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Abstract

Motivation: The accumulation of somatic mutations plays critical roles in cancer development and progression.
However, the global patterns of somatic mutations, especially non-coding mutations, and their roles in defining mo-
lecular subtypes of cancer have not been well characterized due to the computational challenges in analysing the
complex mutational patterns.

Results: Here, we develop a new algorithm, called MutSpace, to effectively extract patient-specific mutational fea-
tures using an embedding framework for larger sequence context. Our method is motivated by the observation that
the mutation rate at megabase scale and the local mutational patterns jointly contribute to distinguishing cancer
subtypes, both of which can be simultaneously captured by MutSpace. Simulation evaluations show that MutSpace
can effectively characterize mutational features from known patient subgroups and achieve superior performance
compared with previous methods. As a proof-of-principle, we apply MutSpace to 560 breast cancer patient samples
and demonstrate that our method achieves high accuracy in subtype identification. In addition, the learned embed-
dings from MutSpace reflect intrinsic patterns of breast cancer subtypes and other features of genome structure and
function. MutSpace is a promising new framework to better understand cancer heterogeneity based on somatic
mutations.

Availability and implementation: Source code of MutSpace can be accessed at: https://github.com/ma-compbio/

MutSpace.
Contact: jianma@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a genetic disease with high degree of heterogeneity in dif-
ferent tissues and cell types (Hanahan and Weinberg, 2011). Even
for cancers with the same tissue-of-origin, cancer subtypes have
been revealed with distinct histology, molecular phenotypes and
responses to therapies, which provide the foundations for more tar-
geted therapies (Perou et al., 2000; Vogelstein et al., 2013). For ex-
ample, breast cancers can be typically classified into four primary
subtypes, i.e. Luminal A (LumA), Luminal B (LumB), Basal and
HER2, with different treatments (Perou et al., 2000).
Conventionally, cancer subtype identification is achieved by inte-
grating features derived from gene expressions and histopathology.
With the advent of high-throughput sequencing, the list of molecular
features for cancer subtype classification has been significantly
extended (Hoadley et al., 2014). In particular, somatic mutations on
protein-coding genes (i.e. coding mutations) emerge as a promising
orthogonal feature for uncovering cancer subtypes (Arslanturk and
Draghici, 2018; Kuijjer et al., 2018). However, the feasibility of
using non-coding mutations for cancer subtype identification is
underexplored. Somatic mutations arise from the accumulation of
DNA damage and the disruption of the DNA damage repair ma-
chinery (Jeggo et al., 2016). Importantly, the magnitude and
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patterns of somatic mutations are strongly affected by exposures to
exogenous and endogenous mutagens, which also serve important
features to classify patients (Alexandrov et al., 2013; Martincorena
and Campbell, 2015). Previous works have shown that the tissue-of-
origin of cancer can be accurately identified using the frequency of
non-coding mutations (Jiao et al., 2020; Temiz et al., 2015).
However, using non-coding somatic mutations for subtype identifi-
cation remains challenging due to the sparsity of mutation occur-
rence in the genome, the complexity of mutation patterns and the
difficulty to prioritize the mutations (Fu et al., 2014; Watson et al.,
2013).

Several types of methods have been developed to extract somatic
mutation features for non-coding mutations in the past. The first ap-
proach relies on the regional mutation density (RMD) at the mega-
base scale. Regional variation of mutation rate is associated with the
epigenetic states of the tumour’s cell-of-origin. For example, 74—
86% of the variance of the mutation rate can be explained by com-
binatorial patterns of histone modifications (Polak et al., 2015).
However, as cancer subtypes are derived from cells with similar
tissue-of-origin, whether the regional variation of mutation rate
alone can provide accurate cancer subtype identification is unclear.
The second approach is based on the mutational spectrum of 96 tri-
nucleotides (immediate 5’ and 3’ bases of each mutated base, named
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MS96) in each patient or the decomposed mutational signatures
using non-negative matrix factorization (NMF) (Alexandrov et al.,
2013). MS96 or its variant mutational signatures are thought to re-
flect multiple mutational processes caused by the exogenous muta-
gens such as UV radiation (Brash, 2015) and smoking (Alexandrov
et al., 2016), or endogenous mutagens such as defective DNA repair
activity (Alexandrov et al., 2013). However, it remains elusive
whether such =1 bp mutation context (i.e. trinucleotides) is suffi-
cient to capture the mutational signatures. Indeed, Stobbe et al.
(2019) recently used features from recurrent non-coding mutations
to cluster cancer patients and revealed a large-scale sequence context
on several cancer types, including those samples caused by UV radi-
ation, gastric-acid exposure and deregulated activity of POLE.
Unfortunately, current approaches extracting all possible combina-
tions of sequence context are computationally intractable when the
mutation sequence context gets longer because the number of pos-
sible parameters increases exponentially, causing the curse of dimen-
sionality and making the estimation of mutational spectrum
unstable. Moreover, other covariates, such as age and sex of
patients, and local genomic properties (e.g. mutations in cancer
driver genes), may also influence mutation rate and patterns, but
have been mostly ignored by current mutational feature representa-
tion methods. Therefore, algorithms that can extract mutational fea-
tures with large-scale sequence context in each patient while also
considering different covariates are needed.

Here, we perform a series of computational analysis to approach
these questions. In particular, we develop a new machine learning
algorithm to effectively extract patient-specific mutational features
using an embedding framework for distributed entities in the field of
natural language processing (NLP) (see Section 2.2 for an overview
and Section 3.2 for details of the algorithm). Our main contribution
is threefold: (i) We identify important mutational features that can
help distinguish different cancer subtypes. Using melanoma and
breast cancer data as examples, we demonstrate that RMD and
large-scale nucleotide context beyond trinucleotides are both in-
formative features (see Section 2.1), which serves as the motivation
for us to develop a new method for larger-context embedding. (ii)
We develop MutSpace, a new method that can effectively capture
various types of mutational features by incorporating both large-
scale sequence context and genomic location of mutations (see
Sections 2.2-2.4). (iii) We evaluate our method using both simulated
data and breast cancer patient samples, as a proof-of-principle, to
demonstrate that MutSpace can extract mutational features more ef-
fectively compared with conventional methods in terms of cancer
subtype classification. Overall, our method represents a significant
advancement in capturing mutational features, especially for non-
coding somatic mutations. The new method distinguishes itself from
previous methods by incorporating various features of mutations
and patients, which are key to better stratifying distinct cancer sub-
types for more targeted potential treatment strategies.

2 Results

2.1 Non-coding somatic mutations show regional varia-

tions across cancer subtypes

We started by calculating the RMD (i.e. the number of mutations
per million base pairs per patient) to explore its connection with
different cancer types and their subtypes. Note that here we only
consider non-coding mutations to mitigate bias from coding muta-
tions affected by selective pressure during tumour progression (see
Section 3.1). Previous studies have shown associations between
variations of mutations in megabase scale and functional genomic
data derived from tumour cell-of-origin, including replication tim-
ing and chromatin accessibility (Gonzalez-Perez et al., 2019;
Schuster-Bockler and Lehner, 2012; Stamatoyannopoulos et al.,
2009). As shown in Figure 1, we found that genome-wide RMD
profiles not only exhibit distinct patterns between melanoma and
breast cancer but also show different variations within their sub-
types. For example, cutaneous melanoma, the most severe subtype
of melanoma, has a much higher mutation rate than other subtypes

of melanoma (Fig. 1A). This pattern may be caused by the elevated
C—T mutations at dipyrimidines induced by the UV radiation in
cutaneous melanoma [Fig. 1B; also revealed in prior studies
(Akbani et al., 2015; Hayward et al., 2017)]. However, despite the
difference in the absolute values of mutation rate, we observed that
different melanoma subtypes show a consistent trend between mu-
tational variation (Fig. 1A) and chromatin structures. In particular,
heterochromatic regions marked as B compartment based on Hi-C
data tend to have a higher mutation rate than more active regions
in A compartment. Also, RMD profiles in breast cancer subtypes
are quite different from melanoma. For example, Basal and Her2
subtypes have a higher mutation rate than LumA and LumB sub-
types, consistent with previous reports based on different patient
cohorts (Network et al., 2012). Except for a few regions, different
subtypes of breast cancer have fewer coherence patterns in terms of
the correlation between mutation rate and chromatin structure,
though the compositions of six mutation types are similar across
different subtypes (Fig. 1D and E). Overall, these results suggest
connections between cancer subtypes and mutation rate at the
megabase scale.

We next explored the sequence context of mutations in different
cancers and their subtypes. The trinucleotides context (i.e. the imme-
diate nucleotides flanking the mutated base) around mutations are
widely used for learning mutational signatures and characterizing
different patient cohort (Alexandrov et al., 2013). Recently, the ana-
lysis of recurrent mutations revealed that local sequence contexts be-
yond trinucleotides are hallmarks of recurrent mutations in certain
cancer types, which may be related to context-specific mutagenesis
(Stobbe et al., 2019). We therefore sought to ask whether there exist
subtype-specific sequence patterns between cancer subtypes. In
Figure 1C and F, we plotted the relative enrichment of DNA se-
quence up to +5 bp around the mutated base for subtypes in melan-
oma and breast cancer. We found that there is a strong enrichment
of TTT[C—]CTT mutational pattern for C—T mutation in cutane-
ous melanoma, which cannot be observed in mucosal melanoma.
Similarly, C—T mutations in LumB breast cancer tend to have a
GGCCT sequence in the 5 of the mutated C, which cannot be
observed in the Basal subtype. We also observed that the sequence
context of mutation has associations with the locations of muta-
tions. Specifically, in cutaneous melanoma, there is a slight enrich-
ment of C in the +1 bp of the 5 for C—T mutations in A
compartment (Fig. 1C). In addition, in LumB, there is an enrichment
of C/G at the *4th and 5th nucleotides from the mutated base for
mutations in A compartment compared with mutations in B com-
partment (Fig. 1F). Altogether, these observations suggest that the
extended context beyond trinucleotides is an informative feature
related to molecular subtypes of cancer that may provide important
predictive power in addition to RMD.

2.2 Overview of MutSpace—learning mutation patterns

by embedding larger context
Motivated by the observations from the previous section, we devel-
oped a novel machine learning approach, named MutSpace, to ef-
fectively extract mutational features from larger context based on
neural embedding algorithms (Bengio ez al., 2003), which can then
be used for downstream analysis such as cancer subtype identifica-
tion (see Sections 2.3 and 2.4). As illustrated in Figure 2A, the input
of MutSpace contains two types of data: somatic mutations and can-
cer patients, which are naturally related by the fact that a somatic
mutation is observed in one patient. The output of MutSpace is a set
of vectors in high-dimensional space for cancer patients and muta-
tional patterns, which is derived by maximizing the dot-product sim-
ilarities between the embeddings of related mutation—patient pairs
while minimizing similarities between those incompatible pairs.
Therefore, the similarities between vectors of patients in the embed-
ding space reflect the closeness of patients’ mutational patterns, as
shown in Figure 2B. The algorithm details of MutSpace are dis-
cussed in Section 3.2.

Without loss of generality, although the input data of
MutSpace are in different formats, we consider both of them as
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Fig. 1. Mutational patterns vary across cancers and their subtypes. (A) An example of RMD profile on Chromosome 10 for different subtypes in melanoma. Y-axis represents
log10 of number of mutations per Mb per patient. (B) The fraction of six mutation types in different subtypes in melanoma. Mutations are separated into two groups based on
Hi-C A/B compartments. (C) The sequence logos show the sequence context of £5 bp around the mutated bases. Y-axis indicates the relative entropy representing the enrich-
ment of nucleotides compared with genome-wide background. Each motif logo is calculated using mutations from different cancer subtypes and the location of mutations (see

Section 3.1). (D-F) Similar plots as (A-C) using data from breast cancer
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Fig. 2. Overview of the MutSpace framework. (A) Cancer patients, somatic mutations and their local sequence context are represented as bags-of-features (see example in
Section 3.2). (B) Examples of mutations and their decomposed features are shown in green. Features associated with patients such as patients’ ID and cancer type are shown in
purple. (C) MutSpace jointly learns embeddings of mutations, patients and their features in the same high-dimensional space. Patients with similar mutational patterns are

expected to be close to each other in the latent space

abstract entities consisting of a set of discrete features (bag-of-fea-
tures) (Fig. 2B). For example, features of mutations contain the
mutation type (one of the six substitution patterns, see Section
3.1), the genomic location by assigning mutations into genomic
bins with fixed size (e.g. 1 Mb), and a series of discrete features for
each mutation type representing the flanking nucleotides with vari-
able distances from the mutated base (see examples in Section 3.2
and Fig. 2B). Decomposing sequence context into separate discrete
features is preferred to reduce the space complexity of the algo-
rithm especially when we model the large-scale sequence context
of mutations (Shiraishi et al., 2015). For patients, relevant discrete
features include the cancer type of patients, unique patients’ ID,
and possibly other covariates of patients, such as sex and age of
diagnosis. The key concept of MutSpace is to integrate these het-
erogeneous entities through a unified embedding framework
adapted from StarSpace (Wu et al., 2018), a recent embedding

framework developed for NLP. In particular, MutSpace embeds
mutations, patients and their features into a common high-
dimensional space such that the comparisons between them can be
achieved by calculating the similarity of between two vectors.
MutSpace then learns embeddings of mutations and patients such
that mutation patterns observed in the same patient stay close to
each other but away from mutations belonging to other patients
(Fig. 2C, Section 3.2). Consequently, patients containing similar
mutational information tend to be embedded close in the high-
dimensional space, whereas more distinct patients are further
away. The model is trained to maximize the similarities between
true pairs of mutations and patients while minimizing the similar-
ities between randomly sampled noisy pairs (see Section 3.2).
Finally, patients’ embedded vectors can be used as patient-specific
features extracted from mutations for the downstream subtype
classification.
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Fig. 3. Evaluation using simulated datasets. (A) Evaluation of MutSpace, Mut-Freq and NMF on simulated data SS-I in terms of F; score, AUROC and AUPRC. (B)
Evaluation of MutSpace, Mut-Freq, NMF and RMD on simulated data SS-II in terms of F; score, AUROC and AUPRC

MutSpace provides a generic framework to more effectively in-
corporate mutational features including large-scale sequence context
around mutations and other covariates for stratifying cancer
patients.

2.3 Simulation demonstrates the accuracy of MutSpace

in identifying cancer subtypes

To assess whether the mutational features obtained by MutSpace
can accurately identify cancer subtypes, we evaluated MutSpace
using synthetic datasets in two types of simulation studies. We
assessed the performance based on F; score, AUROC and AUPRC
by comparing the predicted labels of subtypes with the ground truth
labels (see Section 3.5). In simulation study I (SS-I), mutational pat-
terns of each subtype were generated from different mixtures of syn-
thetic mutational signatures up to =4 bp, whereas in simulation
study II (SS-II), we further allowed the distribution of mutational
density on the genome to vary across subtypes. Both simulation
studies contain three to six subtypes and 100 patients in each sub-
type, respectively (see details in Section 3.4).

We compared MutSpace with other methods that extract
patient-specific mutational features, including the frequency of the
occurrence for each mutational pattern with different lengths of se-
quence context (Mut-Freq), NMF decomposition of Mut-Freq and
regional mutational density (RMD) at megabase resolution (see
descriptions of these methods in Section 3.3). Among different types
of classifiers, we found that the SVM had the best performance and
was therefore chosen as the classifier for further analysis. The aver-
age performance is reported based on fivefold nested cross valid-
ation with hyperparameters selected using the grid-search strategy
(see Section 3.5). Performances are calculated for mutational pat-
terns with different lengths of context to provide a comprehensive
evaluation. We found that MutSpace is able to make accurate pre-
dictions with different lengths of sequence context in both simulated
studies (Fig. 3A). In particular, MutSpace shows significant advan-
tages in reaching a higher F; score than other methods as a longer se-
quence context is considered (Fig. 3A). In SS-II, we further added
the genomic location of mutations (after discretization into the ID of
1 Mb genomic bin in the human genome) as features of mutations in
MutSpace to capture the variation of mutational density in different
subtypes. As the difference of mutational density cannot be captured
by methods that only examine at the frequency of mutational pat-
tern per patient, Mut-Freq and NMF consistently show poor per-
formance with different lengths of sequence context (Fig. 3B). We
therefore concatenated features extracted by RMD and Mut-Freq

with =1 bp (MS96) and wused those combined features
(RMD+MS96) for predictions. However, MutSpace still outper-
forms the combined method when *2 bp sequence context is con-
sidered (average F; score 0.809 for RMD+MS96 versus 0.856 for
MutSpace). Importantly, in MutSpace, only the ID of the genomic
bins instead of the count of mutations per bin is used as part of the
input. Together, these simulation evaluations strongly suggest that
MutSpace can effectively extract features by jointly modelling muta-
tional patterns and patients. Our method even outperforms
approaches that integrate both regional mutational density and fre-
quencies of mutation patterns.

2.4 The embeddings from MutSpace can accurately

classify breast cancer subtypes

To further assess the performance of MutSpace for delineating patient-
specific mutational features, we applied MutSpace to reveal the hetero-
geneity of breast cancer subtypes from mutational patterns. We first
evaluated MutSpace on its ability to classify subtypes of breast cancer.
Similar to evaluations for the simulated datasets, we trained an SVM
model based on the mutational features from MutSpace and compared
its performance with other methods. Figure 4A shows the best predic-
tion results using these methods when different lengths of sequence
context are considered. We found that MutSpace can accurately iden-
tify three primary subtypes in breast cancer. In particular, in the basal
subtype, the average F; score achieved by MutSpace is 0.922, which is
higher than the method using features by the concatenation of RMD
and MS96 (0.896). In LumA and LumB, MutSpace outperforms other
methods with a higher F; score, AUROC and AUPRC. Notably, we
observed that MutSpace achieves its highest performance for encoding
+5 bp sequence context, consistent with our observations that breast
cancer subtypes have distinct patterns in the large-scale sequence con-
text around mutations.

To better demonstrate the ability of MutSpace in representing
patients with similar mutational patterns, we projected patients’
embedding from MutSpace into two-dimensional space with t-SNE
(van der Maaten and Hinton, 2008) (Fig. 4B). Here each data point
represents a patient with colours showing subtype information. We
found that patients belonging to the same subtype are clearly clustered
together. We also noticed that some patients from three subtypes tend
to form a unique cluster in the t-SNE. We therefore applied
HDBSCAN (Mclnnes et al., 2017), an unsupervised clustering
method to separate patients into four groups based on mutational pat-
terns alone (Fig. 4C and D). Using the homologous recombination de-
ficiency (HRD) score as an orthogonal clinical feature, we found that
these four groups have distinct distributions of HRD score. Further
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analysis could be performed to assess whether those four groups of
patients have different clinical outcomes.

Besides patients’ and mutations’ embeddings, we also sought to
demonstrate the utility of other jointly learned feature embeddings,
such as the embeddings of genomic bins. Specifically, we asked if the
embedding of a genomic bin reflects useful features related to the or-
ganization and function of the corresponding genomic location. We
tested this hypothesis by extracting the embeddings of genomic bins
on each epoch during the MutSpace training process and using them
as input to predict corresponding orthogonal features of genome
structure and function. Figure 4F shows the F; score of the predic-
tion on Hi-C A/B compartment annotations and quartile of replica-
tion timing signals, respectively. Notably, we found that as the
training proceeds, embeddings of genomic bins become more corre-
lated with A/B compartmentalization and replication timing, sug-
gesting that MutSpace can successfully learn the underlying
information of genomic location (covariate of mutations) and pre-
dict related genome structure and function.

Taken together, these results highlight the advantage of
MutSpace in representing mutation patterns.

3 Materials and methods

3.1 Data collection

We collected tumour somatic mutations derived from whole-genome
sequencing (WGS) across multiple resources (see Supplementary
Table S1). We only used single-nucleotide substitutions in autosomes
and combined substitutions that are reverse-complement to each other

(e.g. G—T is treated the same as C—A) into six mutation types:
C—A, C—G, C—T, T—A, T—C and T—G. We discarded mutations
located in the protein-coding regions according to the human
GENCODE annotation release 19 as sequence context of those som-
atic coding mutations are likely under stronger selection pressure and
may show distinct sequence preference compared with non-coding
mutations. We further removed mutations that are located in the
human blacklisted regions defined by the ENCODE project (acces-
sion: ENCSR636HFF) or overlapped with known common SNP track
(snp151Common) downloaded from the UCSC Genome Browser.
Flanking nucleotides around mutations (reverse complement the
DNA sequence if necessary, see above for the definition of six muta-
tion types) were extracted from the human reference assembly hg19
downloaded from the UCSC Genome Browser. Clinical information
including molecular subtypes of cancer patients was retrieved from
various previous literatures investigating each cancer sequencing data-
set. Supplementary Table S2 shows the number of patients in each
subtype from different cancer datasets. We collected functional gen-
omics data from public resources. The source of data is shown in
Supplementary Table S3. Sequence logos of mutational pattern
around mutations were generated by adapting scripts provided by
Stobbe et al. (2019) on GitHub.

3.2 MutSpace—ijoint modelling of mutational patterns
and patients

In MutSpace, we jointly learn an embedding for mutational patterns
(i.e. one of the six mutation types and its flanking nucleotides)
observed in cancer cohort and cancer patients into a continuous
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vector space R?. In R?, mutational patterns and patients are both
entities represented as d dimensional continuous vectors (i.e. embed-
ding vectors) induced in a bag-of-features manner. This bag-of-
features embedding framework is developed based on a recent se-
mantic embedding model, StarSpace (Wu et al., 2018), which has
been proven to be a general-purpose method for various tasks in the
field of NLP and also the prediction of transcription factor binding
in genomics (Yuan et al., 2019). In StarSpace, heterogeneous entities
are embedded in the same semantic space, and each entity is
described by a set of discrete features (i.e. bag-of-features). For ex-
ample, in NLP a document entity can be described by a set of words,
and a reader can be described by a set of documents the reader likes.

The bag-of-features representation provides flexibility to the
choice of entities’ features and makes it possible to incorporate het-
erogeneous covariates. In our cases, the embedded vector of the ith
patient is represented by embedded vectors of this patient’s features
(Fit, Fizs - Fim), where m; is the number of discrete features of
the patient. For example, features associated with patients include
cancer type, patient’s IDs, etc. The embedding of the ith patient is
thus induced by the summation of embeddings of all features from
this patient.

3

i
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Here p is a hyperparameter and we keep it the same as the de-
fault value (0.5) used in StarSpace.

Similarly, the embedding of a mutation with a large-scale local
context is represented by the summation of embedded vectors of its
sub-components and other features associated with this mutation.
Here, we define a set of sub-components of a mutational pattern as
a series of non-overlapping flanking nucleotides of length w with
different distances from the central mutated base. The maximum
distance of the flanking nucleotides from the central mutated base
determines the size of sequence context we consider (represented by
l). For instance, AACC[C—A|TTCG is one example of an observed
*+4 bp mutational pattern. When w equals to 1, we split this muta-
tional pattern into four sub-components: ANNN[C—A]NNNG,
NANN[C—AJNNCN, NNCN[C—AJNTNN and NNNC[C—
A]JTNNN (here N indicates any nucleotide from A, C, G and T).
This representation of mutation patterns by sub-components can
significantly reduce the number of features associated with a muta-
tion, allowing a long flanking sequence of the mutation to be
included in the model. Considering a mutational pattern of length
2]+ 1, where [ is the length of sequence on either up- or down-
stream of the mutated base, the number of sequence patterns given
the sub-components with length w is [I/w] x 4** because the num-
ber of sub-component is [//w], and the number of the possible DNA
sequence is 4% because the number of nucleotides in each sub-
component is 2w (considering both up- and down-stream nucleoti-
des). Therefore, the total number of sub-components associated
with six types of substitutions is 6 x [I/w] x 4**, with a spatial
complexity significantly lower than the entire combination of the
flanking sequence (6 x 4%'). Based on our observations on real muta-
tion data, when [ is greater than 6, the nucleotide compositions are
very similar to the genome-wide average. Therefore, we only consid-
ered [ smaller than 6 bp in both simulation and real data application.
We can also encode other covariates of mutations as discrete fea-
tures. In particular, the genomic location of the mutation is encoded
by splitting the genome into fixed-sized bins and assigning muta-
tions to these bins by the bins’ ID. Therefore, the final embedding of
the ith mutation is induced by the summation of embeddings of all
its associated sub-components and other discrete features (C;1, Ci2,

..y Cin;), where n; is the number of features associated with each
mutation.

7

1
si=—5> Ci 2)
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To learn the embedded vectors, we developed a similar approach
used in the StarSpace by maximizing the similarities calculated from

positive mutation—patient pairs while minimizing those from nega-
tive ones. Briefly, we define a positive pair of latent embedded vec-
tors in mutation—patient relationship as (sj, p;"), which represents
the jth mutation s;; observed in the ith patient p;. Negative pairs of
latent embedded vectors between mutations and patients

et al., 2013), through which the jth mutation observed in the ith pa-
tient is paired with those from the rest of the patients other than pa-
tient i and this process is repeated for K times. The model is then
trained to maximize the similarities between positive pairs while
minimizing those in negative pairs through optimizing the following
hinge loss function:

1&E . . _
L= (;)?; max(O, w— sim(s, pi) + sim(s;, pj, )> (3)

where p is a constant margin parameter, which is 1.0 by default.
Also, to measure the similarity between entities, we calculated the
scaled dot-product similarity sim(-, -) between mutation embeddings
and patient embeddings as shown below:

b’

Vd

We also applied a constraint to embedded vectors to enforce an
upper bound of the #>-norm of embeddings. In each training epoch
of MutSpace, patients’ embeddings and the embeddings of patients’
features, mutations’ embeddings and the embedding of mutations’
sub-components are all optimized based on the gradient of this loss
using the Adam optimization algorithm (Kingma and Ba, 2014). By
minimizing the defined loss shown above, in the latent vector space,
the mutational patterns will gather around their corresponding
patients, while the patients with similar mutational patterns will
also become closer to each other.

After the training, the learned embedded vectors of entities can
then be used for downstream tasks, such as classifying patients into
subtypes. To retrieve mutational patterns that are closer to one pa-
tient, we can use the learned embedded vectors to measure the simi-
larity between two entities (e.g. mutational patterns with patients,
patients with other patients). We can select top g compatible muta-
tional patterns for the ith patient by sorting sim(s, p;) over all pos-
sible mutational patterns s. The MutSpace algorithm was
implemented using PyTorch (Paszke et al., 2019).

sim(a,b) = —=,a,b € R? (4)

3.3 Mutational features extraction using other methods
There are other methods that can also extract mutational features
for each patient. Here we compared the performance of MutSpace
with several other methods, including calculating the frequencies of
occurrence for mutational patterns in each patient (Mut-Freq),
decomposing the frequency matrix of mutational patterns using the
NMF algorithm, and regional mutational density (RMD) (Jiao
et al., 2020; Salvadores et al., 2019).

We obtained the frequency of mutational patterns (Mut-Freq) by
calculating the relative frequencies of them in each patient.
Regarding mutational patterns, we considered different lengths of
sequence context around the mutated base. As the length of the se-
quence context grows, the number of mutational patterns grows ex-
ponentially, which makes the training process of the classifier
unstable. Therefore, we applied principal component analysis (PCA)
on the mutation frequency matrix and kept the top 50 principal
components as the mutational features for each patient. Evaluations
on both simulated and real data showed that this strategy can im-
prove the performance when a larger sequence context (>*2 bp) is
considered. We also applied the NMF algorithm to the raw fre-
quency matrix of mutational patterns to reduce the number of muta-
tional features. We used scikit-learn for the implementation of NMF
(Pedregosa et al., 2011). We set the number of components decom-
posed by NMF also to be 50. We found that choosing different
parameters will not noticeably affect the performance. We calcu-
lated RMD by counting the number of non-coding mutations in
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each 1 Mb window in the human genome. We further normalized it
by dividing the count by the effective size of each bin after we
removed those regions belonging to protein-coding genes or unmap-
pable regions according to the annotation of Umap (Karimzadeh
etal.,2018).

3.4 Simulation of mutation dataset

We used two types of settings for data simulation, corresponding to
SS-I and SS-II. In SS-I, we assume that cancer subtypes are different
from each other only by their mutational patterns rather than the
distributions of mutation density on the genome. Specifically, we
first built a series of synthetic mutational signatures such that each
signature represents a set of 393 216 mutation patterns depicting all
possible combinations of nucleotides within *4 bp of the central
mutated base. Here we only consider six types of single nucleotide
mutations as mentioned above. Each mutational pattern is then
associated with a frequency indicating the probability of observing
such mutational pattern and the sum of all frequencies in each syn-
thetic signature is 1. To make the synthetic signatures analogous to
what we observed in the real data, we utilized the COSMIC muta-
tional signatures (https://cancer.sanger.ac.uk/cosmic/signatures_v2)
as a reference to build the margin frequency of trinucleotides (imme-
diate nucleotides flanking the mutated base) in synthetic signatures
by mixing frequency of different COSMIC signatures. The fre-
quency of flanking nucleotides with distance >1 bp from the
mutated base is derived by ignoring the central mutated base when
mixing COSMIC trinucleotides signatures. Finally, the frequencies
of mutational patterns in each subtype were constructed by a mix-
ture model with weights as the contribution of those +4 bp synthetic
signatures. To generate synthetic data, we randomly sampled muta-
tions according to the frequencies in each subtype. In each subtype,
we simulated mutation data for 100 patients. The number of muta-
tions in each patient (N) is determined by parameter (N = 107),
where the value of 0 is randomly sampled from a Gaussian distribu-
tion with a mean of 3 and a standard deviation of 0.3. In SS-II, we
assume that cancer subtypes are also varied by their mutational
density profile along the genome. For simplicity, we assume all the
mutations are from one chromosome and their locations on the
chromosome are sampled from a beta distribution with shape
parameters o and f§ (we assume the start of chromosome is 0 and the
end of chromosome is 1). We further discretized the locations of
mutations by binning mutations into 100 bins. In SS-II, cancer sub-
types are different from each other by either the weight of mixtures
of the synthetic signatures or the underlying distribution of locations
determined by the shape parameters.

3.5 Classification of cancer subtypes using mutational

features
To demonstrate the power of the embedded vectors extracted by
MutSpace on identifying cancer subtypes, we performed supervised
classification using kernelized support-vector machine (SVM)
(Vapnik 2000). The kernelized SVM takes mutational features
extracted from each patient as input and returns the predicted sub-
type assignment and probability. To apply SVM in multi-class set-
ting, we applied one-versus-rest strategy. For each subtype, we
treated patients with subtype A as positive and patients with other
subtypes as negative, and build a single SVM classifier to learn
whether a patient belongs to A subtype. We trained our model with
nested cross validation using different representations of mutational
features. The inner fivefold cross-validation conducts grid-search to
select hyperparameters (e.g. kernel, regularization penalty, etc.) that
leads to the highest F; score, and the outer fivefold cross validation
evaluates model performance on testing dataset by randomly split-
ting data into 80% training and 20% testing for five times. To ac-
count for the imbalanced number of instances in each subtype, we
modulated the weight of class for a subtype to increase the penalty
for mis-classifying minor classes by the inverse of their frequency.
We evaluated the performance using F; score, area under re-
ceiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC). F; score is the harmonic mean of

precision and recall for each binary classification task, i.e.
Fi = (2 x precision x recall)/(precision + recall). AUPRC measures
how well the model is able to identify all positive instances without
mistakenly labelling negative instances as positive. ROC curve is
plotted as true positive rate versus false positive rate, and the area
under this curve measures the ability to separate two classes. Since
all of the metrics described above are only applicable to binary
cases, we first calculated the scores for each subtype and then took
the average weighted by the class frequency as the overall score. We
report the mean and variance of these metrics calculated from our
nested cross validation. Model training and evaluation were imple-
mented using Python package scikit-learn version 0.22.

4 Conclusion and discussion

Although the integration of somatic mutations for cancer subtype
identification has received much attention recently, it remains un-
clear whether non-coding somatic mutations can offer unique char-
acterizations of molecular subtypes of cancer. One of the
advantages of using somatic mutations as input data is that the
mutations provide a cumulative record of the evolutionary process
caused by exogenous and endogenous mutagens (Jeggo et al., 2016).
In this work, we developed MutSpace to specifically address the
computational challenges to consider large-scale context for muta-
tional signatures. MutSpace effectively extracts patient-specific
features by jointly modelling mutations and patients in a latent high-
dimensional space. We demonstrated the feasibility of using
non-coding somatic mutations for cancer subtype identification by
simultaneously considering mutational density and mutational pat-
terns. Both simulations and proof-of-principle real data application
confirmed that the mutational features captured by MutSpace are
capable of stratifying cancer subtypes.

There are several directions that we can further improve
MutSpace. First, one of the promising future directions is to integrate
non-coding somatic mutations with coding mutations, in particular,
those residing in the known cancer driver genes. Kumar ez al. (2020)
have recently discovered that the aggregated effect of non-coding
mutations may play a more important role in tumorigenesis than
coding mutations. In the framework of MutSpace, coding mutations
can be treated as covariates of patients and thus modulate the final
embeddings of patients. Future research is needed to evaluate
whether this integrative approach can provide a better stratification
for different types of cancers. Second, we have a limited ability to in-
terpret mutational features extracted from MutSpace, which is a
challenge for embedding-based methods. Projecting the mutational
features to lower dimensions by approaches such as t-SNE is a pos-
sible way of exploring the enrichment of external annotations on
embedded space and has been widely used in other areas of computa-
tional genomics such as single-cell transcriptomics. A hierarchical ap-
proach to further cluster patients based on their embeddings using
localized diffusion folders (LDF) (David et al., 2010) may provide
potential representations of patients’ relationship. Another possible
alternative is to utilize synthetic mutation data with known aeti-
ology. For example, a recent study (Kucab et al., 2019) generated
mutation data by exposing cells to dozens of known environmental
carcinogens. Integrating these types of data together with somatic
mutation data from cancer patients in the same latent space may
have the potential to interpret patient-specific mutation patterns
based on mutations related to known carcinogens. Third, choosing
the right covariates as features of mutations and patients requires
prior knowledge. Future work is needed to more efficiently deter-
mine the best set of covariates as input features. Finally, with the de-
velopment of single-cell-based technologies, somatic mutation data
from longitudinal cancer studies are becoming available. It would be
important to further extend the framework of MutSpace by specific-
ally considering the temporal patterns of the mutational signatures in
the latent space. This may provide key insights into the evolutionary
forces that drive somatic mutation accumulation. Nevertheless,
MutSpace provides a new framework that would allow us to further
pursue these exciting questions.
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