingent, therefore it should be
analyzed from a reflective and ethical perspective. Moreover,
fairness highly depends on the context, location, and culture,
among other factors. Consequently, defining an accurate fairness

measure could be a complex task. With efforts in this direction,
bias has been used to represent fairness either in human
environments or in technological developments (Howard et al.,
2017; Fuchs, 2018; Lee, 2018; Nelson, 2019).

For its part, solutions to algorithmic bias that perpetuate
social and historical discrimination against vulnerable and
disadvantaged individuals or groups of people tend to be
technical rather than moral and ethical (Birhane and Cummins,
2019). Technological solutions to biased decisions making are
essential but not solely sufficient. Instead, technical solutions
should be accompanied by factors, such as diversity, inclusion,
and participation of underrepresented groups during the
development of navigationmodels. Although there is no standard
definition of fairness in machine learning and AI, some works
state that a prediction is fair when it is not discriminating or
when there is no bias (Binns, 2018; Chouldechova and Roth,
2018; Birhane and Cummins, 2019). However, there are two
types of biases, positive and negative. Positive bias frequently
promotes social good and avoids prejudice through awareness
and respect for human differences. Therefore, not all biased
outputs are necessarily undesirable and eliminating them can
cause unintended outcomes for certain people. For example,
consider an algorithm that is used in a bank to perform a credit
study of the people who apply for a loan. If the algorithm is
trained to guarantee that all the people will have credit, this may
be a disadvantage in the long run for those who cannot pay back
later. While the algorithm is being equal in this case, it is being
unfair in the long term as it negatively affects the low-income
people (Silberg and Manyika, 2019).

In socially-aware robot navigation fairness measurements are
yet to be studied. As robots interact and assist different groups
of people in different settings, creating a unified definition or a
metric is impractical due to the complex and diverse cases that
robots can encounter after deployment. Accordingly, in order to
tackle unfairness, we present a series of fairness considerations
for socially-aware robot navigation:
(i) Value Alignment refers to the alignment of human values

in decision making during navigation. These values include
respect, inclusion, empathy, solidarity, recognition, and
non-discrimination. In socially-aware robot navigation, it
is reflected in cases when the decision-making of the
robot reproduces and increases the welfare of vulnerable
populations. For example, prioritizing to assist and serve
people with physical disabilities in crowded environments.

(ii) Bias Evaluation is related to the evaluation of bias in
decisions making during navigation. Bias can be considered
acceptable if there is adequate reasoning or unacceptable if
the bias replicates, promotes, or amplifies discrimination.
For example, when robots navigate with a different speed
around young people who are faster than around older
adults, it is usually accepted because they have important
physical differences. Nevertheless, if such decisions are
made based on racial differences, it can be considered
unacceptable, given that there are no fair reasons for this
difference. With this fairness consideration, when biases are
presented in navigation models, it can only be accepted if
there are fair reasons for doing so.
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(iii) Deterrence is expressed in preventing and mitigating
unwanted bias as well as discrimination during navigation.
Since the notion of deterrence is dynamic and can vary
depending on the social context, robots should be sensitive
to cultures by adapting to people, customs, and their
surroundings.

(iv) Non-maleficence signifies that the decisions of a robot can
never produce damage to people. The damage is primarily
interpreted as bodily harm, collisions, interruptions, delay,
and obtrusion. However, damage can also refer to the
negative effects caused by discrimination, segregation and
bias. For example, if a caregiving robot in a hospital
becomes an obstacle to the medical personnel responding
to an emergency due to biased decisions, then it would be
violating this property.

(v) Shared Benefit refers to providing equal benefits to diverse
people in all scenarios. If a robot is specifically designed
for and only tested in a particular geographical area,
tailored to the characteristics and behaviors of the people
in that region, it can lead to unwanted bias when it is
deployed in a new region which may have completely
different characteristics. Therefore, the benefits that the
robot provides should not be targeted toward people with
specific characteristics in a determined geographical area,
but should rather be equally beneficial to all users. In this
case, adaptability is an important attribute for robots to
achieve shared benefit so that the autonomy of the robot
is flexible to adapt to characteristics of specific users in the
social environment where it is deployed.

2.3. Responsible Innovation
Research in technology studies suggests that the conceptions
of responsibility should build upon the understanding that
science and technology are not only technically but also socially
and politically constituted (Winner, 1978; Grunwald, 2011).
Responsible Innovation (RI) was introduced as a concept to
address the impact of research and innovation in technology
from an ethical and fair perspective. RI states that the technology
should be anticipatory, so it should have a foresight guide that
provides alternative options for responsible development (Stilgoe
et al., 2013; Brandão et al., 2020), and it should account
for social, ethical, and environmental issues. Based on RI
principles, the framework that we present in this paper aims
to identify biased behavior during navigation and promotes
fair decision making through the learning and re-learning
process to enable flexible and adaptive service. RI articulates
and integrates four factors: (i) anticipation of damages, (ii)
reflection from an ethical perspective, (iii) protection of sensitive
human characteristics, such as age, gender, and race, and (iv)
responsiveness (Stilgoe et al., 2013).

With the aforementioned RI factors, responsible robotics
aims to ensure that responsible practices are carefully accounted
for within each stage of design, development, and deployment.
Correspondingly, robot navigation models should address the
ethical and legal considerations at the time of development.
Given that these considerations are constantly changing

depending on the social or cultural factors, these models should
be updated accordingly.

3. LEARNING—RELEARNING
FRAMEWORK FOR SOCIALLY-AWARE
ROBOT NAVIGATION

The goal of our proposed framework is to develop learning
models for robot navigation that yield-social and fair behavior.
To this end, we define two different stages: learning and
relearning. In the first stage, we incorporate social context
into learning navigation strategies so that robots can navigate
in a socially compliant manner. While, in the second stage,
we aim to diminish any bias in the planned paths with the
learned navigation model. In this section, we first introduce
socially-aware robot navigation. We then describe our proposed
framework and present the technical approach that can be used
for the implementation. Figure 2 shows the different stages of our
framework. In the learning phase, we learn a navigation policy
based on imitation learning with additional social constraints.
Whereas, in the relearning phase, we analyze the outputs of the
network online and provide the model with updates to reach
the navigation target while accounting for and deterring bias to
ensure fairness. Science and technology, from the RI perspective,
have the ability to provide significant benefit through well-
established methodologies that reflect responsibility and ethical
principles. This framework tailored exploits the learning and
re-learning process as a methodology to achieve responsible
robot navigation.

3.1. Socially-Aware Robot Navigation
One of the widely studied requirements for mobile robots to
operate in human spaces is the ability to navigate according
to social norms and socially compliant behavior. The social
navigation models that are employed in robots play an important
role in the effect that these automated machines have on society
and the perception as well as confidence that humans will
have of them. In the case of humans, we develop the ability
to navigate while considering numerous variables representing
the environment, such as the objects, people, and dynamics
of the agents in it. This ability, known as sociability, from an
anthropological point of view, is the human capacity to cooperate
and engage in joint behavior with others (Simmel, 1949). Further,
sociability allows us to navigate while avoiding situations that
make us uncomfortable or put us or others in danger.

Different social norms have been developed to provide
information about the appropriate behavior, especially in public
spaces. Social norms are standards of conduct based on
widely shared beliefs of how people should behave in a given
situation (Fehr and Fischbacher, 2004). Some of the social norms
for navigation are not invading the personal space of people,
passing on the right, maintaining a safe velocity, not blocking
peoples path, approaching people from the front, among
others (Kirby, 2010). Besides social norms, different studies, such
as proxemics (Hall et al., 1968), kinesics (Birdwhistell, 2010),
and gaze (Argyle et al., 1994) also provide cues to determine the
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FIGURE 2 | Illustration of our proposed Learning-Relearning framework for diminishing bias in social robot navigation. Our proposed framework consists of two

components: learning (A) and relearning (B). By including the social context in the learning process, we aim to account for safety and comfort. The social context is

presented as the social skills demonstrated by experts and social norms as constraints. Moreover, we aim to detect potentially harmful outcomes before the onset

using the relearning mechanism. After detecting unfair effects, the navigation model should be automatically updated to account for fairness.

appropriate manner to approach a person, navigate around, and
coordinate in public spaces. Specifically, proxemics is the study of
the perception and organization of the personal and interpersonal
space. It is associated with the manner of how humans manage
their surrounding space when they walk in public environments
and how their comfort can be affected by the movement of
other pedestrians (Rios-Martinez et al., 2015). Kinesics is related
to the actions of the body and positions (Birdwhistell, 1952);
and gaze refers to the eye movements and directions during
visual interaction (Harrigan, 2005). These studies highlight
social skills, such as reading emotions and the prediction of
intentions of people. The combination of both social norms
and social skills can be considered determinant to sociability.
The aforementioned studies and norms are some of the
increasingly used factors in learning social robot navigation
models. It is long believed that equipping robots with these
social skills and social norms will enable them to react socially as
humans do.

For instance, we can anticipate that cleaning robots (Fiorini
and Prassler, 2000) that are primarily used in houses will be
widely used in public spaces in the coming years. Currently, these
robots do not conform to any social norms during navigation.
Confined to private locations and users who know the device,
manufacturers have not made it a priority to include social skills,
such as predicting the intention of people and avoiding crashing
into them. Nevertheless, sociability is an important skill to deploy
cleaning robots in crowded public spaces. In this case, robots
must take into account aspects, such as the space that they occupy
and the personal space of the people around to determine how
close to navigate around them or predict where humans will
move so that they do not interfere with their paths. These skills
will allow robots to plan a safe route so that their presence is not

disturbing, surprising, or scaring the people that share the same
space. While planning routes, robots should use social norms,
such as not invading the personal space and maintaining a safe
speed. Both the use of social skills and social norms change
depending on the type of robot and the context in which it is used.
We present further discussions of this example in section 4.1.

Socially-aware robot navigation methods can primarily be
categorized into two groups. The first category is model-based
and consists of handcrafted models that use mathematical
formulations to combine a set of effects to determine dynamics
of pedestrians, such as reaching the destination, the influence
of other pedestrians, keeping a certain distance to another
person or the maximal acceptable speed. Helbing and Molnar
(1995) introduced the notion that social forces determine
human motion and proposed the Social Force Model (SFM)
to represent pedestrian dynamics. To navigate in a manner
similar to humans, this formulation was later used to provide
robots with pedestrian-like behavior for human-robot social
interaction (Ferrer et al., 2017). However, SFM requires us to
cautiously define and tune the parameters for each specific
scenario, which makes it impractical to scale to complex tasks
and environments (Tai et al., 2018). The second category consists
of learning-based methodologies that use some form of guidance
or demonstrations containing the policies that link observations
to the corresponding actions. We further discuss learning-based
methods in the following section.

3.2. Learning
The rapid progress in machine learning in the past years and
the growth of computing power have enhanced the learning
capabilities of autonomous mobile robots. Currently, these
learning-based methodologies play an essential role in the
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development of complex navigation models. These models are
primarily trained to achieve the best navigation performance
under some given metrics during the learning process. For this
purpose, different guidance techniques have gained interest in
robot navigation works. The first of which is supervision from
labeled data, which uses either data gathered from the real-
world or simulations and the corresponding annotations. The
data and annotations are then employed to optimize the model
so that the output predictions are as close as possible to the
labels. Supervised navigation methods can be used directly by
learning the mapping from the states in recorded trajectories
that contain social policies to their corresponding labels or
by learning reactive policies that imitate a planning algorithm
(Groshev et al., 2017).

Another extensively explored learning technique is
Reinforcement Learning (RL), in which an agent explores
the state and actions by itself while a reward function is used to
punish or encourage the decisions to obtain an optimal model.
RL techniques can be used to provide a robot with the navigation
paths that maximize rewards in terms of human safety or
comfort (Chen et al., 2017). Moreover, Inverse Reinforcement
Learning (IRL) is a technique that has been widely used to
capture the navigation behavior of pedestrians. Contrary to
supervised learning, IRL is able to recover a cost function that
explains an observed behavior (Kuderer et al., 2013). The IRL
technique proposed by Hamandi et al. (2019) trains the social
navigation model by learning the navigation policy directly
from human navigated paths in order to generate actions that
conform to human-like trajectories. To include the social context
in the learning process, these models aim to clone the navigation
behavior of humans. Subsequently, robots are then equipped
with these models for socially-compliant navigation.

Specifically, to clone an expert behavior in the RL framework,
consider that an agent in an environment reaches a state st+1

after executing an action at ∼ π that follows a policy π . At
each transition state, the agent obtains a reward rt presented
as a scalar. The goal is for the agent to adjust the policy π to
maximize the expected long-term rewards that it can receive. Q-
learning (Watkins and Dayan, 1992) is an approach that enables
us to find an optimal policy based on the state transition set. The
Q-function represents the value of an action at and following a
policy π as

Qπ (st , at) = E[R(st)|st , at], (1)

where R is the expected long term reward defined as R =
∑∞

t=0 γ
trt , being γ ∈ [0, 1] the discount-rate. Given the state st

and action at the Q-function indicates the expected discounted
accumulative reward. Using the Q-function, we can estimate
an optimal policy π which maximizes the expected return.
Particularly, no reward function is given in the IRL framework.
Therefore, it is inferred from observed trajectories collected by
the expert policy πE to mimic the observed behavior.

There are numerous works using RL and IRL that generate
human-like navigation behavior in controlled conditions.
However, we can more elaborately define how we as humans
navigate the environment, using a combination of both social

skills and social norms as described in section 3.1. Social norms
can vary with respect to the context, location, and culture.
Extending the social skills of the robot by including social
norms is important for social domain adaptation. The social
norms that a domestic robot should consider while navigating
are substantially different from those that a mobile robot in a
hospital should conform to. For example, in order for the robot
to navigate in a socially compliant manner in a hospital, it is
essential for it to identify emergency situations, understand the
priority for interaction, and have fast reaction times, so that the
robot can never interfere with the paths of hospital staff and
cause accidents or delay the treatment of a patients. Given that
the context and priorities differ, the reaction also accordingly
changes.We explore these cases in the case study that we describe
in section 4.

Recently, a deep inverse Q-learning with constraints
technique (Kalweit et al., 2020a) was introduced. This work
presents one such model that allows for the combination of
imitating human behavior and additional constraints. This
is a novel model-free IRL approach that extends learning by
imitation with constraints, such as safety or keeping to the right.
Using the previous definition of Constrained Q-learning (Kalweit
et al., 2020b), it includes a group of constraints C that shapes
the possible actions in each state. Besides the Q-function in
Inverse Q-learning, it also estimates a constrained Q-function
QC for which the policy is extracted after Q-learning, considering
only the action-values of the actions that satisfy the required
constraint. This approach shows promising potential for
considering relevant social factors while learning socially-aware
robot navigation policies, especially by adding diverse constraints
that represent current norms in order to yield socially intelligent
and unbiased robot behavior.

3.3. Fairness Considerations
As with most learning approaches, the method described in
section 3.2 requires a large number of training examples so
that the model learns to yield the desired output. Therefore,
it is essential to use either data gathered from the real-world,
simulations, or control experiments. With the collected data,
developers aim to present representative examples of real-
world scenarios or guidance of the desired social behavior
during navigation. However, these data collection processes
can themselves reproduce biases, and as a consequence, it
raises a series of critical concerns. In the specific case of
learning socially-aware robot navigation from real-world data,
robots can reproduce biased behaviors implicit in human-human
interaction. On the other hand, the amount of training data that
can be obtained from simulations and control experiments is very
limited since only a handful of situations are taken into account.
Most data collection processes that do not encompass a balanced
set of every possible real-world scenario present a risk for robots
trained on them as this could lead to navigation with biased
behavior. These circumstances are considered as bias in the data.
Accurate generalization of scenarios that highly deviate from the
training data is an extremely difficult task. To address this factor,
recent methods have been proposed to filter data that is used
to train the models. For instance, Hagendorff (2020a) presents a
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selection process for training data that improves the data quality
in terms of ethical assessments of behavior and influences the
training of the model. Nevertheless, methods to reduce bias in
the data that is used for learning robot navigation models still
remain unstudied.

Apart from the problems in dataset collection, there is still
a lack of a deeper understanding of the underlying principles
and limitations of modern learning algorithms. Especially, a
phenomenon known as shortcut learning which shows how
neural networks learn more straightforward predictors that are
not necessarily related to the main task or objective (Geirhos
et al., 2020). A typical example of this phenomenon can be seen
in the hiring tool developed by Amazon which predicts strong
candidates based on their curriculum. This tool was later found to
be biased toward providing advantages for male applicants. Their
model, which was trained on historical human decisions that
were made during the hiring process identified that gender was
an important feature for prediction (Dastin, 2018). Geirhos et al.
(2020) analyses the dependency of outputs to strong predictive
attributes found by the model during training.

Data-driven models can contain abstract representations of
the data and situations that lead to the prediction. Therefore,
it is typically challenging to explain the decisions made by a
learned model. To facilitate the fairness analysis, we present an
approach that is not solely data-driven and instead, it implicitly
incorporates human interpretations of social dynamics using a
model that includes high-level and explainable human notions
about social conventions, relationships, and interactions to guide
a mobile robot. The purpose of analyzing this approach is to
demonstrate that biased behaviors can also be learned from
biased demonstrations or observations. We analyze the approach
proposed by Patompak et al. (2019) to predict personalized
proxemics areas that correspond to the characteristics of
individual people. This approach generates personalized comfort
zones of a specific size and shape by associating the personal
area with the activity that a person performs or characteristics
of the person. Using these social descriptions, it estimates the
proxemic zone that better matches each pedestrian in the scene.
Consequently, the approach relies on personalized boundary
delineation of two different areas: one area where the human-
robot interaction can occur, and another area that is private,
which the robot should avoid navigating through. The approach
consists of three parts: human-social mode, learning the fuzzy
social model, and a path planner. The human social model
utilizes proxemics theory and aims to reflect the pedestrians’
social factors in the scene. The social factors that are considered
include gender, relative distance, and relationship degree. Using
these factors, the approach yields the parameters that determine
the private zone of comfort for each person in the scene based on
the fuzzy logic system. For each social factor that is considered,
the approach defines a membership function as follows:

A binary function depending on the gender of the pedestrian,
which is given by

MFgender =

{

0, if gender isMale

1, if gender is Female,
(2)

a sigmoid function with relative distance input rr , distribution
steepness ar , and inflection point cr describing near or far
distance defined as

MFdistance =
1

1+ exp(−ar × (rr − cr))
, (3)

and three Gaussian functions representing the degree of
relationship as familiar, acquaintance, and stranger, which is
given by

MFrelationship =







































N (µFam, s2Fam), if degree of relationship is

Familiar

N (µAcq, s2Acq), if degree of relationship is

Acquaintance

N (µStr, s2Str), if degree of relationship is

Stranger.
(4)

Subsequently, the fuzzy social model is learned from human
feedback using an RL approach. The defined membership
functions of the social factors can be learned to yield an improved
personal area for each pedestrian. This is performed by adjusting
the relationship degree in the MF (Equation 4) to update the
social map. The reward of the RL model is then obtained
from human-robot interaction by means of the emotion or
feeling of each corresponding person. Therefore, the approach
sets the focus on the degree of the relationship to be learned.
Finally, the approach selects a path planner that chooses an
optimal navigation path in the social cost map. The consequently
designed social interaction area using fuzzy rules presents the
output of the model as two separated personal areas: far personal
area (FPA) and near personal area (NPA). As part of the rules
presented, it is clear that for the input gender female, the near
personal area is never an option. Taking into account that the
reinforcement learning algorithm updates themodel based on the
MFrelationship, the resulting navigation policy would never allow
for human-robot interaction close to women. This presents a
critical bias of the model due to the inclusion of social dynamics.
This is an example where bias appears due to an explicit constrain
in the learning algorithm. Not only gender but other factors that
may potentially lead to bias as well as other implicit or explicit
biases can appear by learning from real-world data. We discuss
this technical bias of the aforementioned navigation model with
implications and analysis from the social perspective in section 4.

Learning robot navigation policies and models that are
unbiased requires analyzing how the input is given, how the
data is measured, how the data is labeled, what it means for
models to be trained on them, what parameters are used, and
how social navigation models are evaluated. If models aim to
reflect the features of society, we need to question what behaviors
should be replicated and promoted. For example, Kivrak et al.
(2020) explicitly exclude women in the real-world experiments
of their social navigation framework for assistive robots around
humans. Their model that aims to yield human-friendly routes
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was only tested in a corridor where women were excluded based
on previous analysis (Jones and Healy, 2006), which affirms
gender differences in spatial problem solving. This represents bias
in the evaluation where the social model of navigation is validated
only for a privileged group and can lead to underperformance
to the unconsidered after the deployment. This has also been
seen before in medical datasets or experiments where women
were excluded citing differences in hormonal cycles, which leads
to the medicines or medical procedures causing higher side
effects for women compared to men. The consequences of these
biased experiments or trials have been extensively discussed,
which had lead to the inclusion of women in all medical trials
(Söderström, 2001).

The technical bias analysis presented in this section shows
cases where the high-level representation of social interaction
replicates unequal roles and dynamics that already exist in human
interaction. It is a significantly larger risk in the case of learning
models for social navigation from demonstrations where the
assumption is that the best way to teach a robot to navigate is
to enable it to learn directly by observing humans.

3.4. Relearning
While learning socially-aware robot navigation models, social
biases can be introduced that replicate and even augment the
unfair societal dynamics. Most existing socially-aware robot
navigation techniques aim to learn social navigation behavior
by imitating human navigation. Consequently, it essential to
deter biases during the deployment of robots equipped with such
models. In this section, we present a mechanism to first detect
when the navigation model makes biased decisions, especially
against certain groups of people. Subsequently, we use this
mechanism to update the model toward yielding more equitable
social navigation policies.

There are many situations in the real-world where unequal
decisions are desired, such as adapting the speed of the robot
near older adults. In this work, we only analyze situations where
there is no justifiable reason to yield different actions while
interacting with different groups of people. In this case, an
unfair or discriminatory system will offer an advantage to a
certain group of users or unfavorable interaction to some other
groups. Unfair behavior in robot navigation directly affects how
users interact with the system. For a mobile robot to amend a
discrimination behavior, it is necessary first to detect or measure
the biased behavior. An advantage in the case of robots is that the
decisions and actions after deployment can be used to measure
the degree of biased decisions, for instance, concerning protected
characteristics, such as age, gender, and race.Whereas, in the case
of bias in deep learning models this task would be significantly
harder. For instance, the Microsoft AI Twitter chatbot Tay which
learned by interacting with users and presented gender-biased
as well as racially offensive tweets (Perez, 2016). In this case, it
would be necessary to additionally measure the features behind
the posted tweets. Given that most robots are designed to move
in the world, this characteristic comes for free in terms of the
navigation actions that were made based on distance, speed,
among other control variables as well as perception, accuracy,
and uncertainty.

The robot can gather a dataset or a log by storing its own
experiences and its corresponding actions even after deployment.
Subsequently, the first step is to detect bias in the social
navigation decisions of the robot. Bias identification is related
to detecting disproportionate prejudice or favoritism toward
some individuals or groups over others. For example, the paths
planned by the robot produces a negative effect more frequently
for specific groups of people than they do for another, such as
discomfort, lack of interaction, or avoidance. Other situations are
related to a disproportionate rate of a favorable or higher quality
of attributes prediction for certain groups. This situation can
present itself due to a lack of representation and diversity in the
data or scenarios that were used in the learning stage. As a result,
it can lead to unpredictable or no interaction with individuals of
these groups.

One such method to detect if the navigation model exhibits
outcomes that differ across subgroups is using clustering.
Clustering is the technique for grouping data such that the
elements of the same group are assigned closed together, forming
assemblies called clusters. Clustering is a well-studied technique
that is highly used in unsupervised or exploratory data analytics.
Consider that the dataset collected while the robot was navigating
contains all the decisions that were taken as well as the sensor data
and the actions of other agents that these decisions were based on.
Additionally, other navigation and perception attributes can be
considered, such as the relative distance of the pedestrians to the
robot, collisions, person identification confidence, and intention
prediction, as well as additional information, such as rules that
were violated and accidents that were caused. The accumulation
of actions the robot outputs corresponds to the navigation feature
set to be clustered. The resulting clusters can later be correlated
to potential protected characteristics.

Having a learned policy π for socially-aware robot navigation,
we define V = {v1, v2, . . . , vi} as the set of navigation data
that correspond to the experiences that the robot continuously
accumulates through certain time steps. Different clustering
algorithms can be used depending on the attributes of the selected
navigation features (for instance if their nature is categorical or
numerical). One promising clustering algorithm is the method
proposed in Aljalbout et al. (2018) which consists of a fully
convolutional autoencoder trained with two losses, one for
reconstruction and the other for cluster hardening. The result
of the clustering process is a collection of assemblies A =

A1,A2, . . . ,AK consisting of navigation feature combinations.
Each Ak represents the navigation experiences that are similar
enough to be considered as a cluster of the entire set V . The
number of clusters K and the size of each cluster Ak are
hyperparameters that can be explored. Additionally, we define
F = {f1, f2, . . . , fN} as the set of protected features that we aim
to analyze and each fn has a set of navigation features V . To
uncover social-group related bias the next step is to determine the
relationship degree Dk,n between each protected feature fn and
each generated cluster Ak.

After identifying that the robot actions in the navigation
experience set are clustered and correlated to sensitive attributes,
the next step is to trigger alarms or corrective actions when
protected feature fn strongly related to each generated cluster Ak,
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FIGURE 3 | Illustration of the Learning-Relearning framework for diminishing bias in social robot navigation. During the learning phase (A), a policy π is learned for

socially-aware robot navigation. During the relearning phase (B), the robot uses the policy π to navigate in the social environment and collects the navigation

experiences. An augmented reward that encodes detected biased behavior is used to relearn a new policy π̂ so that the long term rewards reflect the decreasing

unjustified bias related to social-groups.

defined as Dk,n > un where un threshold that can be selected for
each protected feature. A system of reward or punishment can
be implemented in a off-policy reinforcement learning algorithm
that optimizes an augmented reward that encodes the detection
of unfair behavior as shown in Figure 3. The augmented reward
rRt is penalized when a biased behavior is detected so it does not
only comprise the behavior for socially-aware navigation but it is
also discounted when we detect bias as Dk,n > un. Therefore,
the robot learns the policy πR so that the long term rewards
reflects the decreasing unjustified bias related to social-groups.
As a result, it is possible to relearn the navigation model in
our framework depending on the information gathered from the
social environment.

From a more realistic perspective, demographic information
is rarely known. Clustering also allows the reduction of this
dependency between predictions and demographic information,
when an unsupervised approach is employed. Therefore, when
the dataset containing memory experiences of the robot
navigating conforms to clusters beyond a given threshold, it
can trigger an alarm for further analysis. Other methodologies
that can be used to undercover bias in deep learning models
are based on visualization of embeddings. Using visualization
techniques, we can show how the model groups the data,
which is useful to expose the reasons behind the prediction
of the model. To do so, different tools can be used, such

as T-distributed stochastic neighbor embedding (t-SNE) and
Uniform Manifold Approximation and Projection (UMAP) to
project the embeddings to reduce the dimensionality of the data.
In this work, we focus on the relearning component based on
clustering to present a feasible solution to account for fairness
while learning socially compliant robot navigation that can be
extended to an unsupervised algorithm.

4. CASE STUDIES AND DISCUSSION

In this section, we present extensive discussions that relate the
technical analysis of our proposed framework to complex real-
world scenarios that we present as three case studies. Each
of these case studies contains different levels of human-robot
interaction under four specific protected characteristics: gender,
disabilities, age, and race. With these scenarios, we analyze the
feasibility of model adaptation and the utility of this mechanism
to check for fairness as well as to correct the bias. The figures
illustrated in this section were generated using Icograms (2020).

4.1. Autonomous Floor Cleaning Robots
One of the most societally accepted robots has been the
autonomous floor-cleaning machines (Forlizzi and DiSalvo,
2006; Forlizzi, 2007; Fink et al., 2013) and during the last decade
they have been the most sold robots in the world (Research,
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FIGURE 4 | Illustration of the autonomous floor cleaning robot scenario. The robot navigates taking the social conventions into account while performing the main

task of cleaning the entire area.

2019). These robots have the task of cleaning floors using
vacuum systems without any human supervision and recently,
they can also mop floors using steam systems. These robots are
currently used in households, and their navigationmodels vary in
complexity depending on a wide range of prices. However, these
robots are so far not equipped with socially aware navigation
models. They do not avoid people or dynamic objects, rather they
only change their cleaning route after they collide with an object.
This can be attributed to the fact that in household environments,
people are typically more tolerant given that they are aware of the
task, features, and capacity of the robot.

It can be expected that the use of cleaning robots in the
future will spread to different public areas. In this case study,
we analyze from both technological and social points of view the
functioning, requirements, and implications of the navigation of
a cleaning robot that operates in a shopping mall. We illustrate
this scenario in Figure 4. Consider that the shopping mall
consists of multiple and extensive floors, and it is open to the
public continually every day of the week. The groups of people
visiting the place range from families and groups of friends to
individual persons. Additionally, the reasons for the visit can
differ, including peoplemaking quick shops, taking a walk, eating,
etc. Therefore, we also expect varying types of behavior of the
visitors, such as walking at a different speeds, talking in groups,
and sitting down in different spaces.

The task of the robot in this case is to clean the entire
environment effectively. In the following, we examine the effect
that a cleaning robot equipped with social context can have. This
robot has the ability to plan paths taking into account social
conventions in public spaces, such as avoiding interfering with
the paths of people, avoiding interrupting the interaction between
people, prioritizing safety, avoiding surprising people with
movements outside the visual range (or any other movement
that might make people uncomfortable), navigating with a
safe distance and with a prudent speed, avoiding collisions
and predicting the intentions of people. With socially-aware
navigationmodels, robots can fulfill themain task and act socially
with predictable actions. The goal of including social context into
the navigation model is to ensure that robots are not perceived
as dangerous, bothersome, irritating, inconvenient, or obtrusive.
The sociability of the cleaning robots can be defined as low
or indirect, i.e., humans do not communicate with the robot.
However, the interaction is generated by the navigation model in
a socially acceptable manner. Social navigation models allow the
robot to achieve the main goal without disturbing people sharing
the same space. Consequently, the robot can operate in public
spaces during the entire opening hours.

Specifically, if we employ the model (Patompak et al., 2019)
presented in section 3.3 as the learning component in our
framework, the personalized size and shape of the personal
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zone can in fact improve the social intelligence of the robot.
By avoiding crossing the comfort zone of people, these robots
can learn to plan paths without disturbing the visitors of the
shopping mall while performing the cleaning task. However,
the model (Patompak et al., 2019) that takes the gender of a
person into account can induce bias in the decisions. Even though
women might prefer a larger comfort area during interaction
among humans, it does not necessarily imply that they would
prefer the same during human-robot interaction. In principle, a
robot should never harm or be unfair to people based on their
gender. In this work, we consider that the robot is depicted as a
gender-neutral machine. Conforming a robot to a specific gender
depending on the application could again lead to historical bias,
this is an area that requires further research which is out of the
scope of this paper. Moreover, according to the bias evaluation
consideration for fairness described in section 2.2, maintaining
different relative distances to people based on their gender is an
unacceptable bias. Furthermore, distinguishing the comfort area
by gender is not of high relevance to improve the acceptance or
beneficial to improve the operation of robots around humans.
Instead, there are other essential factors that can be used to
improve comfort and confidence, such as safe navigation policies.
Given that the bias presented in this case is explicit, it is easier
to identify the bias inducing factor influencing the model in
the relearning component of our framework, for example, by
correlating the obtained behavior to the input constraints. After
detecting the bias inducing factor, it can be excluded to re-train
the model without the gender constraint.

On the other hand, while learning from demonstrations, data-
driven models can also reflect negative bias. For instance, if
robots learn from data that is not diverse where people with
movement impairments are not present, then the robot might
not react in a socially acceptable manner when they encounter
such people. This can further lead to incorrect prediction of
paths of people who walk slower and can make the robot be
perceived as obtrusive. Data induced bias represents an implicit
bias in the model that is more challenging to detect and correct
for. Since the model disproportionately affects a specific group
of people, by using our relearning component, the recurrent
errors in the path prediction can be detected as a cluster that
can also be related to the set of protected characteristics (e.g.,
people with mobility impairment). Consequently, by using a
punishment system, the reward value is influenced after the
detection of unwanted behavior to adjust the learning policy,
allowing model adaptation toward a more fair behavior. This
will support the Value Alignment consideration presented in
section 2.2 in which accepted socially-aware robot navigation also
considers inclusion.

4.2. Guidance Robots in a Shopping Mall
Mobile service robots have extensive use in innovative
applications, such as for guidance in public spaces where
they navigate alongside people and assist them to reach their
desired destination. Based on the environment described in
section 4.1, in this case study we analyze the effects of a guidance
robot that operates in a shopping mall. Unlike the last scenario,
the robot not only navigates under social conventions but also

guides a person in a social manner. The task of the robot is
to provide the requested information about locations in the
shopping mall and accompany people to reach their desired
location. This scenario is illustrated in Figure 5. Apart from
guiding to reach a certain destination, the robot should also
navigate considering social conventions that are required to
provide comfort to all the surrounding people during navigation.
Furthermore, the robot should coordinate with the user while
navigating by maintaining a desired relative position with
respect to the user. This scenario has similar characteristics
to the mall in the previous case study where diverse people
with different genders, ethnicity, disabilities, age, skin tones,
and cultural origins and etc, will be present. In this example,
fairness considerations, such as shared benefit, deterrence
and value alignment described in the section 2.2 should
be considered. Additionally, in the shopping mall scenario,
the guidance robot will interact naturally with the user in a
socially compliant manner while providing information and
route guidance.

The human-robot interaction in this case is direct given that
people approach the robot with a specific intention, and they
expect a response from the robot that corresponds to the request.
The resulting navigation strategy that these robots have next to
people and their capacity to react according to the situation is
crucial for their acceptance. Some of the important constraints
in the navigation behavior of guidance robots are adapting the
speed of the robot to the user, and maintaining a relative position
and distance. If the robot navigates with a velocity that does
not correspond to the user, then the robot risks being too slow
or too fast which can cause uncoordinated behavior with the
user and can further lead to accidents. On the other hand,
relative distance and position are related to how people follow
the robot and how the robot guides the user. Ideally, the robot
should estimate the position and intention of the user during
the execution of the guidance and also be able to interrupt the
task if the person does not require any more help. Therefore,
robots should adapt their navigation based on speed, intentions,
motivations, orientation as well as handle unexpected situations,
such as people crossing their path, changes in the speed of
the person being guided, unexpected appearance of objects,
among others.

Consumers value the unbiased, fast, and error-free behavior
that a robot can provide. Therefore, the robot should adapt its
behavior according to the current social context. In contrast to
the interaction between people and cleaning robots, guidance
robots provide personalized interaction, so the degree of
sociability of this robot is greater. For example, if a disabled
person goes to a shopping mall, the robot should recognize that
this person will have different navigation behaviors than others
so it should adapt its strategy accordingly. This adaptation will
in turn make the person more comfortable using the assistance
provided by the robot. In this example, aspects, such as the
capability to recognize mobility impairments in a person and
navigate accordingly are essential to ensure safe and comfortable
guidance. Consider that a person with limited mobility requires
guidance from the robot. If the robot is not equipped to react
accordingly to mobility difficulties, the interaction can cause

Frontiers in Robotics and AI | www.frontiersin.org 13 March 2021 | Volume 8 | Article 650325

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hurtado et al. Diminishing Bias - Social Robot Navigation

FIGURE 5 | Illustration of the guidance robot in a shopping mall scenario. The robot guides the user (green circle) to reach the destination (purple circle). Additionally,

the robot is aware of the people in the surroundings during navigation while maintaining a desired relative position with respect to the user.

distress, physical overexertion, and even accidents. This will
eventually make the person to discontinue using the robot in the
future. In order to avoid such events, the navigation model in the
robot should incorporate social adaptability skills that enable it to
detect particular situations that cause discomfort or unintended
outcomes for specific individuals.

Assume that a guidance robot is equipped with the navigation
model described in section 3.3 and as a consequence it will assist
women keeping larger distances with them. This may cause the
robot to loose the interaction with them in certain situations
and adversely affect the way that women perceive the robot.
Similarly, it can reduce the efficiency with this population
group representing the systematic disadvantage we aim to avoid
toward diminishing bias. The model described in section 3.3
is used to present an example of learning socially-aware robot
navigation in which unfair outcomes are associated with a
protected characteristic. Other socially-aware navigation models
that learn solely from human imitation can cause different types
of model-induced biases. In these cases, the navigation model is
optimized to yield sociable actions considering different factors,
such as the velocity, orientation, priority of interaction, and
route selection. The guidance robot will encounter situations
where multiple people request for help simultaneously or even
situations where people will try to interact with the robot when
it is already guiding another person. Deciding which person
has the priority is part of the social intelligence. Assume that
in the learning component of our framework, the navigation
model of the robot is trained from demonstrations and as

a result, the robot learns the preferred interaction behavior
based on those demonstrated interactions. This can lead to
unfair outcomes due to human bias that may be existing in
the demonstrations, policies reflecting personal bias, unequal
society roles, or under-representation of minorities. Specifically,
if the learning from demonstration is performed in a shopping
mall only from one city, there will be insufficient diversity.
Similarly, if the robot is deployed in a different place, or
when people belonging to minorities try to use the robot, the
robot will maintain its social behavior but it will likely make
biased decisions, especially against people who historically have
been discriminated, as we observed in other cases (Buolamwini
and Gebru, 2018; Brandao, 2019; Wilson et al., 2019; Prabhu
and Birhane, 2020). As part of the relearning component,
our framework allows to generate clusters related to preferred
interaction actions and determine if the generated clusters are
strongly related to protected characteristics. Specifically, in case
the preferred interaction of the robot is biased favoring or
disadvantaging specific visitors of the shopping mall the learning
policy is adjusted by a reward value that is penalized when biased
behavior is detected. As a consequence, the robot’s actions, such
as deciding which person has the priority to interact with will
follow the fairness requirements.

Since diverse people typically visit shopping malls, the robot
should be able to accurately recognize them regardless of
factors, such as skin tones. Previous studies (Wilson et al.,
2019) have shown that recognition systems based on RGB
perception present higher error rates for dark skin tones.
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FIGURE 6 | Illustration of the caregiving robot in a hospital scenario. The main task of the robot is to distribute medicines to patients who are admitted in the hospital.

The robot takes emergency situations that could happen into account and people requiring special assistance, while navigating.

If similar systems with faulty sensors or algorithms are
used to learn social navigation models, the robot will be
unable to recognize certain people and adhere to the fairness
considerations described in section 2.2. As a consequence, the
robot can perpetuate discrimination against groups of people
that have historically been segregated, as observed in other
learning applications, such as the automated risk assessment
used by U.S judges and the biased vision-based object detectors
employed in autonomous cars (Benthall and Haynes, 2019;
Wilson et al., 2019). Furthermore, discrimination laws prohibit
unfair treatment of people based on race. In this case, fairness
priority is also important for the legal framework.

4.3. Caregiving Robots in Hospitals
There is significant interest in developing service robots for
hospitals due to their ability to provide care for people. The use of
robots in hospitals can be especially advantageous in cases where
there are patients with contagious diseases, such as in a pandemic
situation. In this case study, we analyze the navigation strategy
of caregiving robots that operate in hospitals. The main task of
robots in this case study is to distribute medicines to patients who
are admitted in a hospital. Figure 6 illustrates this scenario. The
human-robot interaction in hospitals requires special caution
as the robot will operate around patients who require special
assistance. One such example is people with motion impairments
who use wheelchairs, crutches, or walking frames. Furthermore,
the robot will encounter rapidly changing situations, for example

during an emergency where doctors and care staff rush through
the hallways. To provide appropriate response, robots should be
equipped with algorithms to understand situations and context
that enable them to accordingly adapt their behavior. Apart
from patients, robots will also interact with other people in
the hospital, such as health professionals, secretaries, family
members, and visitors. Similar to the shopping mall case study,
caregiving robots will be interacting directly with the people.
However, the navigation and interaction presents additional
complexity, given that they do not assist people individually.
Here, the robots aim to assist multiple people who have
different medical treatments and deliver medicine to them
while maintaining a socially accepted behavior. In this case,
not only social conventions and sociability described in the
previous case studies are required, but also priority decision
making, optimal recognition, faster reaction and adaptability.
As a consequence, the navigation models in caregiving robots
should have higher requirements of accuracy and adaptability.
These robots can particularly encounter unexpected events,
such as emergency situations where people will be walking
in different directions, speeds, and unpredictable movements.
In such situations, there is a higher risk of accidents due to
the vulnerability of people and the context in the hospital.
Furthermore, the consequences of eventual accidents can be
critical for the health of individuals. Caregiving robots should
be able to perceive, recognize, and react according to the special
requirements of the hospital.
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Assume that the robots are going to be used in emergency
rooms. Their task there is to deliver a series of necessary supplies
to the people who are attending to the emergencies. Therefore,
the robots have to interact with several people simultaneously.
Based on the proxemics model described in section 3.3, the
robot will be perceived as atypical in approaching people in
different ways, assisting some people differently than others
during urgent situations. Furthermore, taking into account that
there are people playing specific roles, namely to care for sick
people urgently, their comfort area of interaction is different
from that of normal situations. People typically tend to walk
fast, to have little personal space, and to quickly perceive what
is happening around them. In this scenario, robots that navigate
while maintaining different distances to people based on gender
have lesser foreseeable utility. Alternatively, other characteristics
can be considered that are related to the distribution of medicines
depending on the needs of the patients and priorities, such as
minimizing delivery time.

The priority of the path planning algorithms in such robots is
to deliver medicines to all patients. Assume that in the learning
component the caregiving robot learns from historical data about
the characteristics of the patients. This model may learn that the
pain threshold differs between men and women. Consequently,
the navigation plan will be biased with negative effects toward
men, based on information related to their higher tolerance to
pain. Similarly, the robot could learn that women have more
tolerance to wait longer for medical treatments and spend more
overall time than men in the emergency rooms (Nottingham
et al., 2018). In both situations, the behavior of the robot will
be biased given that it systematically benefits a specific group
of people. In this example, fairness considerations, such as value
alignment and non-maleficence described in the section 2.2 can
improve the decisions made by the robot. One approach to
dealing with difficult cases of priority is to reflect political and
commercial neutrality in robot navigation. This signifies that
the navigation model in caregiving robots should not favor any
particular group of people. Although, advocating for neutrality
of assistive robots is a potential solution to bias problems in
this case, the concept is substantially complex and requires
further research.

Particularly, adapting the model with our relearning
component to correct for the presented bias will lead the robot to
base decisions on other factors. Using the relearning component
of our framework, we can identify clusters that demonstrate
a systematic disadvantage if the time to deliver medicines is
higher for men and if women wait for a longer period of time in
emergency rooms. Subsequently, to penalize the unfair behavior,
we lower the reward value that adjusts the learning policy.
As a result, the navigation model is adapted toward more fair
behavior. If the model does not rely on the potentially negative
bias inducing factors, it can learn better representations that
reflect relevant characteristics, such as urgency and needs.
While using our relearning technique, this type of bias in
navigation will be detected when certain people receive attention
more effectively than others. Consequently, if there is no valid
reasoning behind such bias, the navigation model should be
updated accordingly.

5. CONCLUSIONS

As more and more robots navigate in human spaces, they
also require more complex navigation models to accomplish
their goals while complying with the high safety and comfort
requirements. Toward this direction, different methods
incorporate social context into learning models to enable
robots to navigate following social conventions. Typically, these
methodologies utilize data or experiences from the real world,
simulations, or control experiments and social constraints. In
this work, we discussed the societal and ethical implications
of learned socially-aware robot navigation techniques. We
demonstrated that the advances accomplished in social robot
navigation are essential for the development of robots that
provide well for society. More importantly, we showed how
these models that account for socially-aware robot navigation
do not guarantee fairness in different real-world scenarios.
Research in the direction of fairness in robot learning is of
special importance, given that these machines interact with
people closely.

To the best of our knowledge, this is the first work that studies
the societal implications of bias in learned socially-aware robot
navigation models. Our proposed framework that consists of
the learning and relearning stages has the ability to effectively
diminish bias in social robot navigation models. Additionally,
we presented fairness considerations and specific techniques that
can be used to implement our framework. We detailed several
scenarios that show that the adaptability of the model in terms of
fairness enables it to correct for bias. The scenarios demonstrate
the potential unwanted outcomes of social navigationmodels that
are described with variables and social conventions which make
them easily interpretable. Our framework is especially useful for
more complex learning models or models that are trained with
imitation or reinforcement learning, given that these models
contain more abstract representations of the data and situations.
We hope this work contributes toward raising awareness on the
importance of fairness in robot learning.
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