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Abstract: Food packaging has seen a growth in the use of materials derived from renewable resources
such as poly(lactic acid) (PLA). However, the initial costs to produce bioplastics are typically high.
Tropical fruit waste as naturally sourced fibres, such as jackfruit skin, can be used as a cost-reducing
filler for PLA. The main objective in this study is to fabricate a low-cost natural fibre-reinforced polymer
that potentially applies in packaging with the aid of bleaching treatment. The treatment shows
a rougher surface fibre in Scanning electron microscopy (SEM) micrographs and it is expected to have
better mechanical locking with the matrix, and this is found similar with a Fourier-transform infrared
spectroscopy (FTIR) analysis. Unfortunately, fibre insertion does find low tensile performances, yet
bleached-fibre composites improved its performance significantly. A similar situation was found in
the thermal characterization where a low-thermal stability natural fibre composite has lower thermal
behaviour and this increased with bleaching treatment. Besides, bleached-fibre composites have
a longer service period. Besides, a 15 wt% thymol insertion inhibits the growth of Gram-positive
bacteria in the composites and the non-treated fibre composite has better thymol effects. The 30 wt%
of the bleached-fibre insertion composite has a high potential to reduce the cost of bioplastic products
with minimum alterations of overall performances.

Keywords: jackfruit skin powder fibre; characterization; antimicrobial activity; bleaching treatment;
polylactic acid

1. Introduction

Natural fibre-reinforced polymer composites are not something new nowadays. Natural fibre
reinforcement has been proven to be comparable with synthetic fibre composites and is commonly
applied in major advanced industries, such as aerospace, automotive, medical and packaging [1-3].
Other than technical performances, natural fibre reinforcement also promotes the use of green materials
which are harmless to the environment, almost zero in cost, wheel the social economics of low-income
families as well as prolong fabrication tools’ life and reduce workers” health issues [4]. Together with
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all factors, natural fibre usage has been intensively increasing to replace synthetic fibres. Natural fibres
are a big family group and consist of hundreds of types of natural fibres. However, only a few major
types of the natural fibre undergo enormous research developments. The other types of natural fibres
could not attract the attention of researchers or industries due to many factors, such as the limitation
of geology conditions, growth and/or fibre extraction difficulties [5]. These fibres failed to create
a complete supply—demand cycle and thereby further knock back by the public.

Jackfruits or Artocaprus heterophyllus are a common tropical fruit that is usually consumed in
the Southeast Asia region. It originated in the rain forests of the Western Ghats in the southwestern
part of India and is now widely distributed in tropical countries such as Brazil, Thailand, Indonesia,
India, the Philippines and Malaysia [6]. Jackfruits are composed of several berries of yellow pulp
and brown seeds encased in a hard shell and are rich in carbohydrates, complex B vitamins and
minerals. However, only 15-20% of the fruit is used as food, which can be cooked, baked or roasted
on coals. The waste produced is 65-80% of the total weight of the jackfruit [7]. This waste can be
potentially turned to benefit biomass through incorporation as a filler or reinforcement into a polymer
matrix. Natural fibre reinforces polymer composites by several modes (long fibre, short fibre, textile,
non-woven and powder forms) [8]. Jackfruit fibre reinforcement and/or fillers have been claimed
potentially of use in polymer film packaging [9]. However, limited previous studies conducted on this
fibre and hence make it one of the most under-utilised natural fibres

Jackfruit peel is commonly treated as waste; it consists of ca. 50% of «-cellulose which makes
it suitable for microcrystalline cellulose production as well as low-cost filler for the production of
biocomposite materials [10]. The amount of fruit wastes produced increases when the production of
processed fruit products increases. Jackfruit wastes such as skin, straw and seed have no economic
value, which can lead to environmental problems. However, this waste can potentially benefit biomass
through incorporation as a filler into the polymer matrix. At present, the available information on
the utilization of jackfruit skin as a filler in the composite system is still limited. The presence of this
low-cost filler in polymer material may be able to improve the performance of virgin materials as well
as reduce the density and lower the cost of end products [11,12].

Bleaching treatment is a well-known fibre treatment to improve fibre/matrix interfacial bonding.
It modifies and activates the fibre structure using a hydroxyl group chemical to have a higher number
of bonding sites for better adhesion. Bleaching treatments remove non-cellulosic components on
the fibre surface and, most importantly, they are environmentally safe [13]. A previous study showed
an improvement of mechanical properties when the fibres were subjected to bleaching treatment [14].
Enhanced interfacial adhesion is the reason behind this improvement. Besides, bleaching treatment also
gives a whitening effect to the fibre and hence the appearance of the final product [15]. The whitening
effect is a critical criterion for some applications where physical appearance is important, such as food
packaging including film and paper.

Maintaining the food freshness is a difficult task. Antimicrobial properties inherent in food
packaging could help to increase food shelf-life and thereby reduce food waste. The fresh food will
be attacked by microbes and bring illness to consumers. The growth of microbes on foods” surfaces
shall be accelerated once they get water and oxygen. Unfortunately, it is very hard to eliminate all
water and oxygen for fresh food. There are many natural antimicrobial agents that are suitable for
food packaging available in the market, such as carvacrol, thymol and cinnamaldehyde, which inhibit
noticeable antimicrobial activity [16]. However, thymol is one of the famous antimicrobial agents
and it exhibits the highest in vitro antimicrobial activities against E. coli and S. aureus [17]. It is less
water-soluble at neutral pH, but it dissolves well in organic solvents and alcohols. Petchwattana and
Naknaen (2015) found thymol insertion in poly(butylene succinate) film has an effective microbes
inhibition properties [18]. Marchese et al. (2016) reviewed the antibacterial and antifungal activities
of the thymol, as a safe food preservative agent [19]. However, incorporation of the thymol fillers in
composites found a deterioration of the composite’s mechanical performances yet a slight improvement
in its thermal stability [20].
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In previous studies, there are limited investigations on the use of jackfruits fibres for composite
reinforcement and no past research conducted on the application of thymol as an antimicrobial agent
in jackfruit fibre-incorporated poly(lactic acid) (PLA) composites [20-22]. In this study, a bleaching
treatment shall be conducted on jackfruit fibre before mixing with PLA composite to show the effect of
fibre treatment and reinforcement into PLA composite. The insertion of thymol into PLA and PLA
composites also carried out in order to inhibit the growth of bacteria in vitro.

2. Materials and Methods

2.1. Materials

Ripe jackfruit from Nagka Madu (J33) species was purchased from a wholesale market (Selangor,
Malaysia). The preparation of jackfruit skin powder (JSP) involved washing, chopping, drying,
grinding and sieving. Polylactic acid IngeoTM, 7001D was provided in resin form by NatureWorks
LLC (Minnetonka, MN, USA). The density, melting temperature range and glass transition temperature
of PLA were 1.24 g/cm?3, 145-160 °C and 59 °C, respectively.

The chemicals used for the bleaching or delignification process were sodium hydroxide (NaOH),
acetic acid (CH3COOH) and sodium chlorite (NaClO,) with 80% purity, supplied from R&M Chemicals
(Selangor, Malaysia). A natural antimicrobial agent, thymol is also known as a food additive and
was purchased from R&M Chemical, Malaysia. Nutrient agar, nutrient broth and peptone water
were purchased from Oxoid, Malaysia. Gram-positive bacteria, Staphylococcus aureus (S. aureus), were
provided by the Institute of Bioscience, Universiti Putra Malaysia, Malaysia. The overall flow diagram
is shown in Figure 1.

2.2. Preparation of Jackfruit Skin Powder (JSP)

The jackfruit was chopped in half in order to separate its flesh and skin. The jackfruit skin was then
washed and oven-dried at 60 °C for 72 h. Next, the dried jackfruit skin was crushed using a grinder
(Retsch SM200, Haan, Germany) and passed through a 0.5-mm-sized mesh. The sample was inserted
into a vibratory sieve shaker (Retsch AS200, Haan, Germany) with a 250-500 um mesh size to produce
a constant size of powder. All the experimental works conducted at Universiti Putra Malaysia.

2.3. Bleaching of Jackfruit Skin Powder (BJSP)

The bleaching treatment of JSP was carried out following the conditions in accordance with
ASTMD1104-56 in order to produce holocellulose, which is primarily designed to remove lignin [21].
Initially, 10 g of the JSP was rinsed with distilled water to remove dust and foreign materials. This was
followed by soaking in a 500 mL beaker containing 300 mL of hot distilled water. Then, the beaker was
transferred into the water bath which was set at 70 °C. Next, 2 mL of acetic acid and 4 g of sodium
chlorite were consecutively added every 1 h into the beaker for a total process time of 5 h. The mixture
was stirred with a glass rod and covered with aluminium foil. The bleaching process was indicated by
the colour change of the JSP from light brown to white. It was then washed and rinsed with distilled
water until the yellow colour and the odour was removed.

2.4. Preparation of PLA/|SP and PLA/BJSP Composites with Thymol

The PLA and PLA composites were compounded by using a Brabender Plasti-Corder (Retsch
AS200, Haan, Germany) internal mixer, which was equipped with a twin roller. The roller speed of
the internal mixer was set at 50 rpm. The mixing process was carried out at 170 °C to ensure complete
melting of PLA resins. The time taken to blend the composite in the mixer was about 8 min. The JSP
was added into the hopper 2 min after the PLA has been melted in the chamber. The PLA resin was
dried at 60 °C for 24 h prior to the compounding process. A hot press machine was used to fabricate
the PLA and PLA composite sheets. The specimen was preheated at 160 °C for 4 min and pressed at
the same temperature before cooling. A hand-held digital vernier calliper (B.C Ames Co., Framingham,
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MA, USA) was used for measuring composite sheets with a thickness of 1 to 2 mm. The composite
formulation is shown in Table 1.
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Figure 1. Flow diagram of the current study’s methodology.

Table 1. Formulation of poly(lactic acid) (PLA) and PLA composites.

Fibre Fibre
Thymol
. Powder . . Powder .
Composite Naming Composite Content Naming
Content Content (WE%)
(Wt%) (Wt%) Wi
PLA 0 PLA
10 10JSP 0 5 PLA-5THY
Untreated 20 20]JSP PLA-THY 0 10 PLA-10THY
Jsp 30 30JspP 0 15 PLA-15THY
40 40]SP
10 10BJSP 30 5 30BJSP-5THY
20 20BJSP 30BJSP-THY 30 10 30BJSP-10THY
Bleached JSP 30 30BJSP 30 15 30BJSP-15THY

40 40BJSP
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2.5. Composites Characteristics

2.5.1. Infrared Spectroscopy

A Fourier-transform infrared spectroscopy (FTIR) Perkin Elmer Spectrum One FI-IR Spectrometer
(Waltham, MA, USA), with the attenuated total reflectance (ATR) technique, was used to detect possible
changes in the functional group of untreated and bleached JSP. All the spectra were recorded in
the transmittance mode with a resolution of 4 cm~! in the range of 400 to 4000 nm. Ten scans were
performed for each acquisition.

2.5.2. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed to observe the surface topography of JSP,
BJSP and 30-BJSP-10THY using SEM LEO 1455 VP, (Carl Zeiss AG, Oberkochen, Germany).

2.5.3. Tensile Testing

The tensile test was performed using a 5-kN Universal Instron 3365 Testing Machine according to
the standard ASTM D638 with a cross-head speed of 5 mm/min. Prior to the tensile test, the width
and thickness of the specimens were measured by using a micrometre. Five specimens of the sample
were cut using a dumbbell-shape cutter for each sample were tested and analysed. Tensile strength,
elongation at break and tensile modulus was obtained from the plotted graph.

2.5.4. Thermogravimetric Analysis

Thermal properties of sample were analysed using a thermogravimetric analysis. In this analysis,
a Pyris 1 Thermogravimetric Analyser PerkinElmer was used. Firstly, the pan of the instrument must
be cleaned so that no contamination occurred. All samples were heated from 50 to 600 °C with a heating
rate of 10 °C/min (heating scan). Then, the degradation temperature of composites and evaporation
temperature of thymol were obtained from the graph.

2.5.5. Differential Scanning Calorimetry

The thermal properties of the composites also were measured by using differential scanning
calorimetry (DSC) under an inert gas (nitrogen) atmosphere. The samples of composites were weighed
and sealed in aluminium crucibles. The heating was performed over the range 30 to 300 °C at a rate of
10 °C/min and with a nitrogen flow rate of 20 mL/min.

2.5.6. Composite Degradation Test

A qualitative study of the decomposition under composting conditions was performed on
composite samples cut into pieces (20 mm X 14 mm X 1.3 mm). Samples were buried in a commercial
compost at a 5-cm depth in perforated boxes and incubated at 58 °C. Aerobic conditions were maintained
by mixing the compost periodically and by the addition of water to maintain a moisture content
equivalent to 60% relative humidity. Samples were removed from the compost after 7 and 15 days,
were immediately washed with distilled water to remove traces of compost, and then photographed.

2.5.7. Antimicrobial Activity

In order to determine the effectiveness of thymol as an antimicrobial agent, a disc of diffusion
test was conducted. A single strain of bacteria S. aureus was grown in nutrient broth and incubated
at 37 °C for 24 h until the total bacterial count was 10°~107 cfu/mL. A ten-fold dilution was then
conducted where 9 mL peptone water was mixed with 1 mL of the test sample three times. In total,
100 pL of the test sample was then transferred via micropipette and spread onto a agar plate which
was then incubated for 24 h with the PLA and the composite containing thymol, as well as tetracycline
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30 antibiotic (as negative control) discs, was placed on the agar. The presence of a zone of inhibition
was observed.

2.5.8. Statistical Analysis

The data were analysed using Minitab 14.12.0 (Universiti Putra Malaysia, Malaysia) by one-way
analysis of variance (ANOVA), followed by Tukey’s multiple comparison tests at a 95% confidence level.

3. Results and Discussions

3.1. SEM

The SEM micrograph in Figure 2 is to show and compare the fibre surface difference between
(a) unbleached JSP and (b) bleached jackfruit skin fibre (BJSP). In the figure, it clearly shows a rougher
fibre surface after bleaching treatment, showing an effective removal of non-cellulosic components.
This provides a high expectation on better characterizations when applying BJSP in PLA composites,
with good mechanical fibre locking with the matrix.

HITACHI 10.0kV:10.3mm x2(

(a)

Figure 2. Scanning electron microscopy (SEM) micrograph for (a) unbleached jackfruit skin powder
(JSP) and (b) bleached jackfruit skin powder (BJSP).

On the other hand, the incorporation of thymol in the BJSP/PLA composite found fibre pull-out
during the fracture condition, as shown in Figure 3. The thymol, which was originally oil-based, acts
as a lubricant between the fibre and matrix interface, weakening interfacial bonding and accelerating
fibre pull-out [23]. Hence, a lower strength performance is suggested in this study.

Figure 3. SEM micrograph for 10 wt% thymol in 30BJSP composite.
3.2. FTIR

In order to confirm the effect of bleaching treatment on the jackfruit skin powder (JSP)’s, surface
FTIR spectra of JSP and BJSP were obtained and are shown in Figure 4. In both JSP and BJSP spectra,
there is a broad peak recorded at 3330 cm™!, indicating the presence of O-H groups as agreed by Ilyas
(2017) [24]. This is contributed by cellulose, hemicellulose and lignin components, which are found
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rich in all types of natural fibres. However, there is a slight peak shift between the JSP and BJSP spectra.
This suggested that after the bleaching process there is a slight change in O-H groups in the JSP.

Unfreated JSP i
: 1600 ! |

Absorbance

Blefached JSP

3700 3200 2700 2200 1700 1200 700
Wavenumber/cm-1

Figure 4. Fourier-transform infrared (FTIR) spectrum for JSP and BJSP.

On the other hand, an absorbance peak at 2890 cm™! in the JSP spectrum is observed which
corresponds to the C-H group stretching. This result could be in agreement with the findings of
Rayung (2014) [14]. This peak was bluntly presented after the bleaching treatment, which specified
the changes in C-H group components during chemical extraction. This also was supported by Jonoobi
(2010) [25]. Moreover, a lower intensify peak was found at 1600 cm™! for BJSP showing a successful
bleaching treatment that removed the aromatic groups presented in lignin components [26].

3.3. Mechanical Properties

In this study, the pure PLA possessed a higher tensile strength (53.2 MPa) than all PLA composites
with BJSP or JSP insertion, as shown in Figure 5a. A decrease in tensile strength resulting from
an increase in fibre loading could be attributed to a weaker interfacial interaction between PLA
and fibre, which resulted in an inefficient stress transfer [14]. Fortunately, the tensile strength of
BJSP-filled PLA composites recorded significant increments with p < 0.05. This trend can be ascribed
to the better interfacial adhesion between the fibre and matrix, due to removal of non-cellulosic
components via bleaching treatments, and it is synchronised with the FTIR analysis and evidenced by
the SEM micrograph [27]. On the other hand, a higher crystallinity index was found due to higher
fibre contents and/or fibre treatments as reported in a previous study [28]. This higher crystallinity
index was responsible for the higher strength performances. An insertion of 30 wt% jackfruit fibre is
the optimum reinforcement loading for PLA polymer composites, where the highest tensile strength
was recorded among all fibre reinforcement ratios, for both treated and untreated fibres. Excess fibre
loading resulted in incomplete wetting due to insufficient matrices and hence lower strength capacity.
Besides, there is a high possibility that excess fibre powders’ insertion leads to fibre agglomeration,
creating non-homogeneous composites.

PLA is a stiff but brittle material and, with the addition of fibre, shows better tensile modulus
values—fibre-reinforced composites present a stiffer material. All JSP or BJSP composites were
found to have a higher tensile modulus than pure PLA and this is agreed by previous investigations
(Figure 5b) [29]. The presence of fillers restricted the polymer’s chain mobility and thereby yielded
a higher composite stiffness.

On the other hand, the elongation at break of the pure PLA shows the highest value (9%) compared
to its composites (Figure 5c). Furthermore, the elongation at break decreased with increased fibre
loading, regardless of treatment, but no significant changes from 10 to 30 wt% loading of powder was
observed. This is because of the inherent rigidity of the JSP particles, leading to a loss of ductility in
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the PLA composites. At the same time, a lower elongation at break for BJSP composites was due to
the enhanced interfacial adhesion, which led to the lower polymer chain mobility, another signal of

successful treatment.
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Figure 5. The figure shows the (a) tensile strength, (b) tensile modulus and (c) elongation at break
of PLA and its composites. Data represents mean + standard deviation of four independent repeats.

Different letters in each JSP loading indicate significant differences (p < 0.05).

Figure 6a shows the tensile strength for PLA and 30BJSP composites with different thymol
loading (5-15 wt%), to investigate the effect of thymol insertion. The strength of pure PLA is
higher than the fibre-inserted composites, regardless of thymol loading. Observing the chart
shows that as the thymol increases, the strength performances of the composites are lower. This
observation was predicted and corresponds with a previous study [30]. For a lack of better words,
the addition of thymol compounds found in essential oils resulted in a lowered interaction between PLA
molecules and obstructs the polymer chain-to-chain interactions which ultimately causes a decrease in
the tensile strength [31]. This situation was at its worst when natural fibres were inserted together in

the composite system.

Figure 6b shows the tensile modulus for PLA polymer and 30BJSP composites with different
thymol loadings (5-15 wt%). Insignificant changes of the tensile modulus were observed for all
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specimens except 15 wt% of thymol contents composite with p > 0.05. It also shows a very drastic
decrease (82%) in its tensile modulus and suggests a shift from brittle to elastic properties. Thymol has
been reported to exhibit a plasticizer effect when it is mixed into a polymer matrix. It is known to lower
the intermolecular force and cause an increase in the mobility of polymeric chains, thus increasing
the polymer’s flexibility [23,32]. This thus supports the results in this study where the insertion of
thymol increases the flexibility of composites by reducing the tensile modulus.

a OPLA OPLA
50 4 + 2 a @BISP 8000 1 a-ib QI BJSP
ab 2a X
7 40 1 ] 6000 { | Il b
- ¢ i
= 30 - =
=1 a a S 4000
c >
g 20 1 b 8
& b
@ E, 2000 - c
§ 10 4 g ¢ H
- : i
F oo _ o |
0 5 10 15 0 5 10 15
Thymol (%) Thymol (%)
(a) (b)
OPLA a
40 | OBISP
< 30 a I
: —
o
— 20 N
@ L b
©
c b b 1
S 104 1
© - C
g) C
5 Hﬁ mﬂ
o 0 ; . .
0 5 10 15

Thymol (%)
(c)

Figure 6. The figure shows the (a) tensile strength, (b) tensile modulus and (c) elongation at break of
PLA- and 30BJSP-based composites with different thymol contents. Data represents mean + standard
deviation of four independent repeats. Different letters in each thymol loading indicate significant
differences (p < 0.05).

Thymol reinforcement was also found to affect the elongation at break for specimens. Figure 6¢
shows the elongation at break for the PLA polymer and 30BJSP composites with different thymol
loadings (5-15 wt%). By adding thymol, the elongation at break gradually increases significantly (p <
0.05), which suggests a higher elasticity of specimens, for both with and without fibre reinforcements.

The addition of fibre shows a decrease in the elongation at break compared to its PLA/thymol
counterpart. This suggests that fibre reduces the elasticity of the composite, which is related to
the previously mentioned statement that fibre is a stiff material that causes the composite to be stiffer
and less flexible. As the thymol content reaches 15 wt%, the elongation at break increases drastically
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which may refer to thymol being a dispersing agent for the fibre which in return causes it to lose
stiffness and thus increases in flexibility [33].

3.4. Differential Scanning Calorimetry (DSC)

Table 2 summaries the key data obtained from the analysis of the DSC thermograms of PLA and
its composites. The onset of Tg, Tec, Tm of the PLA composites containing JSP or BJSP showed no
significant differences/slightly lower as compared to PLA polymer. The PLA polymer demonstrates
double melting peaks with one higher dominant peak at higher temperatures (Tp,7). These melting
peaks shifted slightly to a lower temperature for 10JSP yet recorded no difference for the 30BJSP
specimen. The reason behind this is because the poor interfacial bonding of the fibre/matrix absorbs
less heat energy before melting and this is found to be synchronised with the strength profile and
lower mechanical properties for 10JSP. After this, the addition of fibre reinforcement increases heat
absorption in order to melt. On the other hand, treated fibre-reinforced composites requiring a higher
melting temperature are responsible for the better fibre/matrix interlocking mechanism that needs
more energy to break down.

Table 2. Thermal analysis parameters obtained from ifferential scanning calorimetry (DSC) thermograms
of PLA and its composites.

Sample Tg (°C) T CQ) T CO) Tm2 (°O) AH (J/g) AHy (J/g)
PLA 59.69 101.99 151.27 155.58 21.72 32.63
10JSpP 57.69 98.17 150.74 154.99 15.16 27.85

10BJSP 58.41 95.01 151.12 155.55 14.00 36.46
30]SP 56.66 95.39 151.24 156.19 15.45 32.71

30BJSP 57.61 96.76 152.53 157.13 13.41 33.34

PLA-5THY 51.60 93.87 145.72 151.50 14.94 25.96
PLA-10THY 40.38 86.96 140.05 147.27 16.47 23.42
30BJSP-5THY 50.10 - 145.83 - - 42.28

30BJSP-10THY 39.50 - 129.79 - - 36.18

The insertion of natural fibres reduced the glass transition temperature, Tg, and higher decrement
for higher fibre contents. This was due to insufficient polymer wetting on the fibre surface, making
its polymer chains slippery at lower temperatures. When comparing treated and untreated fibre
reinforcements, the results were expected. Bleaching treatments remove non-cellulosic components
on fibre surfaces, and later aids in increased physical entanglement with the PLA matrix, thereby
resulting in higher Ty values [34]. On the other hand, fibres and thymol act as nucleating agents by
showing evidence of earlier crystallization temperatures (T) for all PLA composites. This is found to
be aligned with a previous PLA composite study [35].

Figure 7 represents the DSC thermograms of the PLA and its thymol composites. By increasing
the thymol contents, it can be observed the a significant reduction in the Ty value can be associated
with the plasticizing effect from thymol [23]. The destruction of polymer bonding by thymol made
the composite more and more flexible—evidence from the elongation analysis. This disturbance was
found to be even worse when introducing natural fibres into the thymol composite. Therefore, a lower
glass transition and melting temperature were observed with the increase in thymol loadings.

3.5. Thermogravimetric Analysis (TGA)

The objective of a thermogravimetric analysis is to investigate the decomposition and degradation
of composites at higher temperatures. In general, the first process of weight loss of fibre is attributed
to the thermal degradation of lignin and hemicellulose. The next weight loss is associated to
the decomposition of the o-cellulose present in the fibre. The thermogravimetric (TG) profiles of neat
PLA and PLA composites containing JSP and BJSP, with loadings of 10 wt% and 30 wt% JSP, are shown
in Figure 8a in the form of the weight loss as a function of temperature. The corresponding derivative
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weight-loss curve is also shown in Figure 8b to give a more detailed analysis of the TGA data to be
made which provides the rate at which the different composites decompose.
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Figure 7. Differential scanning calorimetry (DSC) analysis for PLA and its thymol composites.
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Figure 8. PLA and its composites’ curve for (a) thermogravimetric analysis (TGA), (b) derivative
thermogravimetric analysis (DTGA).

The PLA polymer has the maximum degradation temperature (370 °C) and it is expected to
shift to a lower temperature for natural fibre-reinforced composites. This is because the insertion of
lower thermal stability natural fibre would cause early thermal degradation, due to the lignin and
hemicellulose components in fibre. The presence of JSP in the PLA destabilised the PLA matrix in
the composite whereby some portion of the polymer is replaced by less thermally stable fibres in
the composite materials [36].

When looking into the effect of bleaching treatments, a higher onset temperature was found
compared to untreated fibre composite specimens. This shows the success of bleaching treatment
regarding the removal of low-thermal stability non-cellulosic components on the fibre’s surface,
improving the fibre’s overall thermal properties. However, as expected, JSP specimens (10JSP and
30JSP) had a higher mass residue at the end of the analysis, due to the char formation by the lignin
constituent. It provides better dimensional integrity for untreated fibre composites. Figure 9 shows TGA
and Derivative thermogravimetric analysis (DTGA) curves for thymol insertions in PLA and 30BSJP
composites. It found insignificant changes for thymol inclusion in the composite since the changes
were less than 2.5% for all specimens in this study.
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Figure 9. TGA and DTGA curve, (a) PLA and its thymol composites and (b) 30BSP and its
thymol composites.

3.6. Decomposition in Compost

Different loadings of JSP and BJSP of PLA composites were buried under a soil surface that
consisted of compost and garden soil. The soil environment contains different kinds of controlled
microorganism which help in the composite’s degradation process. Figure 10 shows the observation
for PLA and its composites containing 10 and 30 wt% of JSP or BJSP reinforcement that were removed
from controlled composting conditions for day 7 and 15. From the table, the degradation of PLA is
very slow in soil by which there are no significant changes of colour or mass losses. This may be due to
the contaminated sample which interrupts the microorganism to attack and metabolize the polymer
matrix. It can be shown here that PLA degradation upon disposal in the environment (environmental
degradation) is more challenging because PLA is largely resistant to attack by microorganisms in soil
or sewage under ambient conditions [37].

The observation on PLA composites was expected as the higher amount of fibre content increased
the rate of biodegradation. Microorganisms were attracted to the fibre in the composite. They consumed
the fibre and caused a fracture in the PLA chains. However, the 30BJSP composite shows some of
the changes in colour with an insignificant reduction in mass losses. This may be due to the stronger
interfacial adhesion synchronised with mechanical properties, which lower the number of voids that
are exposed to enzyme hydrolysis and hence resulted in a longer degradation time [38].

3.7. Antimicrobial Activity

Figure 11 shows the zone of inhibition of active PLA, 30JSP and 30BJSP composites with 15 wt%
thymol. The antimicrobial activity was tested in vitro to determine the potential of thymol as
an antimicrobial agent in the composites. The 30BJSP-15THY composite had a zone with S. aureus
present but it was small while 30JSP-15THY showed a clear zone of inhibition against S. aureus.
The findings in this study show antimicrobial activities from thymol insertion, similar with a previous
study [23] where 10 wt% thymol and 30 wt% kenaf fibre displayed a clear zone of inhibition against E. coli.
In this study, a brittle and less-rigid composite such as 30JSP-15THY was able to release the thymol
significantly and inhibit the growth of Gram-positive bacteria than the bleached-fibre composite.
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Figure 11. Antimicrobial activity of PLA-based composites against S. aureus after 24 h of incubation at
37 °C for (a) PLA-15THY, (b) 30JSP-15THY, (c) 30BJSP-15THY and (d) negative control.
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4. Conclusions

The objective in this study has been achieved—i.e., to fabricate a low-cost natural fibre-reinforced
polymer that can be potentially applied to packaging. The insertion of jackfruits fibres has replaced
a portion of expensive PLA raw materials, in turn reducing the overall cost and 30 wt% of fibre
insertion recorded the highest tensile performances. Besides, the bleaching treatment helped to
improve the composite’s performance in terms of its mechanical and thermal properties, as well as
enable it to last for a longer service period. Moreover, 30JSP-15THY was able to release the thymol
significantly and inhibit the growth of Gram-positive bacteria than the bleached-fibre composite. As
a further development, 30 wt% of the bleached-fibre insertion composite should receive further analysis
since it has high potential to reduce the cost of bioplastic products with a minimum alteration of
overall performances.
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