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Abstract

The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell

expansion triggered by impaired cell proliferation in Arabidopsis is an important process for

leaf size regulation, and is known as compensation. This suggests a key interaction

between cell proliferation and cell expansion during leaf development. Several studies have

highlighted the impact of this integration mechanism on leaf size determination; however,

the molecular basis of compensation remains largely unknown. Previously, we identified

extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE)

via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifo-

lia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not

only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecu-

lar cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4

(CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows

hyper activation of the salicylic acid (SA) response pathway, where activation of SA

response can suppress CCE in compensation mutants. All together, these results highlight

the regulatory connection which coordinates compensation and SA response.

Author summary

Leaves are determinate organ and size of leaves are determined by intrinsic and extrinsic

cues. Cell proliferation and post-mitotic cell expansion should be coordinated during leaf

morphogenesis to develop appropriate size depending on its developmental programs.

Recent studies highlighted the existence of integrated mechanism which coordinates cell

proliferation and cell expansion during leaf development. Compensation, which is

enhanced post-mitotic cell expansion accompanied by a significant decrease in cell
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number during leaf organogenesis, is one of the clues for such coordination. However, the

molecular mechanisms linking cell proliferation and cell expansion are still poorly under-

stood. Previously, we reported extra-small sisters 2 (xs2) mutation caused specific defect in

cell expansion and it suppressed increased post-mitotic cell enlargement in angustifolia3
(an3) mutant, which exhibits typical compensation. Here we identify the affected gene of

xs2mutant encodes a member of cation calcium exchanger which is believed to be involved

in cation homeostasis within cells. Loss of function of this protein causes hyper accumula-

tion of salicylic acid (SA) and increased expression of pathogen related genes. Physiological

and genetic studies revealed activated SA signal transduction reduced cell size. It sup-

pressed post-mitotic cell expansion in several compensation mutants not only an3 but par-

tially suppressed in another type of compensation mutant which increases size of mitotic

cells. This finding suggests post-mitotic cell expansion pathway is regulated in common by

SA-dependent signaling and by compensation signaling during leaf development.

Introduction

Understanding how organ size is regulated in plants has remained as a fundamental question

in the field of plant science over the last few decades. The plant leaf is one of the most suitable

model systems for studying organ size determination, since leaves show constant size and

shape under a given growth condition. Many studies have demonstrated complex regulatory

networks for organ size determination in Arabidopsis thaliana (L.) Heynh. (Arabidopsis, here-

after). As leaves are a determinate organ, which is produced by limited cell proliferation, the

final leaf size is determined by the total number and average size of cells within leaves. Vigor-

ous cell proliferation occurs at the base of the young leaf primordia, then proliferative zone of

primordia is spatially differentiated at the junction region between the leaf blade and leaf peti-

ole. Then, cells that become displaced distally away from the base gradually lose their prolifer-

ating activity along the proximal-distal axis [1, 2]. Cells that exit from this leaf meristem region

start post-mitotic cell expansion, which is accompanied by massive vacuolation [1–9]. Several

studies have highlighted the phenomenon of “compensation”, which refers to a decrease in cell

number accompanied with a significant increase in cell size, caused by a mutation or ectopic

expression of a particular transgene. These findings suggest that the two spatially separated

events, cell proliferation and cell expansion are highly coordinated during leaf development [7,

10–19]. Kinematic analysis of several compensation-exhibiting mutants revealed that abnor-

mal cell enlargement, termed “compensated cell enlargement (CCE)” can be classified into

three classes based on their way of development [13, 20]. For instance, CCE in angustifolia3
(an3), fugu2/fasciata1 (fugu2/fas1) and erecta (er) occurs by enhanced post-mitotic cell expan-

sion activity (class I), while an extended post-mitotic cell expansion period occurs in fugu5
(class II). An increased size of dividing cells contributes to a larger cell phenotype in a KIP-RE-
LATED PROTEIN 2 (KRP2) overexpressor (KRP2ox) (class III). Another difference is that

compensation is mediated in a cell-autonomous and a non-cell-autonomous manner in the

KRP2ox and an3, respectively, as Kawade et al. have demonstrated [21].

A detailed developmental context of compensation, especially how cell number is reduced,

has been characterized in recent studies. For example, in the class I compensation mutant

fugu2/fas1 an ATAXIA TELANGIECTASIA MUTATED (ATM)-dependent DNA damage

response contributes to cell cycle delay [22]. On the other hand, Ferjani et al. [23, 24] showed

that a class II compensation mutant fugu5 exhibits hyper-accumulation of cytosolic pyrophos-

phate and decreased levels of sucrose due to loss of AVP1 (vacuolar H+-pyrophosphatase)

PLOS GENETICS Salicylic acid signaling negatively regulates compensated cell enlargement

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008873 June 25, 2020 2 / 17

https://doi.org/10.1371/journal.pgen.1008873


activity, leading to impaired cell proliferation. Although previous study suggests that a key trig-

ger of compensation induction is a significant reduction in cell number below a certain thresh-

old level [25], little is known about the regulatory mechanisms underlying CCE other than

class III compensation.

Regarding class III compensation, the loss of function mutant of DE-ETIOLATED 3
(DET3) gene encoding the V-ATPase suppressed CCE of KRP2ox without any effects on cell

proliferation, suggesting that CCE in KRP2ox plants requires V-ATPase activity [18, 19]. Inter-

estingly, introduction of the det3 mutation into another compensation mutant, fugu2 (class I)

or fugu5 (class II) did not suppress CCE, indicating that the cell expansion pathways that are

activated by compensation in the three classes are distinct. To study the mechanism of CCE

further, we identified mutants, so called extra-small sisters (xs), that have a specific defect in

cell expansion [26]. Double mutant analysis combining xs mutants and an3, a class I compen-

sation mutant, was carried out to evaluate the genetic interaction between xs mutants and an3.

Interestingly, some of the xs mutations completely suppressed CCE in the an3 background

while cell number was not affected. This suggests that CCE in class I compensation occurs by

massive activation of a cell expansion pathway that is required for normal cell expansion dur-

ing leaf development. To understand the regulatory mechanisms of CCE, further characteriza-

tion of xs mutants including molecular cloning of XS genes has been required. Therefore, in

this study we characterized the xs2 mutant that shows strong inhibition in cell expansion. Our

results revealed that XS2 encodes a CATION CALCIUM EXCHANGER 4 (CCX4) and xs2
mutant accumulates increased levels of the phytohormone salicylic acid (SA), leading to

hyper-activation of the SA response and to impaired cell expansion.

SA is known to be a key signal molecule in activating defenses, acquiring resistance to path-

ogens, and cell death during plant-pathogen interactions in several species [27, 28]. NPR1

(NONEXPRESSOR OF PR GENES 1) activates the SA-controlled systemic acquired resistance

(SAR) pathway. In addition to defense responses, several studies highlight complex roles of SA

in cell fate control, such as regulation of organ growth, cell division, cell enlargement, DNA

endoreduplication and cell death [29–32]. In this study, we found that an xs2 npr1 double

mutant shows a normal rosette phenotype in terms of cell size and number, suggesting that

SA-dependent inhibition of cell expansion in xs2 is mediated by NPR1 signal transduction.

These results provide novel insights into compensation and SA signaling during leaf

development.

Results

Loss of XS2 function can suppress CCE in compensation-exhibiting

mutants an3, er and fugu2 but not in KRP2ox
We previously reported that the xs2 mutation can suppress CCE in the compensation-exhibit-

ing mutant an3 (Fig 1A–1E, [26]). There are several types of mutants that exhibit compensa-

tion with a different developmental basis [13, 21]. This raises the question whether the xs2
mutation can suppress CCE only in an3 or can also suppress it in other compensation-exhibit-

ing mutants. To address this, double mutants between xs2 and er, fugu2 and KRP2ox plant,

which all show a typical compensation phenotype (Fig 1, [13, 22]), were constructed. er leaves

showed a significant decrease in cell number and an increase in cell size compared to wild-

type (WT) leaves. While the xs2 er double mutant leaves had fewer cells as seen in parental er
mutants, they had smaller cells than er single mutants and like those in xs2, indicating that the

xs2 mutation can also suppress CCE in the er mutant without affecting cell number (Fig 1B–

1F). Similarly, CCE in the xs2 fugu2 double mutant was also suppressed, while the number of

cells was not affected (Fig 1C–1G). These results suggested that CCE in an3, er and fugu2
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might occur through the same regulatory pathway of cell expansion mediated by XS2. By con-

trast, size of cells in the xs2 KRP2ox double mutant showed an intermediate phenotype

between the parents, suggesting that the CCE in KRP2ox occurs through an XS2-independent

regulatory pathway (Fig 1D–1H).

xs2 has a deletion in CCX4
To determine the molecular identity of the XS2 gene, a map-based cloning approach was

employed. Fine mapping and sequence analyses revealed an 8-bp deletion in the exon of

At1g54115 in the xs2 mutant (Fig 2A and 2B and S1 Fig), which encodes a CATION CAL-

CIUM EXCHANGER 4 (CCX4), a putative endomembrane H+-dependent K+ transporter

(Fig 2C). It is suggested that AtCCX4 has an activity of Na+, K+ and Mn2+ transport when

expressed in yeast [33]. This loss-of-function mutation occurs in the region that is predicted as

sodium/calcium exchanger membrane domain and causes a frame shift that might lead to dys-

function of CCX4. Next, to determine if loss of CCX4 function causes the xs2 phenotype, ccx4-
1, a T-DNA insertion mutant allele was characterized (Fig 2C–2E, [33]). ccx4-1 had a smaller

rosette phenotype due to an impaired cell expansion and showed no significant difference in

cell number compared to WT as seen in the xs2 mutant (Fig 2D). To confirm that CCX4 is the

responsible gene of xs2, xs2 was crossed with ccx4-1 and the phenotypes of the F1 progeny

were characterized. The F1 plants showed a similar phenotype to the parental xs2 or ccx4-1
(Fig 2D, S1C Fig). Double mutants between an3 and ccx4-1 showed an impaired cell expansion

phenotype like that in the xs2 an3 double mutant (S3B and S3C Fig). Taken together, we con-

clude that the responsible gene of xs2 is CCX4. RT-PCR analysis showed that the accumulation

of transcript including the 3’ untranslated region was decreased in ccx4-1, while the xs2 mutant

Fig 1. Genetic interaction between xs2 and compensation-exhibiting mutants. (A to D) Rosette phenotype of WT, an3-3, xs2 and

compensation-exhibiting mutants er, fugu2-1 and KRP2ox. Plants were grown for three weeks under a 16-h-light/8-h-dark

fluorescent illumination cycle at 22ºC. Scale bars are 10 mm. (E to H) Cell size and cell number from first layer of palisade cells.

First leaves from three-weeks-old plants were used for observation. (n� 240 cells from more than eight leaves). Means + SD. �,

significantly different at p< 0.05 (with Bonferroni correction for comparisons to WT).

https://doi.org/10.1371/journal.pgen.1008873.g001
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showed comparable expression levels as WT (S1A and S1B Fig), suggesting that nonsense-

mediated mRNA decay does not occur in the xs2 mutant.

xs2 and ccx4-1 show constitutively activated salicylic acid signaling

We confirmed that loss of CCX4 function causes specific defects in cell expansion, raising the

question how it does so. Considering that xs2 shows several defects not only in cell expansion

but also in plant development such as decreased endoreduplication levels [26], we noticed a

similarity in such developmental defects between xs2 and mutants of genes involved in patho-

gen response. For example, a constitutive SA-response mutant of Ca2+/calmodulin (CaM)-reg-

ulated transcription factor shows hyper accumulation of transcripts of pathogenesis-related

(PR) genes and also shows a smaller rosette phenotype as xs2 [34]. It is also known that SA

responses including NPR1-mediated pathogen/defense signaling affect cell expansion and that

lower accumulation of SA causes an increased ploidy level [30, 32, 35].

Thus, we hypothesized that pleiotropic phenotypes observed in xs2 might be due to hyper-

activation of SA signaling. First, we determined the expression levels of genes involved in SA

biosynthesis or pathogen/defense response in xs2, ccx4-1 and WT. Semi-quantitative RT-PCR

analysis revealed that expression of the three SA-dependent SAR markers PR1, PR2 and PR5 is

dramatically increased in xs2 and ccx4-1 compared to WT (Fig 3A). Expression of

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4
(PAD4), key regulators for basal and effector-triggered Toll-interleukin1-receptor domain

NLR immunity [36], was increased in xs2 and ccx4-1 mutants compared to WT. The same is

true for the expression of NPR1, a positive regulator of the SA-dependent signaling and SAR,

and the WRKY transcription factor gene WRKY70, which functions as a convergence node of

integrating signals from SA and jasmonic acid (JA)-dependent defense pathways (Fig 3A) [37,

38]. Our qRT-PCR confirmed massive overaccumulation of EDS1, PR1, PR2 and PR5 in xs2

Fig 2. XS2 corresponds to At1g54115. (A) An 8-bp deletion was found within At1g54115 in xs2. (B) Sequence spectra of

sense strand of At1g54115 region in xs2 mutant. (C) Schematic representation of the At1g54115 locus and the locations of the

deletion in the xs2 mutant (black triangle) and T-DNA insertion (white triangle) in ccx4-1 mutant. Deletion found in the xs2
mutant is represented with red colored characters. (D) Complementation test between xs2 and ccx4-1. (E) Cellular phenotype

in xs2, ccx4-1 and WT. Means + SD. First leaves from three-week-old plants were used for observation. (n� 240 cells from

eight leaves). Scale bar is 10 mm.

https://doi.org/10.1371/journal.pgen.1008873.g002
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and ccx4-1 mutants (Fig 3B). These results suggest that the SA response is constitutively acti-

vated in xs2 and ccx4-1 mutants.

xs2 and ccx4-1 accumulate high levels of reactive oxygen species

Many studies have shown that SA induces the accumulation of reactive oxygen species (ROS) in

plants and causes oxidative damage including programmed cell death (PCD) [39–42]. Consid-

ering that xs2 and ccx4-1 exhibit SA response in terms of gene expression, we carried out trypan

blue staining to assess PCD levels in the first set of leaves of WT, xs2 and ccx4-1. xs2 and ccx4-1
mutants showed strong staining within leaves (S3A Fig). This suggests that xs2 and ccx4-1
exhibit massive ROS production and induce a hypersensitive response (HR). Interestingly, xs2
and ccx4-1 showed no obvious defects in leaf senescence, an alternative form of PCD (S3C Fig).

xs2 and ccx4-1 are SA hyper accumulation mutants

Expression analysis and trypan blue staining suggested that xs2 and ccx4-1 mutants have a con-

stitutively activated SA-response. To get more insight into phytohormone levels, we deter-

mined endogenous levels of SA, auxin (indole-3-acetic acid, IAA), abscisic acid (ABA),

gibberellin (GA1 and GA4), JA, jasmonic acid-isoleucine (JA-Ile), cytokinin, and cytokinin

derivatives (isopentenyladenine [iP], dihydrozeatin [DHZ], trans-zeatin [tZ]) in WT, xs2,

ccx4-1, and an3 plants by using liquid chromatography-electrospray ionization tandem mass

spectrometry (LC-ESI-MS/MS) (Table 1). Endogenous levels of SA were significantly higher in

xs2 and ccx4-1 than in WT, while an3 showed a similar value to WT. In contrast, accumulation

of JA and JA-Ile was dramatically reduced in xs2 and ccx4-1 mutants compared to WT. These

results confirm that xs2 and ccx4-1 highly accumulate SA.

SA response suppresses cell expansion and CCE in an3, er and fugu2
mutants, but not in KRP2ox
To gain more insight into the relationship between SA and cell expansion, we characterized

the phenotype of defense no death 1 (dnd1) mutant, since it exhibits similar phenotypic defects

Fig 3. Expression of pathogen defense response related genes in WT, ccx4 and xs2 mutants. (A) RT-PCR and (B) qRT-PCR

analyses are shown for salicylic acid signaling related genes in WT, ccx4-1 and xs2 mutants. Total RNA was prepared from the first

set of leaves from ten-day-old plants and used for expression analysis. The TUB4 gene was used for an internal control. All values

were normalized against the expression level of the TUB4 gene. Data is from three biological replicates for qRT-PCR analysis. Error

bars indicate + SD.

https://doi.org/10.1371/journal.pgen.1008873.g003
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to xs2. The dnd1 mutant shows constitutive systemic resistance and elevated levels of SA [43].

DND1 encodes a CYCLIC NUCLEOTIDE-GATED ION CHANNEL2 (AtCNGC2), which is

involved in passage of Ca2+, K+ and other cations across the plasma membrane [44]. The dnd1
mutant is defective in HR cell death, but retains characteristic responses such as enhanced

resistance against a broad spectrum of virulent fungal, bacterial and viral pathogens, including

activated induction of pathogenesis-related gene expression [45]. Although it is suggested that

the SA response limits cell expansion, the detailed cellular phenotype of this mutant has been

unclear. If the increased level of SA is a critical cue for suppression of cell expansion, cell

expansion in this mutant should be impaired. As expected, dnd1 mutant had significantly

smaller cells than WT, similar to xs2 mutants (S4 Fig). This supports the idea that hyper accu-

mulation of SA or activated SA response suppresses cell expansion.

As shown above, the xs2 mutation can suppress CCE in an3 and other compensation-

exhibiting mutants. If this suppression of CCE by xs2 results from the hyper-activation of SA

response, exogenous supply of SA is expected to result in a similar suppression of CCE as the

xs2 mutation. To address this possibility, xs2, an3 and WT were treated with exogenous SA

(Fig 4). Leaf size was significantly decreased by SA in a dose-dependent manner via a suppres-

sion of cell expansion (Fig 4A–4C). The inhibitory effect of SA on cell expansion was strongest

in an3 (52.7% reduction), while xs2 showed a mild decrease in cell size (29.7%). Interestingly,

sizes of cells in an3 and WT reached almost the same value after treatment with 1 mM SA,

while control an3 had about 50% larger cells than WT (Fig 4C). This supports the idea that

impaired cell expansion observed in xs2 results from hyper-accumulation of SA and this SA-

mediated suppression of cell expansion inhibits CCE in an3. As shown in Fig 1, CCE was sup-

pressed not only in an3 but also in er and fugu2 by introducing xs2 mutation. Thus, a next

question is whether SA treatment can suppress CCE also in other compensation exhibiting

mutants or not. To address this, we evaluated the effect of SA on cell expansion in er, fugu2
and KRP2ox plants. Exogenous supply of 1 mM SA led to smaller cells in er and fugu2 (Fig

4D). This result indicated that the cell expansion pathway(s) whose activation underlies com-

pensation in an3, er and fugu2 are also suppressed by SA. Remarkably, KRP2ox plants were

not affected by SA in terms of cell size. This result is consistent with the fact that the xs2 muta-

tion could not suppress CCE in KRP2ox. Taken together, CCE in KRP2ox is activated by a SA-

independent regulatory network of cell expansion.

Table 1. Comprehensive Analysis of Phytohormones in Wild-type, xs2, ccx4-1, and an3 Mutant Plants.

Hormones (ng/gDW) WT xs2 ccx4-1 an3
SA 2059.4 ± 161.3 4038.8 ± 139.8 � 5333.7 ± 1313.9 � 2470.5 ± 189.7 �

IAA 99.4 ± 4.3 68.2 ± 2.7 � 68.5 ± 1.6 � 87.3 ± 11.0

ABA 52.9 ± 19.4 35.7 ± 0.1 39.1 ± 1.4 41.2 ± 2.2

GA1 nd nd nd nd

GA4 3.8 ± 0.4 2.1 ± 0.1 � 2.1 ± 0.1� 4.3 ± 0.5

JA 57.2 ± 18.1 10.0 ± 5.9 � 9.2 ± 2.9 � 76.5 ± 20.8

JA-lle 9.3 ± 4.7 1.1 ± 0.7 � 0.6 ± 0.1 � 5.5 ± 1.5

iP 0.6 ± 0.1 1.2 ± 0.1 1.2 ± 0.2 0.6 ± 0.1

DHZ nd nd nd nd

tZ nd nd nd nd

Data represent the mean ± SD of three experiments. (nd, not detected; DW, dry weight

�P < 0.05)

https://doi.org/10.1371/journal.pgen.1008873.t001
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Inhibition of CCE in xs2 was mediated by SA-dependent NPR1 signaling

As shown above, activated SA response suppresses cell expansion in xs2. To determine how it

does so, we assessed the role of the key SA-response factor NPR1 in repressing cell expansion

in xs2. To address this, we produced an xs2 npr1 double mutant and evaluated the effect of the

npr1 mutation on cell expansion, since mutation in the NPR1 gene blocks the induction of

SAR by SA (Fig 5). The npr1 mutant showed a slight decrease in cell number in comparison

with WT, while cell size in npr1 was unchanged (Fig 5B and 5C). Interestingly, a significant

defect in cell size observed in the xs2 mutant was restored in the xs2 npr1 double mutant with

a normal number of cells. This indicates that suppression of cell expansion in xs2 was mediated

via NPR1-dependent signal transduction downstream of SA.

Fig 4. Effect of salicylic acid treatment on leaf development in WT, xs2, ccx4 and an3 mutants. (A) Rosette

phenotype of plants treated with SA. Plants were grown for three weeks under a 16-h-light/8-h-dark fluorescent

illumination cycle at 22ºC. Bars: 10 mm. (B) Leaf size and (C) leaf cell size in WT, xs2 and an3 mutants treated with

salicylic acid with indicated concentration. Black bar plots represent control. (D) Cell size of SA treated WT, an3, er,
fugu2 and KRP2ox. SA solution at 1 mM was supplied every day. (B to D) Plants were grown for three weeks under a

16-h-light/8-h dark fluorescent illumination cycle at 22ºC. First leaves from three-week-old plants were used for

observation. (n� 240 cells from more than eight leaves). Means + SD. �, significantly different at p< 0.05 (with

Bonferroni correction).

https://doi.org/10.1371/journal.pgen.1008873.g004

Fig 5. Characterization of the xs2 npr1 double mutant. (A) Rosette phenotype of xs2, npr1 and xs2 npr1 mutants.

Plants were grown for three weeks under a 16-h-light/8-h-dark fluorescent illumination cycle at 22ºC. Bars: 10 mm. (B)

Estimated cell number and (C) cell size in WT and xs2, npr1 and xs2 npr1 mutants. First leaves from three-week-old

plants were used for observation. (n� 240 cells from more than eight leaves). Means + SD.

https://doi.org/10.1371/journal.pgen.1008873.g005
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Discussion

In the last four decades, many reports have revealed mechanisms regarding plant organ size

regulation [8, 10, 12, 14]. The phenomenon of compensation has been a key clue to under-

standing the integrated regulatory network between cell proliferation and cell expansion dur-

ing organ development. To date, several studies have shown that defects in cell proliferation

trigger compensation; however, little is known about which cell expansion pathway is activated

in CCE. The phytohormone auxin was suggested to be involved in CCE in fugu5, a class II

compensation mutant [46]. It is also reported that CCE in the class-III compensation-exhibit-

ing mutant KRP2ox is mediated by V-ATPase activity [18, 19]. However, the mechanisms of

CCE in class I compensation has been unclear. In this study, we showed that loss of CCX4/XS2

function suppresses CCE in class I compensation by causing an increased accumulation of SA

and activated SA signaling. This indicates that activated SA signaling and class I compensation

regulate common cell expansion pathways in opposite directions.

To understand the CCE suppression property of the xs2 mutant, we characterized the XS2
gene. The xs2 mutant allele carries an 8-bp deletion that causes a frame shift within CCX4,

encoding a member of subfamily of cation transporters [47, 48]. Our semi-quantitative

RT-PCR analysis and subsequent qRT-PCR analysis further revealed that the expression of

genes involved in SA-dependent defense response was up-regulated in developing leaves in xs2
mutants (Fig 3). High levels of EDS1 and PAD4 expression, known as upstream activators of

pathogen-induced SA accumulation, also supported that xs2 has an activated SA response.

Furthermore, our biochemical approach revealed that both the xs2 and ccx4-1 mutants accu-

mulated high levels of SA (Table 1).

Several studies suggested that SA signaling affects cell enlargement and endoreduplication

via recruiting multiple signaling pathways in developing leaves [30–32, 49–51]. Our genetic

and biochemical approach demonstrated that the impaired cell expansion phenotype observed

in xs2 mutant results from activated SA signal transduction mediated by NPR1 (Table 1, Fig

5). It is known that increased ROS levels induce SA biosynthesis, and ROS production and SA

biosynthesis form a positive amplification loop. NPR1 takes part in sensing the intracellular

redox state that is modulated by SA-ROS loop [50, 52–55].

CCX3 is known to be involved in K+, Na+ and Mn2+ transport within plant cells and CCX4
might have similar functions to CCX3, since CCX3 and CCX4 arose from gene duplication

[33]. It is also suggested that CCX3 is involved in ROS signaling. Indeed, ectopic expression of

Arabidopsis CCX3 in tobacco plants showed higher protein oxidation state than controls [33].

This might result from disrupted metal concentrations derived by ectopic CCX3 expression

within cells, since regulation of metal concentration is critical for plant antioxidant regulations

[33, 56]. Thus, it can be interpreted that loss of CCX4 function causes altered redox state within

cells and this causes activated ROS signaling and SA biosynthesis via NPR1. The loss of CCX3

and CCX4 functions has previously been reported to cause no visible phenotype in Arabidop-

sis [33]. One possible explanation for the discrepancy with our results based on two indepen-

dent mutant alleles is that the constitutive pathogen-response phenotype is known to

disappear under conditions of high humidity [57].

A critical cue for the induction of compensation is a decrease in cell number below a certain

threshold level [25]. Although our previous study [26] identified xs mutants that could sup-

press CCE in an3 mutants, detailed molecular basis behind their suppression of CCE has been

unknown. Our results show that CCE in class I compensation mutants is suppressed by intro-

ducing the xs2 mutation, although the primary defects that trigger compensation differ

between these mutants [23, 20]. Of note, activated SA signaling can suppress CCE in class I

compensation mutants, but not in KRP2ox, a case of class III compensation, suggesting that
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the CCE in class I and class III are regulated by different regulatory networks. This result is

consistent with previous reports that CCE in class I and III compensation are mediated by dif-

ferent pathways [13, 18, 19, 21]. Our results indicate that CCE in class I compensation occurs

via the hyper-activation of a common cell expansion pathway that is also regulated negatively

by SA signaling via an NPR1-dependent manner (Fig 5). It should be mentioned that CCE in

an3 was partially observed in the presence of 1 mM SA, rising the possibility that SA signaling

and CCE regulate independent processes and SA-dependent suppression of CCE is additive

phenotype. However, CCE in xs2 an3 double mutant is completely suppressed and smaller cell

phenotype in xs2 is disappeared by introducing npr1 mutation indicating CCE and SA signal-

ing are involved in the same cell expansion pathway. Considering these results, we prefer to

interpret that suppression of cell enlargement by SA in an3 is not saturated or SA signaling

partially suppress CCE pathway since level of CCE in the presence of SA is much moderate

than control (Fig 4). Of course, at present we cannot discard the alternative idea that CCE in

the an3 and the SA signaling are independent, because SA is not downregulated (but slightly

upregulated) in an3 mutant. Further analyses will determine which is correct. Although the

details of this cell expansion pathway are still unclear, our results highlight new insight of regu-

latory crosstalk between the basic plant development network and defense response (Fig 6).

Materials and methods

Plant materials and growth conditions

Arabidopsis accession Col-0 was used as WT for this study. dnd1-1, npr1-1, ccx4-1
(SALK_113447) and ccx4-2 (SALK_040272) were obtained from the Nottingham Arabidopsis

Stock Centre (NASC; http://arabidopsis.info/). The an3-2, an3-3, er-102, fugu2-1 and KRP2ox
mutants have been described previously [13, 58]. The xs2 mutant was originally isolated from

the Col-0 background as described [11, 26]. T-DNA insertions and genotypes were confirmed

by PCR amplification by using specific primers as described in the SIGnAL database (http://

signal.salk.edu, S1 Table). The plants were grown under 16-h-light/8-h-dark conditions with

white fluorescent illumination (approximately 48 μmol m−2 sec−1) at 22˚C.

Plant phenotyping

Leaf and cell sizes were measured as described [11, 26]. Values are represented as mean + SD.

Each value corresponds to more than eight leaves sampled from 8 plants. See figure legends for

Fig 6. A schematic model of interaction between compensation and pathogen defense response on cell expansion.

https://doi.org/10.1371/journal.pgen.1008873.g006
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further details of sample sizes. Student’s t-test or ANOVA followed by Tukey’s HSD post-hoc

test was performed to assess significant differences between the samples using the statistical

software R (https://www.r-project.org/).

SA treatment assay

To estimate the effect of SA on CCE suppression, SA was sprayed on 7-day-old seedlings with

various concentrations (0 μM, 100 μM, 500 μM and 1 mM) in WT, fugu2, an3, xs2, ccx4-1 and

KRP2ox plants. SA spray was carried out continuously every day until leaves become mature

(20-days-old plants).

Genetic mapping

To map the xs2 mutation, xs2 in Col-0 background was crossed to Landsberg erecta and the

resulting F2 population was used for mapping using molecular markers available from The

Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org/)). For the fine-map-

ping, more than 2000 F2 individuals were used. For critical recombinants, progeny testing was

performed to verify the genotype at the mutant locus by analyzing the segregation of the phe-

notype in the progeny.

Genotyping of T-DNA lines

Homozygous ccx4-1 allele was obtained by PCR screening using newly designed LBb_new

primers since LBb1.3 primer showed non-specific amplification in WT (S1 Table, S1C and S2

Figs). Since ccx4-2 allele indicated multiple T-DNA insertions and could not separate them,

we decided to use ccx4-1 for further genetic analyses (S2 Fig).

Trypan blue staining

The protocol followed Fernández-Bautista et al. [59]. Briefly, leaves were harvested with twee-

zers and immersed in fresh trypan blue staining solution (10 mg/ml trypan blue dissolved in

solution mixed equal volume of lactic acid (85% w/w), phenol (TE buffered, pH 7.5–8.0), glyc-

erol, and distilled water). After one-hour staining, leaves were washed with 99% ethanol,

replacing ethanol several times until leaves were bleached. After the bleaching, leaves were

mounted with glycerol solution (60% v/v) for the microscopy observation.

Quantification of phytohormones

Phytohormones quantification was performed following the procedures described in Yoshi-

moto et al. [52].

Expression analyses

To examine the expression of defense-response related genes, total RNA was isolated from

leaves using the RNeasy plant mini kit (Qiagen). The isolated total RNA was treated with DNa-

seI (Takara) prior to the synthesis of first-strand cDNA by the SuperScript III first-strand syn-

thesis system with oligo(dT)17 primer (Thermo). Primers used for expression analysis are

listed in S1 Table. For internal control, TUBULIN BETA 4 (TUB4) was used. Quantitative real-

time RT-PCR analysis was performed using the THUNDERBIRD qPCR Mix (TOYOBO) with

an Mx3000P QPCR System (Agilent Technologies). Average values from three technical and

three biological replicates were shown.
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Supporting information

S1 Fig. ccx4-1 T-DNA mutant. (A) Position of the T-DNA insertion and primers which were

used for genotyping. (B) Semi-quantitative RT-PCR analysis. Accumulation of CCX4 and

CCX3 transcripts in WT and xs2 and ccx4-1 mutants are shown. Two individual samples from

each genotype are shown. (C) Genotyping analysis in xs2 ccx4-1 F1 progeny. T-DNA specific

amplification (LBb_new-RP) and genomic DNA spanning T-DNA (LP-RP) are shown. (D)

Schematic of fine-mapping showing the XS2 locus on chromosome 1 to a 29.3 kb region.

Genetic markers used in this study are indicated below the bars.

(TIF)

S2 Fig. Genotyping and sequencing analysis in the ccx4-1 and ccx4-2 alleles. (A) Position of

T-DNA transgene annotated on the database. (B) New primer for T-DNA genotyping. (C)

Non-specific amplifications in LBb1.3-RP primer set in WT and xs2 mutant. (D) Genotyping

analysis with new primer in ccx4-1. (E) Genotyping analysis with new LBb primer in ccx4-2
mutant. (F, G) Sequence analysis encompassing T-DNA borders in ccx4-2 mutant by using

LBb_new-LP PCR product (F) and LBb_new-RP PCR product (G). (H) Suggested situation of

CCX4 locus and location of T-DNA transgene in ccx4-2.

(TIF)

S3 Fig. Trypan blue staining and leaf senescence phenotype. (A) Trypan blue staining in

WT and xs2, and ccx4-1 mutant. Arrowheads represent densely stained parts. (B) Cell area and

number in WT, an3-2, ccx4-1 and an3-2 ccx4-1 mutant. (C) Leaf senescence phenotype for

32-days-old plants. Inflorescence stems were cut. Scale bars are 1 mm (A) and 10 mm (C).

(TIF)

S4 Fig. Characterization of dnd1. (A) Cell size in WT, dnd1 and xs2. (B) Images of mesophyll

palisade cells from paradermal view. First leaves from three-weeks-old plants were used for

observation. Means + SD. Scale bar is 50 μm.

(TIF)

S1 Table. Primers used in this study.

(TIF)
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