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ABSTRACT
Complete plastid genome (plastome) and ribosomal DNA (rDNA) sequences of three Rubus accessions
(two Rubus longisepalus and one R. hirsutus) were newly assembled using Illumina whole-genome
sequences. Rubus longisepalus Nakai and R. longisepalus var. tozawai, described as different varieties,
have identical plastomes and rDNA sequences. The plastomes are 155,957bp and 156,005 bp and the
45S rDNA transcription unit sizes are 5809bp and 5811bp in R. longisepalus and R. hirsutus, respect-
ively. The 5S rDNA transcription unit is an identical 121bp in three Rubus accessions. We developed
three DNA markers to authenticate R. longisepalus and R. hirsutus based on plastome diversity.
Phylogenomic analysis revealed that the Rubus species classified as two clades and R. longisepalus,
R. hirsutus, and R. chingii are the most closely related species in clade 1.
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Introduction

The genus Rubus consists of about 500 species, for which the
taxonomy remains unclear due to frequent hybridizations,
polyploidization, and asexual reproduction (Alice and
Campbell 1999; Wang et al. 2016; Hyt€onen et al. 2018). The
genus has been divided into 12 subgenera (Focke 1910,
1914). However, this classification is not unanimously sup-
ported, and each subgenus has been reported to be non-
monophyletic (Alice and Campbell 1999; Yang et al. 2012;
Wang et al. 2016; Hummer et al. 2019). Even though previous
studies contributed to current phylogenetic outline, short
barcode regions such as internal transcribed spacer (ITS) and
universal barcoding loci in the plastid genomes (plastome)
have its own limitations (Li et al. 2015). Recently, nuclear
genome and whole plastomes were used to analyze phylo-
genetic relationships among members of the genus Rubus
and the chromosome scale genome assembly was released
for R. occidentalis (VanBuren et al. 2016; Jibran et al. 2018;
VanBuren et al. 2018; Hummer et al. 2019; Yang et al. 2021).

A super-barcoding approach using whole plastomes offers
a solution to the limitations of using short barcoding regions
to clearly distinguish inter- and intra-species diversity
(Hollingsworth et al. 2009; Li et al. 2015). Since the plastome
is inherited maternally in many plants, the absence of recom-
bination preserves genome size, number of genes, and gene
order in most plants (Palmer 1985; Wicke et al. 2011).
However, sufficient variations are accumulated between spe-
cies to allow estimation of their evolutionary path (Wolfe
et al. 1987).

Nuclear ribosomal DNA (rDNA) exists in the plant nuclear
genome in the form of thousands of tandem repeat arrays
(Roa and Guerra 2012). Despite being part of the nuclear
genome, its sequences are very conserved (Malinska et al.
2010). However, the internal transcribed sequences (ITS1 and
ITS2) separating subunits of 45S rDNA (18S, 5.8S, and 28S)
possess a meaningful level of variation among species
(�Alvarez and Wendel 2003). Whole-genome sequences pro-
duced by second- and third-generation sequencing platforms
allow complete plastome and rDNA sequences to be
assembled simultaneously in a time- and cost-effective man-
ner (Kim et al. 2015a; Kim et al. 2015b). Comparison of plas-
tomes and rDNA sequences have proved very useful for
phylogenetic analysis and development of barcoding markers
(Kim et al. 2017; Lee et al. 2019; Nguyen et al. 2020; Lee
et al. 2021).

Rubus longisepalus Nakai, R. longisepalus var. tozawai
(Nakai) T.B.Lee, are endemic to the Southern coasts and
islands of the Korean Peninsula while R. hirsutus Thunb are
distributed widely in Eastern Asia. R. longisepalus Nakai and
R. longisepalus var. tozawai are regarded as distinct varieties
with the common names ‘Macdo’ and ‘Geoje,’ respectively.
R. hirsutus has a similar habitat and morphology as the two
R. longisepalus varieties. Therefore, clear taxonomic identifica-
tion and development of molecular markers are necessary for
distinguishing these edible plant resources on the
Korean Peninsula.
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Material and methods

Plant materials and genome sequencing

Leaf samples of three Rubus accessions were provided from
the Hantaek Botanical Garden, Gyeonggi-do, Republic of
Korea. Each sample was ground into powder form using liquid
nitrogen, and DNA was extracted using an Exgene Plant SV
Midi Kit (Geneall Biotechnology, Seoul) following the manufac-
turer’s protocol. The extracted DNA was sequenced on the
Illumina Miseq platform by Phyzen (www.phyzen.com,
Seongnam, Gyeonggi-do). Approximately 1.3 Gbp paired-end
sequence data were obtained for each of the three accessions.

Assembly and annotation of plastomes and rDNAs

Plastomes and 45S rDNA sequences were assembled using
the de novo assembly of low-coverage whole-genome
sequencing (dnaLCW) method (Kim et al. 2015b). To summar-
ize, raw reads were trimmed using the trimming tool in CLC
Assembly and then assembled de novo using the CLC novo
assembly tool (CLC Inc, Denmark). Only contigs with similarity
to the reference plastid genome (Rubus trifidus, NC_046585.1)
were extracted using MUMmer (Kurtz et al. 2004). Contigs
structurally identical to the reference plastome were then
extracted, and assembly of the three Rubus plastomes was
completed through manual curation. The complete plastomes
were annotated using GeSeq (https://chlorobox.mpimp-golm.
mpg.de/geseq.html), with manual curation using artemis
(Carver et al. 2012; Tillich et al. 2017). Finally, a gene map
was drawn using OGDRAW (https://chlorobox.mpimp-golm.
mpg.de/OGDraw.html) (Greiner et al. 2019). The 45S rDNA
sequences were assembled in the same way. Contigs similar
to the reference (Sorbus commixta, MN215997.1) were
selected and curated manually. After assembly, each subunit
(18S, ITS1, 5.8S, ITS2, 28S) was determined using RNAmmer
followed by comparison with a reference (Lagesen et al.
2007). The 5S rDNA sequences were assembled using the ref-
erence mapping method. Reads were first mapped to the ref-
erence (Arabidopsis thaliana, AF330993.1), and then different
positions were modified. Intergenic spacer regions (IGS) in
45S rDNA and 5S rDNA were characterized by extending the
end position of the rDNA unit through read mapping.
Extension of the IGS proceeded until the IGS sequence met
the start position of the next rDNA subunit. Manual curation
was then conducted to obtain complete rDNA
repeats sequences.

Polymorphism and marker development

The three completed chloroplast genomes and rDNA sequen-
ces were aligned using the MAFFT online version (Katoh
et al. 2019). Plastome and rDNA variants were confirmed
from the alignment results. Among the polymorphic regions,
two single nucleotide polymorphisms (SNPs) and one inser-
tion and deletion (InDel) region were selected for marker
development. The two SNPs were developed into derived
cleaved amplified polymorphic sequences (dCAPS) markers
using dCAPS finder 2.0 (http://helix.wustl.edu/dcaps/) (Neff
et al. 2002) and the InDel region was developed into a codo-
minant marker. The three primer sets for these markers were
validated in silico using NCBI primer blast (Ye et al. 2012)
before adapting them to the three Rubus species (Table 1).

Phylogenetic analysis

A phylogenetic tree was reconstructed using coding sequen-
ces (CDSs) in the plastome. Sequences representing 11 add-
itional species of the genus Rubus and three outgroup
species also belonging to the family Rosaceae were obtained
from NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/).
Only 74 CDSs common to the 16 species were extracted by
FeatureExtract (Wernersson 2005). These sequences were
concatenated into one contig. The 16 CDS contigs were
aligned using PRANK with the translate option (L€oytynoja
2014), and a phylogenetic tree was reconstructed using the
maximum-likelihood method in MegaX with 1000 bootstrap
replicates (Kumar et al. 2018).

Results

Characteristics of complete plastomes

Assembled plastomes have distinct quadripartite structures
consisting of one long single copy (LSC), one short single
copy (SSC), and two inverted repeats (IRb and IRa). Rubus
longisepalus Nakai and R. longisepalus var. tozawai have com-
pletely identical plastomes. Both have a total length of
155,957 bp, with 85,633 bp of LSC, 18,766 bp of SSC, and
25,779 bp of IR. The R. hirsutus plastome has a total length of
156,005 bp, with 85,745 bp of LSC, 18,734 bp of SSC, and
25,763 bp of IR. Both species have the same gene content
and order: 85 CDSs, 37 tRNAs, and 8 rRNAs (Table 2; Figure
1). Analysis of nucleotide variations between R. longisepalus
and R. hirsutus revealed 1882 SNPs and 325 InDels.

Table 1. Authentication markers and primers developed in this study.

Primer Location Product size (bp) Recognition enzyme Strand Primer sequence

RubusdCAPS1 psbA 125 (RL) MboI F CCAAGGTTAGCGCGGTTAAT
148 (RH) R GGCCTGTAGTAGGTATCTGGAT

RubusdCAPS2 atpI 162 (RL) F AGGATTGGGGTTGGTTGAA
137 (RH) XhoI R GAAAATCATACAGTTACCTCCTCG

RubusInDel1 trnS–trnG 226 (RL) F GGGGCTTTTTAGTTTCACGGC
278 (RH) R TGTGTCAAGAAACGACAGTTCC

MboI and XhoI were used for the dCAPS markers. F and R, forward strand and reverse strand, respectively. RL and RH, R. longisepalus and R.
hirsutus, respectively.
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Marker development

We developed molecular markers based on the polymorph-
ism between plastomes of R. longisepalus and R. hirsutus, and
applied these to the three Rubus accessions. Sequence-based
alignment of two dCAPS markers based on SNP regions and
one codominant marker based on an InDel region confirmed

their targets as polymorphic regions. All three markers
could successfully distinguish R. longisepalus and R. hirsutus
(Figure 2), validating the sequence assembly.

Phylogenetic analysis

To elucidate phylogenetic locations of R. longisepalus and R. hir-
sutus, plastomes of 11 additional species of the genus Rubus
and three other species of the family Rosaceae were retrieved
from NCBI GenBank. A total of 74 common CDSs were used to
reconstruct and analyze a phylogenetic tree (Figure 3). Ten of
the 13 Rubus species are classified into two subgenera in the

Table 2. Information on newly assembled chloroplast genomes.

Length (bp) No. of genes
GenBank
accessionSpecies Total LSC IR SSC CDS tRNA rRNA

R. longisepalus 155,957 85,633 25,779 18,766 85 37 8 MW436703
R. hirsutus 156,005 85,745 25,763 18,734 85 37 8 MW448480

Figure 1. Chloroplast gene map of R. longisepalus and R. hirsutus. The total length of plastomes ranges from 155,957 to 156,005 bp.
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GRIN database (https://npgsweb.ars-grin.gov/gringlobal/taxon/
taxonomysearch): nine in the subgenus Idaeobatus and one in
the subgenus Malachobatus. Meanwhile, our phylogenomic
analysis classified the 13 Rubus species as two clades. Eight
species including R. longisepalus and R. hirsutus fell into clade 1,
with all species belonging to the monophyletic subgenus
Idaeobatus, while the other five species belonged to clade 2,
which is non-monophyletic and contains two subgenera.
R. lambertianus, classified in subgenus Malachobatus based on
GRIN database (https://npgsweb.ars-grin.gov/gringlobal/taxon/
taxonomysearch), and three other Rubus species belonging to
subgenus Idaeobatus were placed in clade 2. R. longisepalus,
R. hirsutus, and R. chingii in clade 1 were the most closely
related species among the 13 Rubus species studied.

Nuclear rDNAs in R. longisepalus and R. hirsutus

We assembled complete rDNA units including transcription
units and inter genic spaces (IGS) for all three Rubus acces-
sions. The 45S rDNA and 5S rDNA units were assembled inde-
pendently as repeated array forms. The 45S rDNA unit
contains a transcription unit of 5809–5811 bp spanning
10,093 bp to 10,630 bp including IGS. The 5S rDNA has a 121-
bp transcription unit spanning 499bp to 501 bp including
IGS (Table 3; Figure 4). The transcription units in the 45S
rDNA subunit are similar sizes in the two species, excluding
ITS1 and ITS2, which are known to accumulate variations
relatively fast. ITS1 and ITS2 of R. hirsutus are different from
those of R. longisepalus. The 5S rDNA transcription unit

Figure 2. DNA marker validation and polymorphisms. (a) Agarose gel electrophoresis using three primer combinations. Detailed marker information including
restriction enzymes and product sizes is provided in Table 1. M indicates 100 bp DNA ladder. 1, 2, and 3 indicate R. longisepalus Nakai, R. longisepalus var. tozawai
and R. hirsutus, respectively. (b) Schematic diagram for the polymorphic sites between R. longisepalus and R. hirsutus.

Figure 3. Phylogenetic tree of the genus Rubus. Concatenation of 74 common CDSs from 13 species of the genus Rubus was used to reconstruct a phylogenetic
tree using the maximum-likelihood method in MegaX. Numbers at nodes are bootstrap values (as percentages) from 1000 replicates. Three additional species in the
family Rosaceae were used as an outgroup. Species assembled in this study were marked with red circle.

MITOCHONDRIAL DNA PART B 1457

https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch
https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch
https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch
https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch


sequences are the same among all three accessions. The IGS
of 45S rDNA are different among all three accessions, while
the IGS of 5S rDNA are the same in the two R. longisepalus
accessions but differ from those of R. hirsutus.

Discussion

Completion of three newly assembled Rubus plastomes and
rDNA sequences allowed us to identify their polymorphisms
and phylogenetic relationships. Two accessions of R. longisepa-
lus, known to represent the same species but classified as dif-
ferent varieties, have identical plastomes and rDNA sequences.
Despite large variations between R. longisepalus and R. hirsutus,
they are the most closely related species among the 13 species
of the genus Rubus studied. The majority of species in the
genus Rubus belong to the subgenus Idaeobatus, with only
one species classified as subgenus Malachobatus. Since most of
the branches reconstructed in this study correspond with those
obtained in previous studies, we conclude that the overall top-
ology of our phylogenetic tree is reliable (Yang and Pak 2006;
Yang et al. 2012; Wang et al. 2016; Hummer et al. 2019; Wang
et al. 2020; Yang et al. 2021). The genome data and barcode
markers developed in this study provide a basis for unveiling
the phylogenetic relationships of species of the genus
Rubus worldwide.
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