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Abstract  

The brain's ability to stably represent recurring visual scenes is crucial for behavior. Previous studies have 
used slow dynamic (1-5 seconds) rate code measurements to study visual tuning, revealing varying degrees of 
gradual activity changes over time or “representational drifts.” However, it remains unclear if there is an 
underlying neural code that maintains the encoding of information stable over time. In this study, we extracted 
structures in fast (tens of milliseconds) temporal responses and explored the role of such temporal codes in 
supporting the stability of visual representations. We tracked the spiking activity of the same visual cortical 
populations in male mice for 15 consecutive days using custom-developed, large-scale, ultraflexible electrode 
arrays. Across various types of stimuli, we found that neurons exhibited varying degrees of day-to-day stability 
in their firing rate-based tuning. The across day stability correlated with tuning reliability. Notably, accounting 
for spiking temporal dynamics increased single neuron tuning stability, especially for less reliable neurons. 
Temporal coding further improved population representation discriminability and decoding accuracy. The 
stability of temporal codes was more correlated with network functional connectivity than rate coding. These 
results show that temporal coding is crucial for stably encoding sensory stimuli, suggesting its significant role in 
ensuring consistent sensory experiences. 

Introduction  

The plasticity in neuronal responses1, 2  allows us to adapt behaviorally to the ever-changing environment. Yet, 
even without overt adaptation pressure, spontaneous remapping of neural activity, known as drifts, has been 
widely reported in multiple brain regions3-6. In the visual cortex, prior studies have revealed various degrees of 
drifting in response to diverse stimulation patterns. While single neuron tuning to orientation7, spatial 
frequency8, size9 of artificial grating stimuli is moderately consistent over the course of weeks, naturalistic 
stimuli evoke responses that drift considerably over the course of minutes to weeks10, occurring in a large 
number of visual sub-regions and neuron types10, 11. In recent literature12. it is observed that while responses to 
30 seconds-long natural movie drifted across weeks at the level of individual neurons, a populational neural 
code denoised by unsupervised machine learning provided a more stable representation of time within the 
movie clip. However, it remains unclear what neural mechanisms generally anchor consistent visual perception 
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at sub-second timescale and are relevant to both individual neurons and neural populations. Importantly, prior 
studies predominantly rely on two-photon imaging of Ca2+ transients to reveal visually evoked population 
responses, which only provide a proxy of spiking with limited temporal resolution13-17. Consequently, these 
studies mostly use seconds-long rate codes (firing rates, spike counts normalized by elapsed time) to compute 
visual representations, largely eliminating structures and information in the fast spiking dynamics. Information 
and structures in the timing of stimulus-evoked spikes, referred to as the temporal code18, may describe unique 
aspects of external stimuli. We thus hypothesize that temporal code and rate code have different rates of 
representational drift over extended periods.  

Temporal code is supported by both anatomical and functional evidence. Visual cortical neurons receive 
diverse types of synaptic inputs, ranging from feedforward retinal input and between-layer recurrent 
connections to feedback connections from higher visual areas19, 20, which naturally give rise to varying temporal 
dynamics. These asynchronous inputs and their complicated interactions could form the basis of a temporal 
code21. Accordingly, spiking dynamics responding to sustained visual scenes have been hypothesized to code 
for contrast, spatial frequencies, and figure-ground differentiation22-26. These snapshot studies, however, have 
not determined whether temporal dynamics remain consistent over days or how they contribute to the stability 
of visual representations. In addition, only a handful of neurons are typically recorded, thus limiting the study of 
population representation and visual decoding. Recently, high-density silicon probes have enabled chronic27, 
large-scale28 recording in mouse visual cortices, yet their ability to study longitudinal representation stability 
has not been clearly established. 

Here we report a time-resolved evaluation of long-term visual representations in the mouse visual cortex using 
stable, large-scale electrophysiological recordings by ultraflexible nanoelectronic threads29, 30 (NETs). NETs, 
being ultraflexible and only 1 μm thick, form seamless, glial scar-free integration with the surrounding tissue, 
largely eliminating instability at the tissue-electrode interface in both the short and long terms that could 
otherwise confound the study of the representation stability. We tracked the same neuronal populations over 
the course of 15 consecutive days while mice experienced diverse, repeated stimuli including drifting gratings, 
static gratings, receptive field Gabors and natural scenes. Neurons displayed varying levels of day-to-day 
stability in their rate code tuning. This stability correlated with their tuning reliability. We found that visually 
evoked spiking time courses could largely represent stimulus features over time consistently when the readout 
time bins were fixed. Critically, taking into account temporal codes with fast dynamics (tens of milliseconds), 
compared with rate codes (hundreds of milliseconds), improved the stability of single neuron tuning, especially 
for less reliable neurons. At the populational level, temporal coding led to more stable and distinct 
representations in all tested stimuli. Accordingly, adding temporal information consistently improved the 
stimulus decoding accuracy in future days. Lastly, we found that the stability of temporal code was associated 
with network functional connectivity and its changes. Collectively, our time-resolved, day-to-day, multi-scale 
analysis of visual representation stability, facilitated by large-scale recordings from ultraflexible electrode 
arrays, has shown that temporal coding plays a crucial role in ensuring consistent visual perception.  
 
Results 
 
Longitudinal tracking of hundreds of single units under diverse visual stimuli reveals tuning stability 
and drifts 
 
Understanding visual representations and their longitudinal stability requires recording at multiple scales, 
encompassing individual cells to large neuronal populations. This approach is essential because instabilities 
may exist at the level of individual units while stability may emerge at the population level7. Additionally, 
various factors such as inconsistent familiarity with the stimuli and instability at the tissue-electrode interface 
could potentially mask or contaminate the intrinsic stability of the neuronal responses and thus need to be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

carefully controlled. To fulfill these requirements, we implanted a total of 25 32-channel NETs in the visu
(V1 and LM) of n = 5 mice (3-7 NETs in each animal) and recorded neuronal populations during visual
over 15 consecutive daily sessions. We performed these recordings 50 days post-surgery to allow v
and neuronal remodeling to cease sufficiently31, followed by a familiarization period of 12 days (med
remove the confounds of stimulus novelty on neural coding5, 32, 33. In each session, we presented id
visual stimuli of four major types (Fig. 1a): drifting gratings, static gratings, receptive field Gabors, and 
images. 

Fig. 1: Longitudinal tracking of hundreds of single units under diverse visual stimuli reveals 
stability and drift. 
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a. Schematics (left) showing the measurement setup, Credit: Wang Wu, Shanghai. Ultraflexible NETs were 
implanted in V1 and LM for stable, tissue-integrated recordings under diverse stimuli (right). Bottom: 
experimental timeline of an example animal. b-c. The number of single units (b) and their average firing rates 
(c) from 5 animals (gray lines) recorded over 15 days did not change. Linear mixed effect, time as fixed effect, 
individual animal as random effect. Colored lines indicate mean ± s.e.m. d. A large fraction of single units 
tracked for extended periods, showing longevity tally, units sorted by first appearance session and color-coded 
for tracking longevity. e. Number of tracked single units for certain intervals based on 3 criteria: total number of 
sessions appeared (appear, blue), consecutive sessions appeared (consecutive, black), and the day range 
between the first and last seen session (range, red). The purple dashed line indicates the maximal possible 
range for a given unit (e.g., a unit first appearing on day 14 can only be tracked for a maximum day range of 
two days). See Supplemental Methods for more quantification explanations. f-h. Stable functional tuning to 
visual stimuli across all 15 days. Color denotes z-scored firing rate for 6 example neurons responding to 30 
static gratings (f) of 5 spatial frequencies in cycles per degree (cpd) and 6 orientations; 6 example neurons 
responding to 16 drifting gratings with grating directions spaced 22.5°, with example 4 directions marked (g); 
and 6 example neurons responding to 100 natural images. Natural image examples from the authors, actual 
stimuli not shown due to copyright restrictions. (h). Tuning curve similarity after 7 days is denoted by the 
correlation coefficient “r” value. i. A large number of neurons (n = 353) had diverse, distinctive, and overall 
stable preferences for 100 natural images across 15 days, neuron orders were not resorted between days. 
Bottom: zoomed-in plot of pink-marked regions in the top panel, showing evidence of minor but clear feature 
preference drift across time in neuron populations. j. Neuron identity shuffled decoder approached chance at a 
higher rate than the fixed-in-time decoder when predicting 100 natural images. 10% of cells were shuffled per 
session, resulting in an expected (0.9)day fraction of unshuffled neurons at any given day. The sliding-in-time 
decoders further reduced the rate of error increase compared to the fixed decoders for all stimuli. Sliding 
decoders did not show an error increase and approached within-day decoding performance. Colored lines 
indicate mean ± s.e.m. Linear mixed effect, time as fixed effect, decoding method (shuffle vs. fixed-in-time / 
sliding vs. fixed-in-time) as fixed effect, 500 animal-image pairs as random effect. Only tuned single neurons 
appearing for 15 days were included in the decoder of any given animal. See Supplementary Table 1 for 
additional reporting on sample size and statistics. 

To verify stability of longitudinal recording, we quantified the number of recorded single units (Fig. 1b), their 
mean firing rates at each session (Fig. 1c) as well as the spatial distribution of unit amplitude and firing rate 
along cortical depth (Supplementary Fig1a-b). All these metrics were stable over the entire longitudinal period, 
confirming minimum electrode-tissue movements and permitting tracking of individual neurons throughout all 
sessions. We used an actively-learned ensemble of hierarchical clustering trees34 to match neurons across all 
sessions and detected a total of 1204 tracked neurons (Fig. 1d). They appeared for an average of 10.96 ± 0.15 
days (mean + s.e.m.). Among which 118.80 ± 26.97 neurons per mouse showed up on all 15 days (mean ± 
s.e.m.). We cross-validated this process of matching units across days with other methods including dense 
neural network and discriminant analysis35 and found comparable results (Methods, Supplemental Discussion, 
Supplementary Methods). We tracked a large portion of units for an extended amount of time, for example, 
among the 903 neurons that first appeared on day 1, 594 (66%) of them appeared for all 15 days (Fig. 1e). 
Tracked units showed stable unit amplitude and session averaged firing rate across 15 days (Supplementary 
Fig1c-e). Furthermore, we computed the distribution of waveforms similarity and estimated position variations 
of same tracked units across days, against that of other units within day, confirming that the tracked units had 
much smaller changes in waveforms and locations (Supplementary Fig1f-g). These high-fidelity single neurons 
tracking represented substantially improved scale and longevity compared with prior chronic 
electrophysiological studies in rodent visual cortex1, 36, enabling us to examine large-scale neural functional 
stability over time at high temporal resolutions. 
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To study the functional stability of tracked neurons, we first computed their rate code tuning for all four stimulus 
types and observed both marked stability and noticeable drift. Large portions of neurons were significantly 
tuned to each stimulus (56 ± 3%, 61 ± 6%, 55 ± 4%, 83 ± 4% for drifting gratings, static gratings, receptive field 
Gabors, and natural images respectively on day 1), and the tuned portions remained unchanged over time (P > 
0.26), indicating overall functional stability at the population scale (Supplementary Fig2a-b). Furthermore, 
many neurons significantly tuned to stimuli exhibited stable tuning across days, defined as having a trial-
averaged tuning curve highly similar (e.g. correlation coefficient greater than 0.9) to itself after 7 days. This 
holds true for both low-dimensional stimuli such as static gratings (n = 533, 23% stable; Fig. 1f), drifting 
gratings (n = 481, 24% stable; Fig. 1g, Supplementary Fig2c), receptive field Gabors (n = 455, 9% stable; 
Supplementary Fig2d), and high-dimensional stimuli like natural images (n = 684, 13% stable; Fig. 1h). Across 
a population of 353 neurons that appeared and significantly tuned to natural images on all days, we observed 
visually consistent day-to-day most preferred natural images across 15 days (Fig. 1i, diagonal line). 
Conversely, we also detected longitudinal drifts in the tuning, including some units losing their tuning to the 
most preferred images (Fig. 1i, zoomed-in view). Consistent with these day-to-day changes in tuning, the error 
rate of a fixed-in-time population decoder (linear discriminant analysis, LDA) trained with the first 7 days 
increased with the time interval when predicting natural images of future days. However, applying a sliding-in-
time decoder (trained with past 7 days and decoded the next day) removed this drift (P > 0.21), indicating that 
the day-to-day changes were gradual and trackable (Fig. 1j). Importantly, faithful mapping of visual 
representational drift required reliable tracking of neuron identity across days: shuffling 10% of neuron identity 
within mice per day as a simulation of unstable recording eroded the decoder performance significantly 
towards chance level (Fig. 1j). We observed similar decoding error indexed stability and drift for all other 
stimulus types (DG,SG,RFG stimuli. Supplementary Fig3). 
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Fig. 2: Neurons have varying representational stability which strongly correlates with tuning relia
a. Across all four stimulus types, a large number of units had trial-averaged tuning curves that res
themselves after 7 days, using stimulus-tuned single units appearing > 2 days and reappeared after 7
Each neuron contributed 1 data point: averaged of all possible instances tuning curve similarity after 
interval. N = 481, 533, 455, 684 for the 4 stimuli DG,SG,RFG,NI respectively.  DG: drifting gratings; SG
gratings; RFG: receptive field Gabors; NI: natural images. b. Tuning similarity after 7 days during 
gratings was strongly correlated with tuning reliability (1st column), moderately correlated with tuning s
(the Kruskal-Wallis test statistics, 2nd column), and stimulus selectivity (3rd column), while being 
correlated with cell type (independent t-test, 4th column, 300 pyramidal neurons, 181 interneurons).
neurons. Correlation coefficient was Fisher Z-transformed. Red line: linear regression fit with 95% C
correlation coefficient, significance level. c. Reliability, tuning strength, selectivity, and cell types could
explain tuning similarity after 7 days. Red line: linear regression fits with 95% CI, text: correlation coe
significance level. d-e. As in (b-c), but for natural image stimuli. N=684 neurons (451 pyramidal neuron
interneurons). Box plots are in median, 25 to 75 percentiles. Whiskers represents 1.5-fold interquartile
below Q1 or above Q3. Outliers are indicated in scatters. See Supplementary Table 1 for additional re
on sample size and statistics. 
 
Neurons have varying representational stability which strongly correlates with tuning reliability. 
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What impacts the stability of neural representation? To answer this question, we delved into the firing rate 
tuning of individual neurons and quantified the similarity between a single neuron’s tuning on one day (day x, x 
= 1 to 7) and 7 days later (day x+7). The tuning similarity across all four stimulus types, defined as the 
Pearson’s correlation coefficient between the tuning curves,  displayed a wide range of variation, as depicted in 
Fig. 2a. To decipher the contributing factors to the stability, we related the across-day tuning similarity to the 
unit’s initial tuning metrics such as tuning reliability10, 37 (trial-to-trial variations), tuning strength27 (test statistics 
of unequal response to different stimuli across trials), and tuning selectivity38 (inequality coefficient of trial-
averaged response to different stimuli). We found that tuning reliability (r > 0.8), tuning strength (r > 0.7), and 
tuning selectivity (r > 0.3) predicted long-term tuning stability (Fig. 2b, d, Supplementary Fig4a, c). In 
comparison, putative cell types39 (pyramidal vs interneuron) did not meaningfully differed in tuning stability (Fig. 
2b, d, 4th panel. Supplementary Fig4a, c). Finally, these contributors could also jointly explain tuning curve 
similarity across days (Fig. 2c, e, Supplementary Fig4b, d). Equally important, unit physical location changes 
played a minor role, suggesting that the observed tuning drift cannot be trivially explained by the possible 
existence of tracking errors (Supplementary Fig4e). These results indicate that neurons exhibit varying stability 
both within-session (reliability) and across daily sessions. A small portion of neurons responded highly reliably 
and stably to visual stimuli despite noise40 and mixed coding41 in the cerebral cortex. These units might serve 
as anchors42 for stable visual representations. 
 
Temporally resolved populational representation exhibits stable latency between stimulus categories. 
 
Our quantification of the stability of visual representations thus far, like previous studies7, 9-11, 43, relied on the 
average spiking rate over the entire stimulus presentation duration (stimulus duration: typically 1-5 seconds in 
past studies, 200-500 ms depending on the stimulus type in this work). However, we recognize that this 
approach overlooks the role of temporal patterns in the spiking activities, which may contain additional stimulus 
information24, 26. As a result, the stability of the neural code representing sensory information at higher temporal 
resolution (e.g., tens of milliseconds) remains unknown. Therefore, we studied the fine temporal resolution of 
electrophysiological recordings to explore the chronic stability of the temporal patterns of neural firing (Fig. 3) 
and how these patterns contributed to enhancing stimulus coding reliability and stability (Fig. 4). 
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Fig. 3: Temporally resolved populational representation exhibits stable latency between st
categories. 
a. The stimulus-evoked spiking time course to a single, specific stimulus (i.e. 0° drifting grating ) of a pop
of neurons across multiple days. Neurons exhibited diverse temporal response profiles to this st
Neurons were pooled from 5 mice over 7 different experiment days. Neurons that appeared for all 15 da
tuned to  drifting gratings were selected. The neurons were sorted by maximum activation time and w
resorted between days. b. Disentangled population representation dynamics during drifting gratings f
example animal, showing daily trial-averaged (lighter lines) and 15-day-averaged (darker lines) 
projected onto the first two linear discriminant orientation coding dimensions and the first direction codin
Moving angles of gratings having the same orientation but different directions (180° apart) were co
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similar colors. c. Same as in (a) but for static grating stimuli, projected onto the first two orientation coding 
dimensions and the first spatial frequency coding axis. Stimulus orientations were coded in color. d. The 
dynamical representations of same drifting grating stimuli (daily averaged trajectories in b) were more similar to 
themselves even after 14 days than other stimuli fitted from the same animals within days as measured by the 
correlation coefficient, lines are in mean ± s.e.m., independent t-test on 14 days interval, n=80, 9000 
same/different mouse-pattern pairs respectively.  e. Same as in (d) but for static gratings stimuli in (c), n=120, 
20700 same/different mouse-pattern pairs respectively. f. The timing at which the mean inter-stimulus category 
distance reached 50% max for 5 mice across 15 days, all lines showing mean ± s.e.m. Orientations were 
consistently separated sooner than directions during the presentation of drifting grating stimuli across 15 days, 
linear mixed effect, time, stimulus category as fixed effect, individual animals (n=5) as random effect. g. Similar 
to (f) but during static grating stimuli. Spatial frequencies were separated sooner than orientations during static 
grating and were consistent across 15 days. See Supplementary Table 1 for additional reporting on sample 
size and statistics. 
 
Is the millisecond dynamics of the populational representations stable over time? To answer this question, we 
extracted single-trial population dynamics from all 15 sessions. Responses to drifting gratings (Fig. 3a) and 
natural images (Supplementary Fig5a)  appeared stable across two weeks. Neurons responding to a given 
stimulus were diverse and visually stable across all longitudinal sessions. To quantify the stability of the 
population dynamics that encode individual stimulus categories (e.g., 24 static gratings can be grouped into 
either 6 orientations or 4 spatial frequencies), we projected the population firing time course of each animal into 
a low-dimensional stimulus coding space with cross-validated LDA decoders44, pooling all trials across 15 
days. We built the linear decoder based on rate code at high temporal resolution, i.e., firing rates computed 
between 70 and 160 ms. This temporal window accounted for the time delay of visual signal propagation and 
ensured different stimulus categories were readily decodable. The fixed decoder weight then projected neural 
data from 30 ms to 180 ms in 10 ms increments to evaluate representation differentiation at fine temporal 
resolution. In this coding space, nearby locations intuitively represented similar stimuli; the temporal evolution 
of stimuli-evoked population dynamics and their day-to-day stability were evident. The representations of the 
eight orientations of drifting gratings stimuli resembled an octagon formation, starting at the center and 
propagating radially outward from 30 ms to 180 ms (Fig. 3b, Supplementary Fig6a for breakdown plots of 
individual components, and Supplementary Movie 1-4). Notably, at approximately 90 ms, the two gratings 
having the same orientation but opposite drifting directions (e.g., 0° vs 180°, coded by similar color) bifurcated 
vertically, making these initially overlapping representations clearly separable (Supplementary Fig7). Similarly, 
the four spatial frequencies of static gratings stimuli were established in four parallel planes, where the six 
orientations evolved radially outward forming a hexagonal formation (Fig. 3c, Supplementary Fig6b, 
Supplementary Fig7, Supplementary Movie 5-7). Furthermore, the population dynamics representing the same 
stimulus were similar across days. For example, the temporal trajectory of the 24 static gratings across the 15 
days formed 24 separable bundles, each of 15 traces (Fig. 3c). Statistically, trajectories of the same drifting 
gratings stimuli (Fig. 3d) overlapped more closely (P < 1.3e-29, independent t-test) with themselves (r = 0.90 ± 
0.01) even after 14 days than with trajectories of different stimuli (r = 0.20 ± 0.01) recorded simultaneously. 
Similar results were obtained for static gratings (Fig. 3e). 
 
Resolving the dynamics of populational representation allowed us to determine the exact timing and sequence 
of separation for coexisting stimulus feature categories (i.e., orientations versus directions for drifting gratings, 
orientations versus spatial frequencies for static gratings) and, importantly, the stability of such separation 
timing over days. In (Fig. 3f, Supplementary Fig6c), we showed that for drifting gratings, which consist of both 
orientation and direction features, the mean feature inter-stimulus feature separation between the eight 
orientations occurred about 50 ms earlier than the feature separation between the two directions. This latency 
was stable across 15 days. Similarly stable was the timing of representation separation under static gratings, 
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except that it occurred at a different time point (Fig. 3g, Supplementary Fig6d). These results suggest that 
time-resolved populational representations encode rich dynamic features of the stimuli and hold remarkable 
longitudinal stability. 
 
 
 
 
The temporal dynamics of individual neurons enhance tuning stability 
 
We next investigated if and how much temporal coding, compared to rate coding, carries additional information 
about external stimuli and its impacts on tuning stability. Using drifting gratings as an example, we noticed that 
different motion directions of the grating brought out distinct features in a neuron's temporal spiking patterns 
(Fig. 4a). For instance, the grating moving at 202.5° triggered sustained activation between 100-300 ms (red), 
unlike the response to the 22.5° stimulus, which had the same orientation but opposite drifting direction, and 
lacked a ramp-up in activity after 400 ms (blue). These subtle yet clear differences in response patterns 
remained stable over 15 days, underscoring that average event rates alone do not fully capture these nuances.  

To effectively extract temporal codes, we utilized cross-validated, regularized linear discriminant analysis 
(LDA) to determine the temporal components that best separated the different stimulus conditions. This 
supervised decomposition pinpoints variations that directly relate to stimulus decoding while being less 
indicative of spontaneous activity45 or variabilities induced by mixed coding44, 46, 47. Fig. 4b displays the top 
three components of the representative unit fitted with all trials over 15 days. They intuitively represented 
multiple aspects of spiking time courses that are not easily inferable from rate coding: the duration of activation 
(CP1), temporal contrast (CP2), and the preferred timing of activation (CP3). We observed diverse temporal 
profiles across all neurons (Supplementary Fig5b, see Supplemental Discussion). Importantly, we note that 
firing rate is also a special type of temporal components that has a temporally flat profile48. Therefore, to 
reduce the information overlap between rate codes and temporal codes, we discouraged LDA from finding 
temporally flat weights by normalizing each trial with the area under the peristimulus time histogram before 
fitting. This allows us to more clearly characterize the unique contribution between the two types of neural 
codes.  

Considering these temporal components significantly improved the classification of different stimuli encoded by 
individual neurons. Using the responses of a representative neuron to drifting gratings as an example (Fig. 4a-
b), the distributions of daily, trial-averaged firing rates showed high overlap among the 16 different stimuli (Fig. 
4c). In contrast, when we represented the 16 stimuli using the daily averaged first three components, inter-
stimulus separation notably improved, making similar stimuli such as 0°, 180°, 22.5°, and 202.5° clearly 
distinctive (Fig. 4c). Furthermore, we examined the decoding accuracy of individual neurons in single trials. 
Due to overlapping responses across different stimuli and high trial-to-trial variability7, 49, the accuracy was only 
0.0158 ± 0.001 when using firing rates compared to the chance level at 0.01 (100 stimulus classes of natural 
images stimuli). Yet, temporal components increased decoding accuracy to 0.0178 ± 0.002 (P < 7e-77, paired 
t-test). This increase in accuracy when utilizing temporal code over rate code was consistent across all four 
stimulus types. (Fig. 4d, Supplementary Fig5c). 

Next, we examined the contribution of the temporal code to longitudinal tuning stability. Across all stimuli, unit 
tuning curves were more similar to themselves after 7 days (Fig. 4e, similarity quantified by correlation 
coefficient after Fisher z-transformation, unbounded) when derived jointly from temporal components 1-3 than 
those derived from firing rates (i.e., those discussed in Fig. 2). Considering the entire recording duration, 
temporal components-based tuning had a smaller rate of change in representational drift index10 (a smaller 
slope, P < 2.7e-41) than firing rates-based (Fig. 4f). The drift reduction effect was particularly prominent for 
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neurons having poorer firing rate-based reliability (Fig. 4g, Fig. 2). Importantly, merely increasing the 
dimension of firing rate-based tuning did not lead to decreased drift across time (Supplementary Fig5d). This is 
further strengthened by the fact that top three components extracted from a simpler method (PCA) failed to 
reduce drift (Supplementary Fig5d). Finally, high dimensional PSTH (before LDA or PCA dimension reduction) 
failed to meaningfully reduce drift (Supplementary Fig5d). Figure 2b showed that the stability of single-neuron 
firing rate-based tuning curve was associated with tuning reliability, strength, and selectivity. Similarly, these 
associations held true when stability, reliability, strength, and selectivity were derived from tuning curves of 
temporal components (Supplementary Fig8). Particularly, tuning reliability also increased when considering the 
top three components compared to using firing rates (P < 1.5e-29, Supplementary Fig9).   

Together, these results suggest that time-resolved electrophysiological recording could empower us to use 
“time as a coding dimension.”18, 24 Importantly, our stable chronic recording revealed that temporal 
components-based tuning supports substantially greater stimulus representation reliability and stability at the 
single neuron level beyond what could be achieved by conventional firing event counting over seconds-long 
integration windows7, 11. 
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Fig. 4: The temporal dynamics of individual neurons enhance tuning stability. 
a. Daily averaged, smoothed spiking time courses for one neuron during the stimulus-on period in resp
different directions of drifting grating stimuli, instantaneous rate in Hz. Arrow coloring and implications: 
and main text. b. The first 3 LDA temporal components extracted for this unit showed a diverse tempora
that matches intuitions for stimulus separation with temporal dynamics in (a). c. Components provided 
separation between stimuli compared to firing rates. This is illustrated by an example neuron’s dai
averaged firing rates (left) and the distribution of the first three components (right) across 15 days un
different stimuli. The distributions (only showing 1 standard deviation region/ellipsoid) highly overlap
firing rates (Left, Anscombe transformed), components-based representation reduced the overlap b
highly similar stimuli (Right). d. Components increased decoding accuracy for nearly all single units (n
during natural image stimuli, showing cross-validation decoding accuracy for all trials pooled from 15
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Chance = 1/100 or 0.01. Paired t-test. e. Across all stimuli, temporal components-based unit tuning curves 
were more similar to themselves after 7 days than that of firing rate-based. Dots represent neurons in the 
population, n = 481, 533, 455, 684 stimulus-tuned single units that reappeared after 7 days for DG,SG,RFG,NI 
respectively. Paired t-test. Correlation coefficient was Fisher Z-transformed. f. Tuning curves across all 4 
stimulus types drifted less over time when defined with the first 3 temporal components than when defined with 
firing rates. For each recording day and for each neuron, 50% of trials were randomly selected and averaged 
to form the tuning curve for within- and between- session similarity comparisons. Sampling was repeated 30 
times, and the results were further averaged. All lines show the mean ± s.e.m. Linear mixed effect: time, 
definition method as fixed effect, tuned single units from all mice as random effect. DG: drifting gratings; SG: 
static gratings; RFG: receptive field Gabors; NI: natural images. N = 699, 719, 665, 831 stimulus-tuned single 
units for DG,SG,RFG,NI respectively. g. same as in Fig4f but only selecting 25% least reliable neurons in 
Fig4e for each stimulus type separately. Temporal components showed less drift for these neurons with a 
seemingly larger effect size. Firing rate-based reliability was used to shortlist neurons. See Supplementary 
Table 1 for additional reporting on sample size and statistics. 

 
Temporal dynamics enhance long-term populational representation discriminability against competing 
stimuli. 
 
We next extended the study from single neuron tuning to the longitudinal stability of visual representations 
formed by neuronal populations within each animal. We constructed populational representations on “super 
sessions,” which involved pooling tuning curves from neuron populations across all longitudinal sessions for 
joint dimension reduction. This approach allowed us to quantify the chronic stability of neural representation 
from different days in the same feature space, providing an intuitive reference for stability and stimulus 
distinctions. 
 
Since linear methods cannot effectively reduce the dimensionality in V150, we computed stimulus 
representations in Uniform Manifold Approximation and Projection (UMAP)51 space using both the firing rate 
tuning and the temporal component-based tuning (Fig. 5) and observed the following features: First, in both 
cases, the populational representations exhibited clear spatial structures that correlated with features of the 
stimuli (Fig. 5a-b, e-f and Supplementary Fig10a-d). For example, drifting gratings formed a ring manifold, with 
representations of nearby orientations as nearest neighbors, and representations of the same orientation but 
opposite directions (e.g., 0° and 180°) in similar angular positions on the ring (Fig. 5a). Static gratings arranged 
in five different arcs reflecting five spatial frequencies, and within each arc, nearby orientations formed clusters 
that were close to each other (Supplementary Fig10a-b). Representations of receptive field Gabors formed a 
continuous manifold that mirrored the geometry of the 9 x 9 grids (Supplementary Fig10c-d). These results 
confirmed that the recorded neural population was sufficiently large and functionally diverse to not only 
distinctly encode a wide range of stimuli but also form smooth representation manifolds50 in the neural space 
where similar visual stimuli were encoded to adjacent locations. Furthermore, representations of the same 
stimuli across all days were closely spaced and formed distinct clusters, indicating the longitudinal stability of 
the representation. For example, in natural image stimuli, the representations of 100 images across 15 days 
formed 100 distinct clusters, each of which consisted of 30 points representing the even/odd trial averages of 
15 daily representations of the same image (Fig. 5e-f, Supplementary Fig11a-b) 
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Fig. 5: Temporal codes stably increase long-term populational representation discriminability a
competing stimuli. 
a-b. For drifting gratings, different stimulus conditions (directions) were more distinctly and stably repre
in low-dimensional UMAP space when represented using populational temporal components (b) comp
populational firing rate (a). The same stimulus formed distinct clusters of 30 points (15 days x even/o
averages, linked by lines). Clear spatial structures were observed with continuous geometry (i.e., 
directions for drifting grating (a)). The original high-dimensional representation was constructed with a
neurons that appeared for 15 days in 1 example mouse. c-d. UMAP representations of the same 
grating directions were more similar to themselves across sessions than to the nearest 5 stimuli from th
session, especially when represented by the top 3 temporal components (d), compared to that of firin
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(c). e-h. Same as in a-d but for natural images stimuli. e-f shows representations of center 97 images, for all 
100 images, see Supplementary Fig11a-b. i-l. Statistics of Fig. 5c-d. Fig. 5g-h, and the other two stimulus 
types. Across four stimulus types (DG: drifting gratings; SG: static gratings; RFG: receptive field Gabors; NI: 
natural images), the separation between the same stimulus across days normalized by the distance to nearest 
five different stimuli within days (black dashed line) drifted at a lower rate for components-based representation 
than that of firing rate-based representation. All lines show the mean ± s.e.m. Linear mixed effect: time, 
representation definition method as fixed effect, animal-stimulus pairs as random effect (n=80,150, 405, 500 
pairs for DG,SG,RFG,NI respectively). See Supplementary Table 1 for additional reporting on sample size and 
statistics. 
 
Critically, using temporal components to construct the populational representation significantly improved the 
isolation between clusters of the same stimuli relative to those of competing neighbors (Fig. 5a-b, e-f, 
Supplementary Fig10a-b,c-d). To quantify this difference, we computed and compared the Euclidean distance 
of representations of the same stimuli across 15 days and that of the closest other stimuli within days in the 
low-dimensional UMAP feature space, all normalized by the average within-day distance between even and 
odd trials of the same stimulus. The distances within the same stimulus increased with time in both firing rate 
and temporal components-based representations. However, firing rate representations (Fig. 5c, g) approached 
or surpassed the distance to the five nearest stimuli at the end of the 15 days at a faster rate than that of 
temporal components-based representations (Fig. 5d, h). Statistically, compared with firing rate 
representations, temporal components better maintained the separation of a given stimulus across days 
against its nearest five stimuli within-days for the entire experimental period (smaller slope, P < 3.2e-17, Fig. 
5i-l). 
 
As another test of stability in visual representations, we investigated how much temporal information could 
increase single-trial causal decoder performance in future days without any recalibration. We fitted decoding 
models (regularized LDA) separately for each animal using simultaneously recorded neurons that appeared for 
most days (at least 12 days and must appear for all testing days). To causally incorporate temporal 
information, a new set of temporal components was fitted for each neuron only using trials from the first 7 days. 
Importantly, consistent with our findings for individual neuron decoding (Fig. 4d, Supplementary Fig5c), we 
found that at the population level, adding temporal components in addition to firing rate in the fixed decoder 
consistently reduced decoding error for all four stimuli across 8 future testing days when trained on the first 7 
days (P < 0.0089, Supplementary Fig10e Supplementary Fig11, reduction by 5.0°, 2.4°, or 2.0 and 10.0 folds 
over chance for drifting gratings, receptive field Gabors, static gratings, and natural images respectively, with 
chance levels being 90°, 35.4°, 1/30, and 1/100 respectively). To depict the drift in decoding performance, we 
defined decoding drift index like that of representational drift index. We observed that adding temporal 
components reduced decoding drift for natural images and static images stimuli (P < 0.00038, Supplementary 
Fig10e), where no differences in decoding drift were evident in receptive field Gabors or drifting gratings 
stimuli, which might be because representation of natural stimuli drift more than that of artificial stimuli10. 
Together, these results revealed that populational representations of visual stimuli were better discriminated 
longitudinally when temporal coding was captured. 
 
Stability of temporal codes associated with network connectivity.  
 
We have uncovered the importance of temporal code in stabilizing visual representations against rate code. 
Yet, what makes a neuron respond stably to visual stimuli? The current literature suggests that many aspects 
of a unit’s tuning property stem from its connectivity in the neural network42, 43, 52-55. To test the association 
between temporal code stability and network functional connectivity, we measured and longitudinally tracked 
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the functional connectivity among the population of neurons and examined their relationship to the tuning 
stability of temporal code, using that of rate code as a control. 
 
We first quantified the stability of putative monosynaptic connections with pairwise cross-correlograms (CCGs) 
across days with a temporal resolution of 1 ms. This analysis not only relies on stable tracking of both neurons 
in any connection pair but also requires a large number of neurons to be recorded, as significantly functionally 
connected CCG pairs are rare, accounting for only about 1% of the total possible number of pairwise 
connections28, 30, 56. We showed an example of recurring jittered corrected CCGs28, 57 across sessions, 
manifesting consistent temporal lag, functional shape, and similar amplitude (Fig. 6a). Within an animal, the 
connections showed stimulus-specific patterns that were visually similar across adjacent days (Fig. 6b, 
Supplementary Fig12a, Supplementary Fig13).  Quantitatively, we observed indications of overall network 
stability: the number of connections (P > 0.11) and average peak amplitude per animal (P > 0.39) remained 
stable for each stimulus, except that the peak amplitude during drifting gratings had a marginal rate of change 
at -8.5e-5/day (P = 0.005) (Fig. 6c-d, Supplementary Fig12b-c). Despite the overall network stability, we also 
observed gradual and subtle drift in the connectivity matrix similarity across days for all 4 stimuli (P < 3.7e-16, 
Supplementary Fig13) 
 
Across all stimuli, we identified over 2000 connections across 15 days cumulatively (Fig. 6e). Yet, the 
probability of tracking the same pairs gradually declined over the duration of tracking (Fig. 6f, Supplementary 
Fig13), irrespective of the quantification methods of tracked duration. Notably, the day-to-day turnover of these 
significantly functionally connected pairs reduced with time interval (Fig. 6g), in line with a report that longer 
measurement durations reduce the estimated drift rate58. At the maximum measurement interval (Day 1 to Day 
15), the average pair loss rate was 2.8% per day, which is a relevant comparison with the findings of imaging 
studies showing that the synaptic turnover rate is as high as 1% per day in the visual cortex42, 59. 
 
It is plausible that pairwise CCGs do not fully represent the neuronal connections in the network. Therefore, to 
further characterize the stability of the associated network supporting individual neurons, we evaluated the 
neuron-to-population synchrony in terms of spike-triggered populational activity (stPA) at the 0 ms lag54, 60, and 
population coupling42, 54 (PC), the correlation between stimulus response from one neuron to the summed 
response of the rest of the population. In contrast to those in the CCGs, we found that PC and stPA 
themselves changed significantly over time (P < 0.0007) for all stimuli (Fig. 6h-i, Supplementary Fig12d-e). 
However, the rate of change was minimal, at no more than 0.001 per day for PC and 8e-06 (occurrence/spike) 
per day for stPA. Individually, more than 95% of the single units tracked for more than 2 days remained stable 
in the PC and stPA measures (P > 0.05, Bonferroni corrected, Supplementary Fig12f-g). 
 
We next built linear models associating a unit’s tuning stability after 7 days with these network functional 
connectivity measures, including the magnitude and daily rate change in population coupling, spike-triggered 
population activity at the 0 ms lag, total incoming CCG counts, total incoming CCG strengths, and cell type as 
another proxy variable for the connectivity motif. We found that the firing rate stability was weakly to 
moderately associated with these factors combined (Fig. 6j). In contrast, this linear model predicted the tuning 
stability of temporal components to a greater extent (P < 9.1e-07) than that of firing rate for all stimuli but 
drifting gratings (Fig. 6j-k, Supplementary Fig14a-c, Supplementary Fig15a-d, Supplementary Fig16). These 
results thus showed that the stability of temporal codes was better associated with network functional 
connectivity than that of rate code. 
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Fig. 6: Stability of temporal codes associated with network connectivity. 
a. An example pair of CCGs having a similar shape to itself across 15 days; sharp peaks were found 
within 4 ms; scale bar: 0.05 occurrence/spike. b. All significant CCGs (curved lines, color-coded b
amplitude of the CCG) between neurons (black dots aligned on the big outer circles) in one mouse durin
stimuli (DG: drifting gratings. NI: natural images) showed similar connection patterns across days (co
with neurons randomly placed on the circle but the order fixed across days and stimuli. Only neurons th
at least 1 significant connection during either DG or NI stimuli across 15 days were included (n=189). c
CCG strength (c) and count (d) remained stable for the two stimuli. DG: drifting gratings. NI: natural i
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showing the number of significant CCGs per animal (c) and mean CCG peak amplitude (d) across 15 days. 
Linear mixed effect, time as fixed effect, individual animals (n=5) as random effect (c), individual significant 
CCG pairs (n=786,905 for DG and NI, respectively) as random effect (d). Lines are in population mean ± s.e.m. 
e. Huge amounts of pairs were detected across 15 days. Pairs could be tracked for multiple sessions. 
Longevity tally for CCGs identified in response to any of the 4 stimuli. Pairs were sorted according to the initial 
session of appearance. f-g. Quantification of the fraction of trackable CCG pairs in (e), showing tracking 
probability based on 3 criteria, number of sessions appeared, consecutive sessions appeared, and the range 
between the first and last seen session (f), and the resulting estimated percentage pair loss per day over 14-
day intervals (g). See Supplementary Fig13 for count data in (f) before taking the fraction. See Supplemental 
Methods for quantification explanations. h-i. Single neuron-to-population synchrony changed minimally across 
time for the two stimuli. DG: drifting gratings. NI: natural images. The population synchrony score was 
measured either by population coupling (h) or spike-triggered population firing at 0 ms (i) or for all single 
neurons that appeared for more than 2 days from all mice. showing mean ± s.e.m. Linear mixed effect model 
(LME), time as fixed effect, individual neuron (n=1037 single units appearing more than 2 days) as random 
effect. j-k. Functional connectivity metrics better explained temporal component-based natural images tuning 
stability after 7 days than that of firing rate-based. Correlation coefficient (y-axis) was Fisher Z-transformed. 
Stability during drifting grating stimuli was defined using either firing rate (j) or the first 3 components (k) and 
was jointly explained by 1. population coupling (popCoup), 2. spike-triggered population activity at 0 ms lag 
(stPA), 3. Total incoming CCG counts (CCG #), 4. total CCG strength (CCG Amp), 5. the rate of change “Δ” of 
variable 1-4 per day, 6. cell type. Red line: linear fitted response with 95% CI, text: correlation coefficient 
(square root of R2 of linear regression), significance level difference in correlation (Z-test). 684 stimulus-tuned 
single units (dots) that reappeared after 7 days. See Supplementary Table 1 for additional reporting on sample 
size and statistics. 

Discussion  
 
A consistent neural activity landscape is instrumental in maintaining regular brain functions, such as enabling 
stable sensory representation of the external world, which forms a reliable basis for informing appropriate 
downstream actions. Understanding the baseline stability related to sensory experience at the single neuron, 
neural population and inter-neuron functional connectivity levels not only unravels the mechanism of such 
stability but also provides a solid reference point from which we can gain further insights into the brain's ability 
to modify its internal structure to facilitate memory, learning, and adaptation in response to evolving 
environments. 
 
Comprehensive Identification of the neural substrates that support consistent visual perception is challenging 
experimentally and requires 1) faithful, large-scale longitudinal monitoring of spiking patterns from the same 
sensory neuron populations42, 61 2) a measurement method that induces minimal acute and chronic alterations 
to the neural circuit being measured; and 3) diverse50 and repeated40 visual stimulation. 
 
Contemporary two-photon calcium imaging studies have revealed various amounts of representational drift 
under diverse types of stimuli, with the representation of naturalistic patterns10, 11 having more noticeable drift 
compared to those of artificial grating stimuli7-10, 43. Despite the merits in large-scale monitoring, cell-type 
specificity, and neuron reidentification confidence, calcium transients only provide a proxy for spiking with 
limited temporal resolution13-17. Furthermore, the use of high-power lasers carries inherent technical limitations 
by introducing the risk of phototoxicity, photobleaching, and photo-interference62, all of which may interfere with 
the very circuit whose stability we wish to characterize. In addition, cranial imaging window surgery could 
disrupt normal physiology like hemodynamics63, 64 and glymphatic flow65, change synaptic connections66, and 
activates immune cells like astrocytes and microglia63, 65, 67, which may take over one month to fully recover63, 
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65, while waiting for the recovery increases the chance of window clarity degradation68 from bone and dura 
regrowth69. 
 
Two-photon imaging studies also have trade-offs between within-day experimental duration and across-day 
inter-session repetition frequency (to mitigate photobleaching), with both factors being crucial for characterizing 
visual representation stability. Within-session experimental time is vital for ensuring sufficient stimulus diversity 
and repetition of the same stimuli. Repetition is important because spike generation is a stochastic process40 
and requires a decent number of repeats to form reliable trial-averaged responses and calculate trial-to-trial 
reliability. While one could focus on a few stimuli conditions while boosting trial count68, this approach misses 
the opportunity to capture stability in the high-dimensional stimulus response space50 specific to the visual 
cortex, where responses from one stimulus type cannot be easily predicted by responses from other stimulus 
types70. Across-sessions repetition frequency is also crucial for revealing the dynamics of chronic responses, 
particularly because stimulus familiarity5, 32, 33 has been shown to affect representation stability. 
 
On the other hand, long-term electrophysiology offers intrinsic advantages such as high temporal resolution15, 

17, absence of photobleaching, and increased freedom in terms of experiment duration and frequency71. 
However, electrical recording has conventionally suffered from scalability and longevity issues in tracking the 
same neuronal populations, attributed to the chronic neuroinflammatory response associated with traditional 
rigid electrodes72. The mechanical mismatch at the tissue-electrode interface could induce substantial 
micromotion and degradation, making longitudinal tracking of large neuronal populations highly unreliable and 
hence rarely available. In the literature, with heroic efforts, only a handful to a few dozen neurons are 
longitudinally followed1, 36, 73. Recently, high-density silicon probes have enabled chronic27 large-scale28 
recording in mouse visual cortices, yet their ability to study longitudinal representation stability has not been 
clearly established. 
 
We believe our platform could systematically tackle these challenges. We performed large-scale implantation 
of ultraflexible electrodes that integrate seamlessly with the surrounding tissue. Accordingly, we tracked more 
than 1000 neurons for an average of over 10 daily sessions. With largely unconstrained experimental duration 
and repetition frequency, we tested four visual stimulus types with 137 artificial and 100 natural patterns, for a 
total of 11930 trials per day for 15 consecutive days, providing a comprehensive evaluation of both within-
session representation reliability and across-sessions visual representation stability across diverse stimulus 
types. This could inspire many exciting questions such as predicting the stability of one stimulus type from 
other stimulus types (Supplementary Fig17). Additionally, the long-lasting nature of NETs allowed us to 
perform these functional stability measurements at least 60 days after surgery to ensure a more complete 
recovery from implantation trauma31, minimizing the circuit instabilities induced by the measurement 
technology itself. 
 
Armed with this tailored technical platform, we compared the visual representation stability between rate 
coding and temporal coding in the mouse visual cortex. We found that neurons had varying day-to-day rate 
code tuning stability to diverse types of stimuli, with across-session stability strongly associated with tuning 
reliability. In line with a report that tuning reliability may underlie the functional specialization of different brain 
regions74 and functional evolution of developmental stages75, our results further showed that response 
reliability could be an indicator of chronic rate code representation stability (Fig2). 
 
Notably, we emphasized the time-resolved visual representations and temporal code. In addition to showing 
the existence of stable stimulus-evoked spiking dynamics across time at the individual neuron level32, 71, 73, 76, 
here we extended these studies into the evolution of population-level visual representations (Fig3) along 
stimulus-coding dimensions at 10 ms resolution across 15 days and found overall stable, distinct dynamical 
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representations. Our results suggested the existence of consistent timing of separation between stimulus 
categories (e.g., directions versus orientations) across 15 days. The consistency among different stimulus 
types (drifting gratings versus static gratings) indicated that the observed stability in the timing of separation 
was not limited to a specific stimulus but was likely a generalized phenomenon. Further investigation could 
potentially unveil more important insights into the neural processing pathways that underlie the observed 
variations in activation timings of different stimulus features. 
 
We next elucidated the benefit of incorporating temporal information longitudinally. Prior electrophysiological 
studies have provided evidence for the existence of temporal codes: individual neurons generate distinct 
spiking time courses in response to different stimuli24, 36, 71, 73, 76, with a possible underlying mechanism being 
the activation of multiple recurrent and feedback circuits22, 23, 52, 77. Here, we further showed that temporal 
components exhibited reduced drift in single neuron stimulus tuning compared to firing rates-based tuning. The 
reduction was particularly prominent for neurons with low firing rate-based reliability. In addition, when using 
stimulus-coding temporal components to form neural population representations, visual patterns were more 
distinct from competing stimuli and more stable across days compared to rate coding. Similarly, the stimulus 
identity of familiar scenes could be more stably identified from causal decoders trained with past recording 
days by incorporating temporal code. Thus, temporal coding carries more stable visual representations than 
rate coding. 
 
The mechanisms underlying the enhanced stability of temporal codes over rate codes are likely multifaceted 
and complicated. We made the following observations while attempting to understand it: 1. A breakdown 
characterization for each individual component (Supplementary Fig18a) showed that the effect was not due to 
individual components themselves drifting less than firing rates. 2. the effect was not due to individual temporal 
components having a higher selectivity38 than that of averaged firing rate (Supplementary Fig18b) 3. We 
analyzed the representative neuron in Figure 4 and showed that the enhanced stability of component-based 
tuning compared to that of the average firing rate might have been achieved by “temporal gating,” which 
suppressed variations in non-coding dimensions. For instance, in the 15-day tuning curves to drifting gratings 
(Supplementary Fig18c), the neuron had a higher firing rate during 180° stimuli on day 1 than on other days. 
Yet, such potential non-coding excessive activation was only partly projected to the 1st component while 
minimally affecting the 2nd and 3rd components, thus still preserving sufficient stability. Similarly, it is observed12 
that drift is higher in “non-coding” dimensions, despite visual responses being studied on a different timescale 
and using a different neural code extraction mechanism. In the same vein, temporal codes were less explained 
by non-stimulus variables (Supplementary Fig18d). These finding might be consistent with a recent report47 
that fast spiking dynamics could de-mix responses to multiple sensory inputs. 

Finally, we found that network functional connectivity metrics explained tuning stability, especially when tuning 
was defined with stimulus-coding temporal components. This aligns with the view that visual neurons have 
many synaptic partners that are tuned to different stimulus features53, 78-80. They are also influenced by diverse 
feedback connections from downstream areas22, 23, 77, 81. Since these connections are likely activated at 
different timing during stimulus processing, they contribute to finer dynamic structures of a neuron’s tuning and 
induce the observed temporal coding19, 21. Therefore, network functional connectivity metrics better explained 
the stability of temporal code than rate code at the single unit level. Recently, it is proposed82 that drift can 
result from both experience dependent Hebbian plasticity and experience-independent synaptic volatility. Since 
the novelty of the visual experience was not explicitly manipulated in this study, our findings suggest that 
temporal codes may better capture synaptic volatility compared to rate codes. The role of temporal code in 
Hebbian plasticity awaits further studies. 
 
In conclusion, we provided an elaborated survey of the day-to-day stability of visual representations with 
temporally resolved, stable, large-scale recordings using ultraflexible electrode arrays. We tracked the 
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temporal spiking patterns of the same neuronal populations in the mouse visual cortex in response to diverse 
types of stimuli for 15 consecutive days. We found that temporal coding carries more stable visual 
representations than rate coding at the single -neuron and population levels compared to rate coding. The 
stability of the temporal code was better associated with network functional connectivity than that of rate code. 
We therefore posit that temporal coding might play a crucial role for the brain to maintain consistent visual 
representations across time. 
 
 
 
 
Limitations and Future Studies 

The characterization of representation stability depends on understanding of the represented information itself.  
Contemporary studies have demonstrated the widespread phenomenon of mixed representation in the cortex46 
including in visual areas41. These findings lead to the natural question of whether the day-to-day fluctuations in 
non-visual aspects of animal behavior (e.g. attention) contribute to the observed drift in visual 
representations58, 61, 83-85. We partially mitigated this effect by explicitly projecting spiking time courses on to 
stimulus coding dimensions (Fig. 3-5) via LDA. Future studies could thoroughly compare other ways of 
extracting temporal components/incorporating temporal information18, 48, 86, 87 to better represent sensory-
specific inputs. Additionally, future studies could further build deterministic models of single neuron spiking37, 88, 

89 to remove non-visual stimulus information and hence test if the residual stimulus encoding activity is even 
more stable across days. Furthermore, the visual cortex is far from homogenous, future studies could extend 
the stability characterization to specific cell types33, 90, 91 and the other higher visual areas. We also 
acknowledge limitations common to all electrical recordings, e.g., only neurons/cell types that fire sufficiently 
frequently are reliably sortable42. In addition, Calcium imaging still offers substantially higher throughput in 
terms of chronically trackable neurons per mouse. Finally, in this work, we studied the magnitude of 
representation stability under passive exposure to familiar stimuli. This serves as a critical reference point for 
future studies on the direction of visual representational drift, especially when steered by novel experiences32, 

82, 90, 92 or active reward learning93-95. 
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Methods:  
 
Fabrication 
The fabrication process has been previously reported96. 3nm Ti and 60 nm Ni were patterned on glass 
substrates as the initial layer, which was eventually sacrificed to release the flexible end of the probe. Next, we 
spin-coated and heat-treated ~500 nm polyimide (PI) (PI2574, HD Microsystems, NJ, USA) to create the 
bottom layer of insulation. On top of that, a stack of 3 nm Cr, 100 nm Au, and 3 nm Cr was electron-beam 
evaporated (Sharon Vacuum Co., Brockton, MA) to create a layer of interconnects between electrode sites and 
backend bonding sites under photolithography. Bonding pads were further deposited with 3 nm Cr, 160 nm Ni, 
and 80 nm Au for improving soldering reliability. Another ~500 nm PI layer served as the top layer of insulation 
and was identically fabricated as the bottom layer. To create the outline of the probe, vias to the electrodes and 
solder pads, RIE etching (Oxford Instrument) was performed with 9:1 O2/CF4 gas. Finally, in 20 of the probes, 
electrode sites were sputter coated with 10 nm Ti, 100 nm Pt, 10 nm Ti, and 300 nm IrOx (AJA ATC Orion 
Sputter System) and defined under photolithography. The other 8 probes were sputter-coated with Cr/Au at 
thicknesses of 5/120 nm, respectively. The total thickness of a probe was 900-1100 nm. 
 
Three probe designs with different arrangements of the 32 channels were incorporated in this study. Design-1 
electrodes were made of IrOx and were arranged into a 16x2 (depth x width) matrix, with both depth and width 
electrode spacing at 20 μm (center-to-center). The electrodes were rectangular in shape and sized 8 μm x 6 
μm. The shank width tapered from 110 μm to 85 μm. Design-2 electrodes, made of Au, were arranged in a 
16x2 (depth x width) matrix with depth and width electrode spacing at 31.5 μm and 30 μm center-to-center, 
respectively. The electrodes were rectangular in shape and sized 19.5 μm x 12 μm. The shank width tapered 
from 120 μm to 60 μm. Design-3 electrodes were made of IrOx, whose 32 channels were linearly spaced at a 
spacing of 25 μm center-to-center. They had rectangular contacts sized 12 μm x 6 μm. The shank width 
tapered from 105 μm to 80 μm.  
 
After fabrication, a customized printed circuit board (PCB) was soldered onto the matching bonding pad 
sections of the device using stencil-aligned high-temperature solder balls. The implantable portion of the probe 
was released by immersing it in nickel etchant (Type I, Transene Inc., MA, USA) for 5 minutes at room 
temperature, and the corresponding section of glass substrate was subsequently cleaved. All probes were 
electroplated with PEDOT/PSS in phosphate-buffered saline, targeting a resistance of 30 - 100 kΩ. The 
released probes were grouped into four per layer and placed on four parallel 50 μm diameter tungsten wires 
(W5574 Tungsten Wire, Advent Research Materials, Oxford, England) and affixed with bio-dissolvable 
adhesive Polyethylene glycol (PEG).  
 
Animals 
A total of 5 male mice were used in the experiments, including n=2 adult C57BL/6J-Tg (Thy1-GCaMP6s) 
GP4.3Dkim/J mice bred on-site and n=3 C57BL/6J mice acquired from Jackson Laboratories (Bar Harbor, 
ME). No mice were excluded. To rule out the potential effect of hormone fluctuations on representational drift 
and given we did not record at the time scale to measure these changes, all male mice was used. Further work 
could explicitly study the differences in representations of female mice at different hormone phases. Animals 
were housed in normal dark/light cycle (7a lights on, 7p lights off), with ambient temperature 68~72°F and 
humidity 30~70%. All surgical and experimental procedures in this study followed the National Institutes of 
Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Rice University 
Institutional Animal Care and Use Committee.  
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Surgical procedure 
The surgical method has been previously published31. Briefly, animals were anesthetized with isoflurane (3% 
for induction and 1%-2% for maintenance) and administered extended-release Buprenorphine (Ethiqa TM) for 
analgesia and Dexamethasone (2 mg/kg, SC) for anti-inflammatory effects. The skull was exposed by 
removing surface hair and skin, followed by the removal of the fascia, and scoring of the skull in a crosshatch 
pattern to enhance cement grip. A circular craniotomy of 3 mm in diameter over the visual cortex was drilled in 
the skull for the NETs implantation, and a separate hole was drilled in the ipsilateral hemisphere +1.5 mm ML, 
+1 mm AP for implanting a Type 316 stainless steel grounding wire. Groups of probes were implanted 
simultaneously through the dura to the right hemisphere V1 and LM region targeting +(2-4) mm ML, -4 mm AP, 
within 1 mm depth, with inter-probe spacing about 700 μm, though variations existed to avoid surface 
vasculature. We inferred whether a shank is V1 or LM using the estimated target location: Given released 
probes were grouped into four per layer and placed on four parallel tungsten wires spaced about 700 μm 
before implantation, we typically expect the medial three shanks in V1 and the most lateral shank in LM. V1 
and LM were targeted given they were reported to be among the areas having the least drift in within-session 
representation11. When a mouse received more than 4 probes, the second group targeted +(2-4) mm ML, -3.3 
mm AP. Following implantation, the tungsten wires were removed after the PEG dissolved, and a sterile glass 
coverslip window (Harvard Apparatus, 1217N66) was placed over the craniotomy with its border sealed with 
Kwiksil (World Precision Instruments). Additional layers of cyanoacrylate and Metabond dental cement 
(Parkell, NY) further secured the window and allowed for the attachment of a head bar for head fixation. A total 
of 25 probes were implanted successfully, three animals received 4x, 4x, 3x Design-1 probes respectively. One 
animal received 4x Design-1 probes and 3x Design-3 probes. One animal received 4x Design-1 probes and 3x 
Design-2 probes. Following multiple reports that stable units were either recorded or emerged months after 
surgery5, 35, 36, 97 and that tissue surrounding the ultraflexible electrodes implantation continued to recover for at 
least a month31, animals were provided at least 50 days of recovery post-surgery and an additional 12 days 
(median) of familiarization to head restraint and visual stimulation before the beginning of consecutive daily 
visual stimulation. 
 
Large-scale electrophysiological recording and spike sorting.  
The electrophysiological data was then recorded using the Intan RHD USB interface board (Part #C3100) and 
the 128-Channel Recording Head stage (Part #C3316). Broken channels, typically with an impedance greater 
than 3 MΩ at 1 kHz measured by the same head stage, were excluded from further analysis. 
 
The recordings were performed on awake head-fixed mice on a custom-made Styrofoam running wheel. The 
treadmill was fixed on an optical breadboard with optical posts and the whole setup was floated on an anti-
vibration table (Thorlabs, PTT600600). Passive visual stimulation was administered for 15 consecutive days. 
Each recording session lasted about 2.5 hours.  
 
Spike sorting was performed in Mountainsort498. Common median referencing99 was applied to the high-pass 
filtered data from each shank to reduce common mode noise such as motion artifacts. The spike detection 
threshold was set to positive and negative 3.5 times the standard deviation (default: 3), with a detection interval 
of 12.5 samples (default 10 samples), and the adjacency radius was set to 100 μm. Each session was sorted 
individually, and only common channels available for all 15 days were used to track putative same units 
(Supplemental Methods).  
 
Noise clusters were rejected when the following criteria were not met simultaneously: Mean waveform peak-to-
peak amplitude (P2P) > 25 μV; Firing rate (FR) > 0.01 Hz; Full width at half-maximum (FWHM) of the mean 
waveform (top channel) at 0.064 ms < FWHM < 0.9 ms; Trough to peak time (TP) of the mean waveform at 
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0.08 ms < TP < 1.02 ms; Mean top-channel normalized amplitude of 2nd through 20th largest channels should 
be smaller than 0.5; The peak of mean spike waveform should be within ± 0.12 ms of spike-sorter reported 
peak time.  
 
Putative single units were identified using the criterion that the fraction of spikes with inter-spike intervals under 
2 ms were less than 1.5% of the total firing events. This criterion is comparable to those used for two long-term 
tracking publications (1.5 ms, 2%)5 and (2 ms, 1%)99.  
 
Location estimation  
The mean waveform of units was used for estimating their locations. The classical estimate of unit locations 
from oversampled electrodes is the weighted centroid method100, 101. Given recent advances in spike source 
modeling, we weighted a point source model estimate102 and a weighted centroid estimate at a 70%:30% ratio 
for better visualizing the displacement of units across 15 days in the Supplementary Fig1a,f.  This weighted 
scheme was used for calculation of firing rate drift over depth and amplitude drift over depth as well in 
Supplementary Fig1b. For each probe on each recording day, a depth histogram of unit firing rates or unit 
amplitudes over the entire recording was calculated at 0.1 μm bin. The histogram was smoothed with a moving 
mean filter of -5 to 5 μm. In other statistical analyses of chronic location changes over time, only the weighted 
centroid was used to be consistent with past literature5. 
 
Deep learning validation of labeling consistency.  
Tracking was also performed with dense neural networks to validate the consistency of the human labeling. 
For each sample neuron pair, the dense neural network took the 42 similarity-metrics together with the 
Autocorrelogram (ACG) similarity as input and outputted a probability that the two units should be combined 
(Supplementary Methods). ACG was calculated by Cell-Explorer39 at 1 ms resolution for 500 ms. 
Representative time bins were selected to reduce its dimension, and Pearson’s correlation coefficient between 
selected ACG bins was used to quantify the similarity of ACG for pairs of units. The time bins were [1, 
2…20;21, 23…49;51,53,56,60,65,71,81,94,112,136,171,218,282,372,495] ms. The network consisted of 1 
input layer, 2 hidden layers, and 1 single output node103. The activation functions for the 4 layers were rectified 
linear unit (relu), hyperbolic tangent (tanh), tanh, softplus. Adam optimizer with a default learning rate was 
selected to minimize the categorical cross-entropy of true versus decoded labels. Twenty models of different 
numbers of hidden units per layer (50~500), portion of drop out (0~0.5), number of training epochs (2~15) were 
searched during the model fitting, and the best model was selected using Bayesian optimization with Gaussian 
process prior. The data were divided into 25 folds, each containing 24 probes of data as the training set while 
the remaining 1 probe as the testing set. Only unit pairs with d(WC2) <1.5 and Top4Xcorr<0.3 (See 
Supplementary Methods) were incorporated for training and testing, with those violating the thresholds 
automatically inferred as different units. The model fitting and hyperparameter search were repeated each time 
when we tracked units from another fold. The decoding quality was defined as the percentage of correctly 
recovered user decisions in the masked adjacency matrix for the test set at each probe. The same process 
was repeated using LDA as the machine learning model for comparison.  
 
 
 
Visual stimulation.  
Visual stimulation was conducted on awake, head-fixed mice. The visual stimulation was shown from a wide 
screen of 71 cm x 42 cm in size, which was placed 21 cm away from the left eye at a 45° angle to the animal's 
rostral caudal axis and was refreshed at 60 Hz (frames per seconds). The screen was calibrated to have a 
luminance range of 0.01~10 cd/m2. Visual stimulation was administered using the Matlab Psychtoolbox with full 
contrast. The stimulus patterns were not spherically warped, instead, a centered 60º aperture104 was applied to 
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reduce changes in the viewing angle toward the edge of the screen from the animal’s perspective, while the 
rest of the screen remained in full-field gray. Four sets of stimuli were included in the study: drifting grating 
(DG), static grating (SG), natural images (NI), and receptive field mapping Gabor28 (RFG).  
 
Each block of DG patterns consisted of 16 directions evenly spaced at 22.5º at a spatial frequency of 0.05 
cycles per degree (cpd) and a temporal frequency of 2Hz. The initial spatial phase at the starting time of each 
stimulus was not modulated and kept fixed across sessions. Each stimulus trial lasted for 500 ms followed by a 
500 ms gray screen. 50 blocks were presented resulting in a total of 800 trials per day.  

Each block of SGs consisted of 60 patterns which factorize into 6 orientations (0º, 30º, 60º, 90º, 120º, 150º), 5 
spatial frequencies (0.02cpd, 0.04cpd, 0.08cpd, 0.16cpd, 0.32cpd), and two spatially complementary phases 
(e.g., black-white-black vs white-black-white). Each stimulus trial lasted at least 250 ms followed by a 50 ms 
gray screen. 45 blocks were presented, resulting in a total of 2700 trials per day. Patterns of the same spatial 
frequency and orientation were grouped for further analysis, resulting in 30 patterns, each with 90 trials.  

Each block of NIs consisted of 100 natural images from the ImageNet dataset37, 105. Each stimulus trial lasted 
for 250 ms (17 frames) with no gray screen in between. 60 blocks were presented, resulting in a total of 6000 
trials per day.  

Each block of RFGs28 stimulus was formed by spatially sparse drifting gratings of approximately 7º in size, 45º 
oriented with a spatial frequency of 0.05 cpd and a temporal frequency of 2 Hz. The Gabor patches showed up 
in 1 of 81 locations (9 rows and 9 columns). The exact azimuth, elevation, and size of each pattern was 
summarized in Supplementary Fig2. Each stimulus trial lasted for 245 ms with 50 ms gray screen in between. 
30 blocks were presented, resulting in a total of 2430 trials per day.  

For all stimulus types, the presentation order of the stimulus conditions was randomly initialized at the start of 
each block. Each recording session lasted about 2.5 hours. A light-to-frequency converter TAOS (part number: 
TSL235R) was attached to a corner of the screen so that visual stimulation onsets could be synced with 
electrical recording through Intan’s digital input. It later was observed through the photo-diode timing signal and 
a high-speed camera shooting at the screen that visual patterns did not disappear precisely at the programmed 
stimulus stop time, which might be due to the screen not refreshing precisely at 60Hz. We eventually used a 
stimulus on time of 520 ms (~31 frames at 60Hz), 260 ms (~16 frames), 245 ms (~15 frames), 280 (~17 
frames ) ms for DG, SG, RFG, NI stimuli respectively and consistently across all trials for accumulating firing 
rate or searching for temporal components.  

Visual response processing (rate code) and tuning significance 
The single trial response of each recorded unit to a certain stimulus (e.g., a direction of the drifting gratings) 
was calculated by counting the total number of spikes when the trial pattern was presented (Fig. 1-2). 
Significantly tuned neurons (rate code) were defined as those that survived 3 statistical tests of visual 
responsiveness, at level of P < 0.05 simultaneously. One-way analysis of variance (ANOVA) tested whether a 
neuron responded differently (had a different mean firing count) to all the individual stimuli (e.g., gratings of a 
specific angle) in a stimulus type106. Similarly, Kruskal-Wallis tests27 were applied to assess such differential 
activation across individual stimuli (different median firing counts). The third test was a chi-square test of 

independence28; briefly, chi-square statistics ��  = ∑ �������

��  measures the total amount of unexpectedness 

across all � stimuli, between the empirical response (empirical trial averaged firing count ��) relative to the 

expected response, i.e. a neuron responds equally strongly to all individual stimuli, � � �
�

∑ ���  (same number 

of trials per stimulus). The null distribution for calculating the P value of the test-statistics was simulated by 
shuffling the stimulus identity and recalculating �� , resulting ��  1000 times. Visual responsiveness was 
assessed for each neuron for each stimulus type individually.  
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Visual decoding 
Regularized linear discriminant analysis was consistently used. Either the total spike count (rate code) or 
temporal components during stimulus presentation were used as inputs. The decoding performance was 
defined as the difference between the true angle and decoded angle for DG and RFG in Fig. 5, or the portion 
of correctly/incorrectly classified trials for all other figures. For RFG stimuli, only 25 (5 � 5) spatially non-
overlapping (sampling every other pattern in both azimuth and elevation axes) stimuli out of the 81 patterns 
shown were used for decoding. Overall decoding error in any day was derived for each stimulus condition 
(e.g., 0-degree drifting gratings) and each mouse separately. Chronic decoding performance was evaluated 
based on these same mouse-stimulus pairs across days. Decoding drift index as defined as  	
��	
 �

���
/	
��	
 � 
���
 , where 
��	
 or Accuracy within-day indicates the accuracy of 1/7 held out trials in 
the first 7 days when the decoder was trained. 
���
  or Accuracy between-day indicates the decoding 
accuracy on a future testing day. For DG and RFG stimuli, decoding angular error (the smaller the better) were 
converted to “accuracy” (the larger the better) by subtracting from maximal possible angular error any pairs of 
true vs decoded stimuli could obtain.   
 
Tuning reliability and selectivity 
Similar to past literature37, the reliability of a neuron’s rate code or temporal code to a particular stimulus type 
on any given day was defined as the correlation coefficient between its tuning function derived from one trial 
versus the mean tuning function computed from the rest of the trials, averaged over all such single trials. 
Tuning selectivity measures the sparsity38 of neural responses to all stimuli in a stimulus type. This 
measurement of stimulus selectivity has been shown to be generalizable to all stimulus types, capable of 
considering the influence of the number of unique stimuli per stimulus type and offers unique insight beyond 
conventional spareness measures. A total of 1000 equally spaced firing count threshold values �� ~ �� were 
chosen to span the minimal to maximal trial-averaged firing count �� across all � stimuli. S was then defined as 
1-2*∑ �	��

�
���  � 0.001, where �	��  is the fraction of stimulus whose �� is greater than ��. We took the absolute 

value of S as the final selectivity value. When a unit fires equally to all stimuli, S = 0, and when it fires 
predominantly to one stimulus or fires in response to all but one stimulus, S approaches 1.  
 
Classification of cell types 
Using metrics exported by 39, we defined narrow interneurons as having trough to peak width < 0.48 ms and 
wide interneurons as having trough to peak width > 0.48 ms and ACG rise time > 6 ms. Both narrow and wide 
interneurons were later grouped into one interneuron class.  
 
Temporal Components 
LDA temporal components were identified for each neuron and under each of the 4 types of stimuli separately. 
The spiking timestamps during stimulus-on period of a neuron were smoothed with a 49 ms moving mean 
window. Trials from all days (Fig. 4) or the first 7 days (Fig. 5) for a particular stimulus type was then pooled 
before fitting a cross-validated, regularized LDA model (searching for best gamma with Bayesian optimization 
using MATLAB’s fitcdiscr function) to classify stimuli identity, e.g., which of the 16 directions for DG stimuli. To 
reduce the information overlap between rate codes and temporal codes, we discouraged LDA from finding 
temporally flat weights by normalizing each trial with the area under the peristimulus time histogram before 
fitting. The final LDA axes were extracted using a separate model fitted with the optimal parameter found in the 
cross-validation process. LDA is a supervised dimensionality reduction technique that finds axes maximizing 
the linear separability of data based on class labels107. LDA computes eigenvectors (axes) corresponding to 
the eigenvalues of the matrix 	���� �� where �� is the within-class scatter matrix, representing the variance 
within each class. �� is the between-class scatter matrix, capturing the variance of class means relative to the 
global mean. However, when working with high-dimensional data, LDA can suffer from overfitting108. To 
address this, a regularization term is added to stabilize the computation. Instead of directly computing 
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eigenvectors from  	����  ��, they are now computed from �	1 � ��� � � � ����	�	 �
��

 �� where ����	 is 
the diagonal matrix operation, �  is the regularization factor between 0 and 1. (determined through cross-
validation).To compare the stability of rate-code based tuning and temporal components-based tuning, for 
each recording day and each neuron, 50% of the trials were randomly selected and averaged to form the 
tuning curve for between-session similarity comparisons. For within-day cases, the 50% sampled trials were 
averaged and compared to the average of the complementary 50% of the trials. Sampling was repeated 30 
times, and the results were further averaged. Tuning curve similarities between days (tuning stability) were 
quantified with Pearson’s Correlation Coefficient (CC) before further converting to the representational drift 
index 	��	
 � ���
/	��	
 � ���
 as in 10.  
 
Population dynamics 
We projected the population firing time course into a low-dimensional stimulus coding space with cross-
validated LDA decoders44, pooling all trials across 15 days. Cross-validated decoders were constructed with 
populational spike count using a 90 ms integration window at 160 ms after stimulus onset (from 70 ms to 160 
ms) to ensure that different stimulus categories were readily decodable. Four different decoders were fitted to 
separately classify the orientation, direction of drifting gratings and orientation, and spatial frequency of static 
gratings. The decoder optimization procedure was similar to that described in the visual decoding section. The 
corresponding decoder weights were then used to project neural data from 30 ms to 180 ms in 10 ms 
increments. To determine the feature separation timing between different stimulus categories (such as 
orientations versus directions), the pairwise inter-condition distance matrices were calculated with upper-
triangle elements averaged at each time bin. The separation timing was then defined as the time (after 
interpolation) at which the inter-condition separation reached halfway to the maximal value from the initial 
starting distance (Supplementary Fig6 for graphical explanation).   
 
Representation in UMAP space 
As reported in past literature, V1 populations have high-dimensional geometry, at least when the dimension is 
linearly reduced50. We thus followed multiple literature to use nonlinear neighbor embedding methods11, 49 
when reducing the dimension of the neural populational responses. Even/odd trials-averaged population firing 
counts for all stimuli in a stimulus type for 15 days were pooled to be jointly dimension-reduced. (e.g., 16 
grating directions x 15 days x even/odd trials = 480 samples). Uniform Manifold Approximation and 
Projection51, 74 (UMAP) was performed for each stimulus type separately with the following parameters: 
DG: correlation distance, 2 dimensions, 149 neighbors, 0.9 minimum distance  
SG: Euclidean distance, 2 dimensions, 134 neighbors, 0.7 minimum distance 
RFG: cosine distance, 2 dimensions, 134 neighbors, 0.9 minimum distance 
NI: correlation distance, 2 dimensions, 119 neighbors, 0.9 minimum distance 
When quantifying if the representations of the same stimulus conditions were closer to themselves across days 
than to different stimuli within days in the dimension reduced space, all distances computed were normalized 
by the mean of within-day distances (even versus odd trials) for the same conditions across all days. When 
quantifying separation between the same stimulus across days against the nearest five different stimuli within 

days, we used  

������,�	

������,���������	,��	

�
 , for day pair � and   of stimulus 
, where !�"�
� , 
�� is the average distance 

between 4 pairs (even/odd trial means x two days) of within stimulus between day Euclidean distances.  
!�"	
� , 
5� is the average distance between 20 pairs (even/odd trial means x 5 neighbors and their even/odd 
trial means) of between stimulus Euclidean distances within day � . UMAP generates low-dimensional 
embeddings from the original high-dimensional space, preserving the probability of connections (transformed 
from distance measures) between data points and their nearest neighbors. While a single distance 
measurement in the UMAP space is unitless and less meaningful on its own, we believe the distance ratio 
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between the same stimulus across days and nearby competing stimuli is more informative. Conceptually, this 
ratio resembles an odds ratio in statistics. We posit that when representational drift is low, stimulus 
representations from one day are more likely to be connected to the same stimulus from another day rather 
than to competing stimuli. 
  
 
 
Preferred spatial frequency/orientation.  
For each neuron, the preferred spatial frequency/orientation of SG stimuli was defined as the trial-averaged 
firing count weighted spatial frequency/orientation, marginalizing over orientation/spatial frequency 
respectively.  

∑ ��$��

∑ ���
 

 
 
Functional Connectivity.  
We followed published methods carefully to calculate the jitter-corrected cross-correlogram28, 57 CCG as 

��%	& �
�
�∑ ∑ ��� ������ ������

���
�
���

���������
 between the spike trains of pairs of units '�

� 	( and '�
� 	( . CCGs were derived 

individually for each recording day and separately for each stimulus type (DG, SG, RFG, NI) at 1 ms temporal 
resolution. Only unit pairs whose mean firing rate )�,)�were both higher than 2 Hz for that specific stimulation 
type were included in the calculation. Only the stimulus-on period was used for calculation. The CCGs were 
then normalized by the geometric mean firing rate of the two units as well as a triangular function *	& to 
correct overlapping sliding window edges. The CCG was then averaged across all + repeats of the same 
stimulus � . Individually normalized CCGs were calculated for each stimulus pattern (e.g., drifting grating 
directions, static grating orientations � spatial frequencies) separately before averaging across all available 
patterns of that stimulus type. A peristimulus time histogram-preserving jittered version of the CCG was 
computed and subtracted from the original CCG to generate the final CCG. A pair was considered significantly 
functionally connected if there was a peak in the -10 ms to 10 ms region of the correlogram, and this peak was 
above six standard deviations of cross-correlogram flank (defined as -112 ms~62 ms, together with 62 ms~112 
ms). CCG peak amplitude was defined as the connectivity strength, and the temporal location of the peak is 
defined as the lag. 
 
Population Coupling 
Population coupling54, 55 between a specific neuron and the rest of the neuronal population is the correlation 
coefficient between per-trial-based the response (firing count) of that neuron with the summed response of the 
rest of the population in the same animal. All trials of a specific stimulus type were directly concatenated 
without considering stimulus identity for this calculation. Population coupling was computed for each neuron-
stimulus type combination.  
 
Spike-Triggered Population Activity 
A separate measure that describes the neuron-to-population coupling is spike-triggered population activity54, 60. 
The spike train of a target neuron and the summed spike train of the rest of the neuronal population were 
summarized on a per-trial basis at 1 ms resolution. For each trial, the target neuron triggered population firing 
histogram of the same trial was calculated at different lag. A shuffled version of the spike-triggered histogram 
was computed using population activity from different trials (permuted 100 times) and averaged across 
permutations. After subtracting the shuffled histogram, the per-trial-based spike-triggered population firing 
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histogram was averaged across trials. The strength of the coupling was defined as the final histogram value at 
the 0 ms time lag.  
 
Statistics 
All the statistical analyses were performed in MATLAB (MathWorks, MA). All tests were two-sided. Kruskal-
Wallis, ANOVA and Chi-Square test of independence were used to test the visual responsiveness of the units 
as reported in the methods section. Normality was assumed but not explicitly tested whenever applicable. To 
quantify if units were more like themselves across days than other units in the same probe within days, for both 
biophysical and tuning properties, independent t-tests were used. They were also used to compare functional 
tuning stability/reliability between cell types. Welch’s paired t-tests were employed for the pairwise 
comparisons between the portions of recovered user responses for different tracking schemes for units from 
each electrode shank. It was also used to compare firing rate versus component-based single neuron decoding 
accuracy. The superiority of using tracked (paired sample) objects rather than unpaired population measures 
to measure population stability has been discussed previously61. To quantify such longitudinal stability 
measures for tracked (paired sample for longitudinal statistical study design) animals, probes, single units, 
single unit-pairs, and mouse-pattern pairs, we used linear mixed effect models10. Objects tracked for less than 
3 days were typically excluded from such analysis following the 3 time points minimal guidance in42. A recent 
study also reported that true stability could be confounded by a short tracking duration58. To investigate 
individual unit, individual unit pair, individual animal, individual probe’s evolving direction and magnitude for any 
measures of stability (changes over time), a separate linear regression over time model was fitted for each 
member in the population. Bonferroni’s correction for multiple comparisons was applied. To determine the 
significance of the differences between two correlation coefficients, the MSTATS toolbox was used.  
 
Data Availability:   
Data supporting the main conclusions (e.g., neuron population spiking timestamps across different trials X 
stimulus types X recording days) will be available upon publication.  
 
Code Availability:   
- Mountainsort4 for spike sorting is available at https://github.com/magland/ml_ms4alg  
- LDA decoders are available with MATLAB functions “fitcdiscr”, sample code for temporal components fitting 
will be available upon publication. 
- Linear mixed effect, multiple linear regressions were performed with MATLAB function “fitlm,” “fitlme.”  
- To test different in correlation coefficient,  MSTATS toolbox was used 
https://www.mathworks.com/matlabcentral/fileexchange/47235-mstats-a-random-collection-of-statistical-
functions .  
- UMAP for dimension reduction is available at https://umap-learn.readthedocs.io/en/latest/  
- Cell explorer for ACG, CCG, cell type classification, is available at https://cellexplorer.org/  
- Jitter corrected CCG is available at https://github.com/jiaxx/modular_network 
- Shuffle corrected spike triggered population activity is available at 
https://github.com/VeronikaKoren/struct_pop_public  
- Dense neural network used for validation of labelling consistency is available at 
https://github.com/KordingLab/Neural_Decoding 
- DeeplabCut for animal pose labelling is available at https://github.com/DeepLabCut/DeepLabCut  
- YOLO for animal pose labelling is available at https://docs.ultralytics.com/  
 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References. 

1. Hengen, K.B., Torrado Pacheco, A., McGregor, J.N., Van Hooser, S.D. & Turrigiano, G.G. Neuronal 
Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake. Cell 165, 180-191 (2016). 
2. Yao, H., Shi, L., Han, F., Gao, H. & Dan, Y. Rapid learning in cortical coding of visual scenes. Nature 
Neuroscience 10, 772-778 (2007). 
3. Mankin, E.A., Diehl, G.W., Sparks, F.T., Leutgeb, S. & Leutgeb, J.K. Hippocampal CA2 activity patterns 
change over time to a larger extent than between spatial contexts. Neuron 85, 190-201 (2015). 
4. Ziv, Y., et al. Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience 16, 264-266 
(2013). 
5. Schoonover, C.E., Ohashi, S.N., Axel, R. & Fink, A.J.P. Representational drift in primary olfactory 
cortex. Nature 594, 541-546 (2021). 
6. Driscoll, L.N., Pettit, N.L., Minderer, M., Chettih, S.N. & Harvey, C.D. Dynamic Reorganization of 
Neuronal Activity Patterns in Parietal Cortex. Cell 170, 986-999.e916 (2017). 
7. Montijn, J.S., Meijer, G.T., Lansink, C.S. & Pennartz, C.M. Population-Level Neural Codes Are Robust 
to Single-Neuron Variability from a Multidimensional Coding Perspective. Cell Reports 16, 2486-2498 (2016). 
8. Jeon, B.B., Swain, A.D., Good, J.T., Chase, S.M. & Kuhlman, S.J. Feature selectivity is stable in 
primary visual cortex across a range of spatial frequencies. Scientific Reports 8, 15288 (2018). 
9. Ranson, A. Stability and Plasticity of Contextual Modulation in the Mouse Visual Cortex. Cell Reports 
18, 840-848 (2017). 
10. Marks, T.D. & Goard, M.J. Stimulus-dependent representational drift in primary visual cortex. Nature 
Communications 12, 5169 (2021). 
11. Deitch, D., Rubin, A. & Ziv, Y. Representational drift in the mouse visual cortex. Current Biology 31, 
4327-4339.e4326 (2021). 
12. Xia, J., Marks, T.D., Goard, M.J. & Wessel, R. Stable representation of a naturalistic movie emerges 
from episodic activity with gain variability. Nature Communications 12, 5170 (2021). 
13. Siegle, J.H., et al. Reconciling functional differences in populations of neurons recorded with two-
photon imaging and electrophysiology. eLife 10, e69068 (2021). 
14. Wei, Z., et al. A comparison of neuronal population dynamics measured with calcium imaging and 
electrophysiology. PLOS Computational Biology 16, e1008198 (2020). 
15. Hart, E.E., Gardner, M.P.H., Panayi, M.C., Kahnt, T. & Schoenbaum, G. Calcium activity is a degraded 
estimate of spikes. Current Biology 32, 5364-5373.e5364 (2022). 
16. Theis, L., et al. Benchmarking Spike Rate Inference in Population Calcium Imaging. Neuron 90, 471-
482 (2016). 
17. Huang, L., et al. Relationship between simultaneously recorded spiking activity and fluorescence signal 
in GCaMP6 transgenic mice. eLife 10, e51675 (2021). 
18. Panzeri, S., Brunel, N., Logothetis, N.K. & Kayser, C. Sensory neural codes using multiplexed temporal 
scales. Trends in Neurosciences 33, 111-120 (2010). 
19. Singer, W. Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored 
knowledge. Proceedings of the National Academy of Sciences 118, e2101043118 (2021). 
20. Niell, C.M. & Scanziani, M. How Cortical Circuits Implement Cortical Computations: Mouse Visual 
Cortex as a Model. Annual Review of Neuroscience 44, 517-546 (2021). 
21. Chabrol, F.P., Arenz, A., Wiechert, M.T., Margrie, T.W. & DiGregorio, D.A. Synaptic diversity enables 
temporal coding of coincident multisensory inputs in single neurons. Nature Neuroscience 18, 718-727 (2015). 
22. Lamme, V.A.F. & Roelfsema, P.R. The distinct modes of vision offered by feedforward and recurrent 
processing. Trends in Neurosciences 23, 571-579 (2000). 
23. Keller, A.J., Roth, M.M. & Scanziani, M. Feedback generates a second receptive field in neurons of the 
visual cortex. Nature 582, 545-549 (2020). 
24. Hegdé, J. & Essen, D.C.V. Temporal Dynamics of Shape Analysis in Macaque Visual Area V2. Journal 
of Neurophysiology 92, 3030-3042 (2004). 
25. Hegdé, J. Time course of visual perception: Coarse-to-fine processing and beyond. Progress in 
Neurobiology 84, 405-439 (2008). 
26. Reich, D.S., Mechler, F. & Victor, J.D. Temporal Coding of Contrast in Primary Visual Cortex: When, 
What, and Why. Journal of Neurophysiology 85, 1039-1050 (2001). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27. Steinmetz, N.A., et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain 
recordings. Science 372, eabf4588 (2021). 
28. Siegle, J.H., et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 
592, 86-92 (2021). 
29. Luan, L., et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci 
Adv 3, e1601966 (2017). 
30. Zhao, Z., et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping 
of thousands of neurons in rodents. Nat Biomed Eng 7, 520-532 (2023). 
31. He, F., et al. Longitudinal neural and vascular recovery following ultraflexible neural electrode 
implantation in aged mice. Biomaterials 291, 121905 (2022). 
32. Koyano, K.W., et al. Progressive neuronal plasticity in primate visual cortex during stimulus 
familiarization. Science Advances 9, eade4648 (2023). 
33. Woloszyn, L. & Sheinberg, D.L. Effects of long-term visual experience on responses of distinct classes 
of single units in inferior temporal cortex. Neuron 74, 193-205 (2012). 
34. Zhu, H., et al. Clustering with fast, automated and reproducible assessment applied to longitudinal 
neural tracking. arXiv preprint arXiv:2003.08533  (2020). 
35. Tolias, A.S., et al. Recording Chronically From the Same Neurons in Awake, Behaving Primates. 
Journal of Neurophysiology 98, 3780-3790 (2007). 
36. Okun, M., Lak, A., Carandini, M. & Harris, K.D. Long Term Recordings with Immobile Silicon Probes in 
the Mouse Cortex. PLOS ONE 11, e0151180 (2016). 
37. Walker, E.Y., et al. Inception loops discover what excites neurons most using deep predictive models. 
Nature Neuroscience 22, 2060-2065 (2019). 
38. Quiroga, R.Q., Reddy, L., Koch, C. & Fried, I. Decoding Visual Inputs From Multiple Neurons in the 
Human Temporal Lobe. Journal of Neurophysiology 98, 1997-2007 (2007). 
39. Petersen, P.C., Siegle, J.H., Steinmetz, N.A., Mahallati, S. & Buzsáki, G. CellExplorer: A framework for 
visualizing and characterizing single neurons. Neuron 109, 3594-3608.e3592 (2021). 
40. Faisal, A.A., Selen, L.P.J. & Wolpert, D.M. Noise in the nervous system. Nature Reviews Neuroscience 
9, 292-303 (2008). 
41. Pennartz, C.M.A., Oude Lohuis, M.N. & Olcese, U. How ‘visual’ is the visual cortex? The interactions 
between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual 
perception. Philosophical Transactions of the Royal Society B: Biological Sciences 378, 20220336 (2023). 
42. Clopath, C., Bonhoeffer, T., Hübener, M. & Rose, T. Variance and invariance of neuronal long-term 
representations. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20160161 (2017). 
43. Rose, T., Jaepel, J., Hübener, M. & Bonhoeffer, T. Cell-specific restoration of stimulus preference after 
monocular deprivation in the visual cortex. Science 352, 1319-1322 (2016). 
44. Yiling, Y., Klon-Lipok, J. & Singer, W. Joint encoding of stimulus and decision in monkey primary visual 
cortex. Cerebral Cortex 34, bhad420 (2024). 
45. Stringer, C., et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 
eaav7893 (2019). 
46. Fusi, S., Miller, E.K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Current 
Opinion in Neurobiology 37, 66-74 (2016). 
47. Oude Lohuis, M.N., Marchesi, P., Olcese, U. & Pennartz, C.M.A. Triple dissociation of visual, auditory 
and motor processing in mouse primary visual cortex. Nat Neurosci 27, 758-771 (2024). 
48. Zuo, Y., et al. Complementary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in 
Rat S1 and S2 Cortex. Current Biology 25, 357-363 (2015). 
49. Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S.E. & Pachitariu, M. High-precision coding in visual 
cortex. Cell 184, 2767-2778.e2715 (2021). 
50. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K.D. High-dimensional geometry of 
population responses in visual cortex. Nature 571, 361-365 (2019). 
51. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for 
dimension reduction. arXiv preprint arXiv:1802.03426  (2018). 
52. Rossi, L.F., Harris, K.D. & Carandini, M. Spatial connectivity matches direction selectivity in visual 
cortex. Nature 588, 648-652 (2020). 
53. Scholl, B., Thomas, C.I., Ryan, M.A., Kamasawa, N. & Fitzpatrick, D. Cortical response selectivity 
derives from strength in numbers of synapses. Nature 590, 111-114 (2021). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

54. Okun, M., et al. Diverse coupling of neurons to populations in sensory cortex. Nature 521, 511-515 
(2015). 
55. Sweeney, Y. & Clopath, C. Population coupling predicts the plasticity of stimulus responses in cortical 
circuits. eLife 9, e56053 (2020). 
56. Trautmann, E.M., et al. Large-scale high-density brain-wide neural recording in nonhuman primates. 
bioRxiv  (2023). 
57. Jia, X., et al. Multi-regional module-based signal transmission in mouse visual cortex. Neuron 110, 
1585-1598.e1589 (2022). 
58. Jensen, K.T., Kadmon Harpaz, N., Dhawale, A.K., Wolff, S.B.E. & Olveczky, B.P. Long-term stability of 
single neuron activity in the motor system. Nature Neuroscience 25, 1664-1674 (2022). 
59. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hübener, M. Experience leaves a lasting structural 
trace in cortical circuits. Nature 457, 313-317 (2009). 
60. Koren, V., Andrei, A.R., Hu, M., Dragoi, V. & Obermayer, K. Pairwise Synchrony and Correlations 
Depend on the Structure of the Population Code in Visual Cortex. Cell Reports 33, 108367 (2020). 
61. Lütcke, H., Margolis, D.J. & Helmchen, F. Steady or changing? Long-term monitoring of neuronal 
population activity. Trends in Neurosciences 36, 375-384 (2013). 
62. Papaioannou, S. & Medini, P. Advantages, Pitfalls, and Developments of All Optical Interrogation 
Strategies of Microcircuits in vivo. Frontiers in Neuroscience 16, 859803 (2022). 
63. Park, H., You, N., Lee, J. & Suh, M. Longitudinal study of hemodynamics and dendritic membrane 
potential changes in the mouse cortex following a soft cranial window installation. Neurophotonics 6, 015006 
(2019). 
64. Hammer, D.X., et al. Longitudinal vascular dynamics following cranial window and electrode 
implantation measured with speckle variance optical coherence angiography. Biomedical Optics Express 5, 
2823-2836 (2014). 
65. Plog, B.A., et al. When the air hits your brain: decreased arterial pulsatility after craniectomy leading to 
impaired glymphatic flow. Journal of Neurosurgery JNS 133, 210-223 (2020). 
66. Xu, H.-T., Pan, F., Yang, G. & Gan, W.-B. Choice of cranial window type for in vivo imaging affects 
dendritic spine turnover in the cortex. Nature Neuroscience 10, 549-551 (2007). 
67. Holtmaat, A., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic 
cranial window. Nature Protocols 4, 1128-1144 (2009). 
68. Pérez-Ortega, J., Alejandre-García, T. & Yuste, R. Long-term stability of cortical ensembles. eLife 10, 
e64449 (2021). 
69. Goldey, G.J., et al. Removable cranial windows for long-term imaging in awake mice. Nature Protocols 
9, 2515-2538 (2014). 
70. de Vries, S.E.J., et al. A large-scale standardized physiological survey reveals functional organization 
of the mouse visual cortex. Nature Neuroscience 23, 138-151 (2020). 
71. McMahon, D.B.T., Bondar, I.V., Afuwape, O.A.T., Ide, D.C. & Leopold, D.A. One month in the life of a 
neuron: longitudinal single-unit electrophysiology in the monkey visual system. Journal of Neurophysiology 
112, 1748-1762 (2014). 
72. Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y. & Purcell, E.K. Glial responses to implanted electrodes in 
the brain. Nature Biomedical Engineering 1, 862-877 (2017). 
73. McMahon, D.B.T., Jones, A.P., Bondar, I.V. & Leopold, D.A. Face-selective neurons maintain 
consistent visual responses across months. Proceedings of the National Academy of Sciences 111, 8251-8256 
(2014). 
74. Guidera, J.A., et al. Regional specialization manifests in the reliability of neural population codes. 
bioRxiv  (2024). 
75. Trägenap, S., Whitney, D.E., Fitzpatrick, D. & Kaschube, M. The developmental emergence of reliable 
cortical representations. Nature Neuroscience 28, 394-405 (2025). 
76. Bondar, I.V., Leopold, D.A., Richmond, B.J., Victor, J.D. & Logothetis, N.K. Long-Term Stability of 
Visual Pattern Selective Responses of Monkey Temporal Lobe Neurons. PLOS ONE 4, e8222 (2009). 
77. Fişek, M., et al. Cortico-cortical feedback engages active dendrites in visual cortex. Nature 617, 769-
776 (2023). 
78. Wilson, D.E., Whitney, D.E., Scholl, B. & Fitzpatrick, D. Orientation selectivity and the functional 
clustering of synaptic inputs in primary visual cortex. Nature Neuroscience 19, 1003-1009 (2016). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

79. Iacaruso, M.F., Gasler, I.T. & Hofer, S.B. Synaptic organization of visual space in primary visual cortex. 
Nature 547, 449-452 (2017). 
80. Lu, R., et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nature 
Neuroscience 20, 620-628 (2017). 
81. Shen, S., et al. Distinct organization of two cortico-cortical feedback pathways. Nature Communications 
13, 6389 (2022). 
82. Bauer, J., et al. Sensory experience steers representational drift in mouse visual cortex. Nature 
Communications 15, 9153 (2024). 
83. Sadeh, S. & Clopath, C. Contribution of behavioural variability to representational drift. eLife 11, e77907 
(2022). 
84. Polack, P.-O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state–dependent gain 
modulation in visual cortex. Nature Neuroscience 16, 1331-1339 (2013). 
85. Niell, C.M. & Stryker, M.P. Modulation of Visual Responses by Behavioral State in Mouse Visual 
Cortex. Neuron 65, 472-479 (2010). 
86. Sotomayor-Gómez, B., Battaglia, F.P. & Vinck, M. Firing rates in visual cortex show representational 
drift, while temporal spike sequences remain stable. Cell Reports 44 (2025). 
87. Xie, W., et al. Neuronal sequences in population bursts encode information in human cortex. Nature 
635, 935-942 (2024). 
88. Goltstein, P.M., Reinert, S., Bonhoeffer, T. & Hübener, M. Mouse visual cortex areas represent 
perceptual and semantic features of learned visual categories. Nature Neuroscience 24, 1441-1451 (2021). 
89. Parker, P.R.L., Abe, E.T.T., Leonard, E.S.P., Martins, D.M. & Niell, C.M. Joint coding of visual input and 
eye/head position in V1 of freely moving mice. Neuron 110, 3897-3906.e3895 (2022). 
90. Garrett, M., et al. Stimulus novelty uncovers coding diversity in survey of visual cortex. bioRxiv  (2025). 
91. Rikhye, R.V., Yildirim, M., Hu, M., Breton-Provencher, V. & Sur, M. Reliable Sensory Processing in 
Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. 
The Journal of Neuroscience 41, 8761 (2021). 
92. Nguyen, N.D., et al. Cortical reactivations predict future sensory responses. Nature 625, 110-118 
(2024). 
93. Henschke, J.U., et al. Reward Association Enhances Stimulus-Specific Representations in Primary 
Visual Cortex. Current Biology 30, 1866-1880.e1865 (2020). 
94. Corbo, J., McClure, J.P., Erkat, O.B. & Polack, P.-O. Dynamic Distortion of Orientation Representation 
after Learning in the Mouse Primary Visual Cortex. The Journal of Neuroscience 42, 4311-4325 (2022). 
95. Failor, S.W., Carandini, M. & Harris, K.D. Visual experience orthogonalizes visual cortical stimulus 
responses via population code transformation. Cell Reports 44, 115235 (2025). 
96. Lycke, R., et al. Low-threshold, high-resolution, chronically stable intracortical microstimulation by 
ultraflexible electrodes. Cell Reports 42, 112554 (2023). 
97. Chung, J.E., et al. High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using 
Polymer Electrode Arrays. Neuron 101, 21-31.e25 (2019). 
98. Chung, J.E., et al. A Fully Automated Approach to Spike Sorting. Neuron 95, 1381-1394.e1386 (2017). 
99. Dhawale, A.K., et al. Automated long-term recording and analysis of neural activity in behaving 
animals. eLife 6, e27702 (2017). 
100. Blanche, T.J., Spacek, M.A., Hetke, J.F. & Swindale, N.V. Polytrodes: High-Density Silicon Electrode 
Arrays for Large-Scale Multiunit Recording. Journal of Neurophysiology 93, 2987-3000 (2005). 
101. Hilgen, G., et al. Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays. Cell 
Reports 18, 2521-2532 (2017). 
102. Lee, C.W., King, C.E., Wu, S.C., Swindlehurst, A.L. & Nenadic, Z. Signal source localization with 
tetrodes: Experimental verification. in 2011 Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society 67-70 (2011). 
103. Glaser, J.I., et al. Machine Learning for Neural Decoding. eNeuro 7, ENEURO.0506-0519.2020 (2020). 
104. Yoshida, T. & Ohki, K. Natural images are reliably represented by sparse and variable populations of 
neurons in visual cortex. Nature Communications 11, 872 (2020). 
105. Russakovsky, O., et al. Imagenet large scale visual recognition challenge. International journal of 
computer vision 115, 211-252 (2015). 
106. Ko, H., et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 
87-91 (2011). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

107. Tharwat, A., Gaber, T., Ibrahim, A. & Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. 
AI Communications 30, 169-190 (2017). 
108. Guo, Y., Hastie, T. & Tibshirani, R. Regularized linear discriminant analysis and its application in 
microarrays. Biostatistics 8, 86-100 (2007). 

 
 
Acknowledgements:  
We thank Dr. Cristopher Niell, Dr. Nuo Li for feedback. We thank Dr. Valentin Dragoi for suggestions on 
population coupling analysis. We thank Dr. Ngoc M. Tran for input on tracking the same neurons. We thank 
NIH R01NS102917 (to C.X.), U01NS115588 (to C.X.), R01NS109361 (to L.L.) and Rice University internal 
awards (L.L. and C.X.) for funding.  
 
Author Contributions Statement:   
Contributions: Conceptualization, C.X., H.Z., L.L.; Supervision, C.X., L.L.; Investigation and formal analyses, 
H.Z. with input from C.X., A.S.T., L.L.; Methodology - electrode preparation: P.Z., F.H. supervised by C.X.; 
Methodology - surgery: F.H. with input from C.X., L.L.; Methodology - experiment setup: H.Z., S.P. with input 
from C.X., A.S.T.; Visualization H.Z., F.H. with input from C.X., L.L.; Writing - original draft, H.Z., L.L., C.X.; 
Writing - review & editing, L.L., C.X., A.S.T., H.Z. all authors reviewed the manuscript; Funding acquisition and 
project administration, C.X., L.L., A.S.T.; Resources, all authors.  
 
Lead contact: C.X. chongxie@rice.edu.  
These authors jointly supervised the work: C.X., L.L. 
Corresponding authors: H.Z., hanlin.zhu@rice.edu, L.L., lan.luan@rice.edu or C.X., chongxie@rice.edu.  
These authors contributed equally: H.Z., F.H. 
 
Present Address:  
Fei He. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China  
 
 
Competing Interests Statement: 
Competing interests: C.X. and L.L. and are co-inventors on a patent filed by The University 
of Texas (WO2019051163A1, March 14, 2019) on the ultraflexible neural electrode technology. L.L., C.X., and 
P.Z. hold equity ownership in Neuralthread, Inc., an entity that is licensing this technology. The other authors 
declare no competing interests. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2025. ; https://doi.org/10.1101/2025.05.13.652528doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.13.652528
http://creativecommons.org/licenses/by-nc-nd/4.0/

