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Osteoarthritis (OA) is the most common form of arthritis and has a

multifactorial etiology. Current management for OA focuses on minimizing

pain and functional loss, typically involving pharmacological, physical,

psychosocial, andmind-body interventions. However, there remain challenges

in determining which patients will benefit most from which interventions.

Although exercise-based interventions are recommended as first-line

treatments and are known to be beneficial for managing both the disease and

illness of OA, the optimal exercise “prescription” is unknown, due in part to

our limited understanding of the precise mechanisms underlying its action.

Here we present our perspective on the potential role of genetics in guiding

exercise prescription for persons with OA. We describe key publications in the

areas of exercise and OA, genetics and OA, and exercise and genetics, and

point to a paucity of knowledge at the intersection of exercise, genetics, and

OA. We suggest there is emerging evidence to support the use of genetics

and epigenetics to explain the beneficial e�ects of exercise for OA. We

identify missing links in the existing research relating to exercise, genetics,

and OA, and highlight epigenetics as a promising mechanism through which

environmental exposures such as exercise may impact OA outcomes. We

anticipate future studies will improve our understanding of how genetic

and epigenetic factors mediate exercise-based interventions to support

implementation and ultimately improve OA patient care.
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Introduction

Osteoarthritis (OA) is a chronic joint condition with

increasing prevalence worldwide. Currently, there is no cure

for OA nor approved disease-modifying OA drugs (DMOADs).

Clinical practice guidelines consistently recommend exercise

as an effective first-line treatment for knee, hip, hand, and

polyarticular (or generalized) OA (1, 2). Despite knowing the

benefits of exercise for managing OA for over a decade (3),

implementation of exercise interventions remains a challenge.

Among the hurdles is a lack of clarity about the precise

mechanisms through which exercise improves OA outcomes,

including whether specific types of exercise are better suited

to specific OA patient populations. Biomechanical hypotheses

have been explored at molecular, cellular, tissue, organ, and

system levels in OA (4). Yet exercise can have different effects

on outcomes of OA disease (i.e., mitigating structural changes to

the joint) and OA illness (i.e., reducing symptoms experienced

by the patient) (5), adding complexity to exercise prescription

for OA patients where discordance between structure and

symptoms may exist.

The emerging field of molecular exercise physiology suggests

genetics may be critical for understanding potential mediators

of the effect of exercise on health and disease (6). Both

exercise (7) and OA (8) are associated with genetic variants,

with new risk loci continuing to emerge depending on the

phenotype definition. For OA, these genetic data explain only a

fraction of the phenotypic variation observed, suggesting other

factors are also at play. Epigenetic factors—DNA methylation,

histone modification, and non-coding RNAs—play important

roles in regulating gene expression and are highly responsive

to environmental variables (9). As a key environmental factor,

exercise may induce epigenetic changes that can mitigate OA,

and these effects may be context-dependent (e.g., patient-

specific). Therefore, from our perspective, if genetics and

epigenetics can mediate the effects of exercise on OA outcomes,

they can potentially be used to guide OA exercise interventions.

However, there is a paucity of existing research at the

intersection of genetics, exercise, and OA.

Exercise and OA

A meta-analysis published in 2019 with, “No new trials

on exercise in knee OA,” in the title concluded based on

studies dating back to 1992 that exercise is clearly an effective

intervention for reducing pain in patients with knee OA

compared to no or minimal treatment (3). Similarly, both

the American College of Rheumatology/Arthritis Foundation

guideline for the management of osteoarthritis of the hand,

hip, and knee (1), and the Osteoarthritis Research Society

International guidelines for the non-surgical management of

knee, hip, and polyarticular osteoarthritis (2), among other OA

guidelines, strongly recommend exercise, including aerobic,

resistance, and neuromuscular exercises. Different exercise types

confer different physiological adaptations that can benefit OA

management (Table 1). However, there is currently insufficient

evidence to guide the choice of exercise type and the “dose”

(intensity, frequency, duration). Information about when in the

disease trajectory exercise should be undertaken, and which

patients do best, are also limited. These gaps in knowledge are

in part due to a lack of understanding precisely how exercise

improves OA outcomes (10).

Since exercise induces perturbations to the mechanical

environment of tissues in the joint, exercise andmechanobiology

are intimately related (4). Mechanobiological adaptations

can impact tissue structure (e.g., geometry), function (e.g.,

material property), and signaling (e.g., mechanosensitive genes),

and therefore represent potential mechanisms underlying the

benefits of exercise (23). It is well established that cells

are sensitive to mechanical loading and can respond with

alterations in diverse functions, including cell proliferation,

production of soluble factors, and expression of extracellular

matrix genes/proteins. There are specific cellular components

that act as sensors of mechanical load, such as the cytoskeleton,

integrins, G proteins, kinases, and stretch-activated ion channels

(24). These “sensors” transmit the type and magnitude

of the forces experienced by cells from the extracellular

milieu. In turn, this can activate intracellular signaling

cascades, alter gene expression profiles, and ultimately modify

tissue properties (25). Even with this understanding of the

link between exercise and mechanobiology, we have yet to

decipher which exercises will most benefit the individual

OA patient.

Despite insurmountable evidence for the effectiveness of

exercise in OA management, and progress made implementing

education and exercise-based interventions [e.g., the Good Life

with osteoArthritis from Denmark (GLA:D R©) program, now

in over 7 countries globally (26)], there remains hesitation

about the benefits of exercise for OA which is a barrier to its

uptake by patients and health care professionals (27). Although

any movement (i.e., physical activity) is better than none

when it comes to OA, it is often counterintuitive for patients

who are experiencing movement-related pain to see exercise

as beneficial. Moreover, the evidence from exercise trials is

limited by the inability to have an appropriate control arm since

a true placebo group is not possible (i.e., participants know

whether they are exercising). One way to overcome this “control

condition” challenge may be to design more pragmatic exercise

trials (28), including comparison of different exercise types, and

variations in intensity, frequency, and duration of exercise. It

would also be beneficial to have clearly defined hypotheses about

the mechanisms through which exercise improves OA outcomes

to support more tailored exercise interventions in future studies.
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TABLE 1 Overview of exercise interventions for OA.

Exercise type Definition Examples Benefits for OA*

Aerobic exercise • Exercise that uses large muscle groups, can

be maintained continuously, and are

rhythmic in nature (11).

• Moderate and vigorous aerobic exercise

increase breathing and heart rate, are

perceived to be “hard” and cause

perspiration.

• Exercise that relies on energy produced

by oxygen.

• Moderate: brisk walking or

bicycling, swimming

• Vigorous: jogging, aerobic dance

or bicycling uphill (produces

large increases in breathing or

heart rate)

• Improves mobility (12)

• Reduces pain (12)

• Improves muscle capacity (mass, strength,

power and/or endurance) (13)

• MVPA benefits cardiovascular health (14)

• MVPA assists in weight management (15)

• MVPA reduces risk of comorbidities (16)

• Benefits skeletal health (17)

Resistance-based exercise • Exercise that causes the muscles to

contract against an external resistance with

the expectation of increasing muscle mass

(hypertrophy), strength, power, and/or

endurance (18).

• External resistance can come

from weight machines,

dumbbells, kettle balls, exercise

tubing, body weight etc.

• Improves mobility (12)

• Reduces pain (12)

• Improves muscle capacity (mass, strength,

power and/or endurance) (13)

• Benefits skeletal health (17)

• Reduces risk of injury and falls (19)

Neuromuscular control exercise • Exercise that causes muscles to contract in

a coordinated manner to control

movement (20).

• Exercise that incorporates functional

movements involving multiple joints and

muscle groups (20).

• Balancing on one or two legs

• Planting and pivoting

• Transferring body weight

• Stepping up or down stairs

• Squatting

• Improves mobility (12, 20)

• Reduces pain (12, 20)

• Improves movement confidence (21, 22)

• Improves balance (21, 22)

• Improves movement efficiency (21, 22)

• Reduces risk of injury and falls (19)

*Exercise categories can have overlapping benefits.

MVPA, moderate to vigorous physical activity.

Genetics and OA

In the past decade, genome-wide association studies

(GWAS) have uncovered dozens of novel OA genetic risk

loci and validated previously associated genomic regions. The

specific OA loci identified and current state of OA genetics

have been reviewed by Aubourg et al. in a recent article (8).

Indeed, with heritability estimates of radiographic OA of 50% or

more (29), the role of genetics in OA has been long recognized.

However, OA is a complex condition, and phenotyping is

challenging in part due to the dichotomy between OA disease

and illness (5). The largest OA GWA study to date performed

analyses on 11 OA phenotypes comprising 826,690 individuals

spanning across 9 populations in 13 cohorts (30). These

phenotypes represent presence/absence of OA across joints, as

well as joint replacement status. Boer and colleagues identified

223 independent genetic risk loci across phenotypes including 84

variants that had not been previously associated with OA. These

novel findings pinpoint risk loci related to neuropathology,

sex-specific effects, and early OA (30). Moreover, the authors

found evidence of genetic correlation between OA and pain

phenotypes including sciatica, fibromyalgia, and headaches.

Such a carefully designed large-scale GWA study increases our

understanding of the genetic etiology of OA.

Despite these new discoveries and their potential to

guide DMOAD development (30), multiple opportunities

remain. For example, most studies focus on identifying

variants associated with OA risk. However, understanding OA

trajectories over time may bring additional biological insights,

thus, progression phenotypes offer a complementary approach

that deserves further investigation (31). Alternatively, since

genetics constitute only a fraction of OA etiology, exploring

environmental triggers and modulators (e.g., exercise) will

further increase our understanding of OA pathophysiology. In

this context, it is crucial to investigate the interaction between

genetics and epigenetics. Most of the identified risk loci are

in non-coding genomic regions and may increase disease risk

by modulating the expression of target genes while correlating

with epigenetic mediators, representing a potential mechanism

linking known risk factors of OA with its progression (32).

On this note, non-coding RNAs (e.g., microRNAs) and

their interactions present themselves as promising biomarkers,

mediators of pathogenic mechanisms, and potential therapeutic

targets for OA (9).
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Exercise and genetics

A substantial body of research in the field of sports

and exercise genetics has improved our understanding about

the biological underpinnings of exercise, including the role

of adaptation and the influence of DNA variability (33–35).

This seminal work has established a genetic basis for aerobic

performance measures (e.g., maximal oxygen uptake) via

heritability analysis in family studies (34), suggesting a link

between genetics and aerobic capacity. Although these aerobic

performance measures are the gold standard for measuring

cardiorespiratory fitness (a key aspect of physical fitness

and physical activity), their collection is often impractical,

costly, and can pose ethical concerns as they require maximal

exertion from the participants. Thus, large-scale studies have

instead relied on self-reported physical activity phenotypes

which may be subject to perception, desirability, or recall

biases (36–38). To circumvent these limitations and biases

there is a need to objectively measure exercise and the

resulting forces on local tissues (39). Fortunately, wearable

devices including accelerometers, pedometers, and biosensors

are increasingly available and provide an alternative to

self-report (40, 41).

A recent systematic review identifying genetic variants

associated with physical activity or sedentary behavior highlights

54 studies spanning the last three decades (7). Of these, six

GWAS identified 10 single nucleotide polymorphisms (SNPs) at

a genome-wide significance level, while the remaining 48 studies

used a candidate gene approach, and collectively identified 30

different genes. However, the findings were vastly inconsistent

across studies mainly due to the variability in phenotype

definition, sample size, study population, and study design

(7). Notably, among the six GWAS, one high-quality study

leveraging accelerometer data from 91,105 participants from the

UK Biobank is consistent with previous findings on the role

played by the central nervous system in activity behaviors (42).

Moreover, an updated analysis of the UK Biobank accelerometry

sub-study further suggests that the blood and immune system

can be associated with exercise (43).

Several limitations arise in the existing evidence on the

genetics of physical activity or movement. First, investigated

phenotypes—even objectively measured ones—aggregate

information across different types of physical activities (e.g.,

leisure and work). Moreover, it is unclear how different exercise

types may influence the identified associations. Second, there

is a lack of translation in using current findings to inform

intervention guidelines and prevention strategies for physical

activity and beyond. Moving toward this goal, recent work

identified associations between a polygenic score of physical

activity and multiple complex diseases (44). Finally, existing

genomic data have been limitedly integrated with other

-omics technologies that could reflect epigenetic changes.

Leveraging such integrations may increase our ability to explain

the “missing heritability” of physical activity by unmasking

potential gene-environment interactions.

Exercise, genetics, OA

Though there is research exploring exercise andOA, genetics

and OA, and exercise and genetics, there are few studies

connecting exercise, genetics, and OA. As one possible link,

emerging studies are focusing on epigenetics, including non-

coding RNAs and DNA methylation. A report published in

2021 found changes in expression of the long non-coding

RNA (lncRNA) H19 in cartilage following high- and moderate-

intensity treadmill running which promoted or mitigated,

respectively, knee joint damage in a post-traumatic OA mouse

model. The authors suggest lncRNA H19 may be interacting

with microRNAs to influence osteogenic differentiation in

response to mechanical stress (i.e., exercise) (45). In patients

undergoing knee replacement, DNA methylation rates at CpG1

in the pyruvate dehydrogenase kinase 4 (PDK4) gene were

explored in skeletal muscle and peripheral blood before and 5

months after resistance training and aerobic exercise. Though

no differences in methylation of PDK4were found with exercise,

potentially due to the small sample size (N = 5), there was a

significant correlation in methylation rates between the tissue

and blood samples. This suggests epigenetic factors can be

measured in clinical settings using minimally invasive liquid

biopsies as a surrogate formuscle tissues (46).While both studies

investigate the premise that epigenetic factors are effectors of

exercise in OA, an outstanding question remains as to whether

genetic and epigenetic factors can be used to guide exercise

interventions in OA care.

Discussion

Contrary to widespread myths that exercise exacerbates

OA, there is an abundance of evidence demonstrating the

beneficial effects of exercise for OA (3). However, there is limited

evidence as to precisely how exercise improves OA outcomes,

contributing to challenges for widespread implementation of

exercise as an intervention for OA. Since genetic factors explain

only about half of the heritability observed in OA, it is likely

that environmental factors such as exercise also play a role, the

effects of whichmay bemediated by epigenetic factors (32).With

advances in the field of molecular exercise physiology, including

improved technology for objectively measuring physical activity,

we are gaining a better understanding of the biological

mechanisms underlying exercise (6). Despite this, few studies to

date directly investigate the effects of exercise and genetics on

OA outcomes. Among the examples we identified, non-coding

RNAs and DNA methylation are two epigenetic mechanisms

that have been proposed as potential effectors (45, 46). This
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suggests further exploring the intersection of exercise, genetics,

and OA has the potential to guide delivery of evidence-based

interventions to improve OA care.

Given the current state of the field, it is our perspective

that we are approaching a point where efforts in genetic and

epigenetic data collection in conjunction with detailed physical

activity tracking can be leveraged to guide exercise interventions

in OA. To this end, the construction of polygenic scores

on OA progression and response to exercise types can serve

to tailor interventions for early OA populations or at-risk

populations by identifying subjects with an increased propensity

to benefit from specific exercise combinations (Figure 1). These

polygenic scores can be further informed by transcriptomic data,

which have demonstrated improvements in their portability

across ancestries (47), and potentially across more specific OA

sub-populations (e.g., early OA). However, drawing lessons

from ongoing investigations for cognitive function, it remains

unclear how changes in genetic makeup may lead to better

outcomes from different exercise types, and how gene-gene

interactions play a role in exercise efficacy (48). One potential

physiological mechanism through which exercise may benefit

OA is mitigation of sarcopenia—the loss of muscle mass—since

it has already been linked to genetic and epigenetic factors

as well as complex diseases including OA (49–51). There are

many other plausible hypotheses (e.g., mitigation of poor diet)

and hypotheses yet to be formulated that are expected to

emerge from and be tested in unbiased analyses of large-scale

OA datasets.

We have identified three areas of opportunity to help realize

the potential of the unprecedented amounts of data available

to inform precision medicine in exercise interventions for OA.

First, integrating data from wearable technologies with detailed

physical activity self-reports is needed to distinguish among

exercise types and activity levels. For instance, identifying

human chronotypes—behavioral manifestations of underlying

circadian rhythms of multiple physical processes—among early

OA or at-risk populations can provide a framework to explain

some heterogeneity in OA by differentiating activity profiles

(52). Second, conducting gene-by-exercise interaction studies

in large cohorts is needed to identify candidate loci that, in

combination with epigenetics, will help in elucidating molecular

mechanisms of exercise in human health and disease (e.g.,

OA progression). While resources like the UK Biobank have

demonstrated great potential for complex diseases (53, 54),

there is a need to perform these investigations in more diverse

populations, especially as the risk of OA appears larger in

individuals with African ancestry (55). Third, leveraging existing

efforts in well-characterized populations is needed to discover

and validate findings from one and two above. We expect

initiatives like the Grand Challenge Competition to Predict In

Vivo Knee Loads (56) and All of Us (57) will aid in catalyzing

these investigations. As additional examples, the Athlome

Project Consortium (58) and the Osteoarthritis Initiative (59)

FIGURE 1

Schematic diagram showing applications of polygenic risk

scores (PRS) in an early OA population to guide prescription of

specific exercise interventions to improve outcomes.

are two unique resources with available data that can be used

to refine our understanding of the role of exercise in OA.

With the ultimate goal of achieving a precision medicine

approach to OA care, where tailored interventions are delivered

to the right patients at the right time to improve outcomes,

genetics and environment are two critical variables. Here we

focus on exercise as a key environmental factor shown to impact

OA outcomes. A report published in 2021 found diet and

exercise interventions, alone or together, had different effects on

OA outcomes (e.g., pain) for different subgroups of participants

(60). While baseline characteristics such as weight could explain

the variation in responses, so too could differences in genetic

or epigenetic factors. As more well-designed, large-scale, high-

throughput analyses are conducted for OA, it can be expected

that key genetic and epigenetic factors will be prioritized based

on their association with desired responses to interventions,

including exercise (61). These factors can be translated for use
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in clinical settings, where a visit to a doctor may involve a blood

draw and analysis, the results of which are used to tailor a

specific exercise prescription to the specific patient, much like

polygenic scores are used to tailor chemotherapy regimens for

cancer patients (62). The field is now poised to leverage genetics

and epigenetics to guide exercise interventions in OA.
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