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Alzheimer’s disease (AD) and Parkinson’s disease (PD) are well-known neuronal
degenerative disorders that share common pathological events. Approved medications
alleviate symptoms but do not address the root cause of the disease. Energy
dysfunction in the neuronal population leads to various pathological events and
ultimately results in neuronal death. Identifying common therapeutic targets for these
disorders may help in the drug discovery process. The Brodmann area 9 (BA9) region
is affected in both the disease conditions and plays an essential role in cognitive,
motor, and memory-related functions. Analyzing transcriptome data of BA9 provides
deep insights related to common pathological pathways involved in AD and PD. In this
work, we map the preprocessed BA9 fastq files generated by RNA-seq for disease
and control samples with reference hg38 genomic assembly and identify common
variants and differentially expressed genes (DEG). These variants are predominantly
located in the 3′ UTR (non-promoter) region, affecting the conserved transcription
factor (TF) binding motifs involved in the methylation and acetylation process. We have
constructed BA9-specific functional interaction networks, which show the relationship
between TFs and DEGs. Based on expression signature analysis, we propose that
MAPK1, VEGFR1/FLT1, and FGFR1 are promising drug targets to restore blood-brain
barrier functionality by reducing neuroinflammation and may save neurons.

Keywords: blood-brain barrier, Brodmann area-9, inflammatory response, energy dysfunction, transcription
factor

INTRODUCTION

Neurodegenerative disorders, the most debilitating form of progressive disorders, include
Alzheimer’s disease (AD) and Parkinson’s disease (PD). The progression of neurodegeneration
is associated with various symptoms based on the regions of neuronal cell death. These
disorders share common pathological events such as selective vulnerability, insulin resistance,
vascular dysfunction, protein aggregation, oxidative stress, calcium-induced glutamate toxicity,
inflammatory response, aging, and ultimately neuronal death (Craft, 2007; Piehl and Olsson, 2009;
Gan et al., 2018; Sweeney et al., 2018a; Muddapu et al., 2020). Genome-wide association studies,
gene expression analysis from various tissue locations, and protein network studies reveal that
genes related to mitochondria quality control, ubiquitin-mediated degradation, and endothelial
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tight junction genes are dysregulated in disease conditions
(Guttula et al., 2012; Borrageiro et al., 2018; Lanke et al., 2018; Raj
et al., 2018). Computational and experimental studies emphasize
the deregulation of genes involved in energy metabolism and
protein degradation processes that lead to neurodegeneration
(Wang and Michaelis, 2010; Ciryam et al., 2016; Dharshini
et al., 2019). Most microarray data and large-scale co-expression
network studies suggest the importance of energy metabolism
associated with neurodegeneration (Wang et al., 2007; Liang
et al., 2008; Wang and Michaelis, 2010; Levine et al., 2013; Tiwari
and Patel, 2014).

The neurovascular system plays an essential role in energy
metabolism. Impairment in the blood-brain barrier (BBB)
through various stress stimuli or cytotoxic inflammatory
response affects glucose uptake and metabolism (Abbott, 2002;
Freeman and Keller, 2012). Further, the neuronal population
exhibits elevated energy demand for maintaining structural
functional integrity and the regulation of homeostasis. In
addition, it escalates the ROS (reactive oxygen species) response,
depletion of antioxidants, and oxidative phosphorylation
metabolism, which leads to neuronal stress and ultimately
damaging the cell. These studies showed an imbalance in the
energy reservoirs in the neuronal system, and it is necessary
to revisit the pathways, which are essential in overcoming this
energy imbalance. However, there is no systematic analysis
of transcriptomic data on common therapeutic pathways
for these diseases.

On the other hand, currently approved medications are meant
to alleviate symptoms and slow down disease progression. There
are no available therapeutics to save the surviving neuronal
population. To determine potential therapeutic strategies, it is
essential to identify the underlying cause of the disease.

At the early stages of the disease, hippocampal cornu ammonis
1 neurons (CA1) (Wilde et al., 1997) in Alzheimer’s and
substantia nigra pars compacta neurons (SNc) in Parkinson’s
disease (Damier et al., 1999) are more vulnerable to cell
death compared to other neuronal populations. Various imaging
techniques showed that these neurons are significantly reduced
in patients (Karagulle et al., 2008; DeKosky and Scheff, 1990).
These vulnerable neurons possess more synaptic terminals, i.e.,
dense arborization, and these complex structural phenomena
may affect these neurons tremendously compared to other
neuronal populations. This study aims to explore the common
therapeutic target for neurodegenerative disorders. Since AD and
PD share common pathological and symptomatic etiologies, the
analysis of tissues affected by both diseases may help identify
potential treatment targets. Brodmann area 9 (BA9) plays a
key role in cognitive skills, executive memory, and motor
behavior, and patients with AD and PD have demonstrated skills
impairment, as mentioned earlier. In addition, reduced BA9
neuronal activity is observed in these patients. Since BA9 affects
both diseases, we have selected this tissue for further analysis.
Identifying variants, differentially expressed genes (DEGs), and
tissue-specific network studies from high-throughput BA9 RNA-
seq data provide clues for therapeutics.

We identified 167 common variants between AD and PD.
These variants are also identified in Genome-Wide Association

Studies (GWAS) and expression Quantitative Trait Loci studies
(eQTL). These variants are predominantly located in the 3′
UTR region, creating or disrupting the conserved regulatory
binding motifs and affecting the transcription factor (TF) binding
sites located explicitly in the non-promoter region (Albert
and Kruglyak, 2015). Several variants affect the conserved TF
motif associated with histone acetylation and demethylation,
thus impairing downstream gene expression (McGuire et al.,
2019). From tissue-specific network analysis, we identified TFs,
which activate or repress the differentially expressed (DEG)
genes in BA9. Tissue-specific functional module analysis revealed
that endothelial and vascular smooth muscle cell pathways
are dysregulated. These pathways are vital for preserving
blood-brain barrier (BBB) stability and cerebral blood pressure
regulation (Zenaro et al., 2017). From this study, we propose
that mitogen-activated protein kinase-1 (MAPK1), vascular
endothelial growth factor receptor-1 (VEGFR1), and fibroblast
growth factor receptor-1 (FGFR1) serve as promising drug
targets, which may help to preserve vascular endothelial pathways
and reduce chronic inflammation. Further exploring these targets
may restore BBB integrity and save neurons from the energy crisis
and associated neuronal death.

MATERIALS AND METHODS

Variant Calling and Predicting the Effect
of Variants
The BA9 RNA-seq data were retrieved from a sequence retrieval
archive (SRA) for AD, PD, and control samples (Supplementary
Table S1), which included nine AD, 28 PD, and 52 age-matched
control samples (Dumitriu et al., 2016; Scheckel et al., 2016). The
data were retrieved from post-mortem samples after death (2–
6 h). The average RNA integrity value for the sample was above 8
which denotes the stability of the mRNA.

The RNA-seq raw reads were preprocessed using the NGSQC
toolkit (Wang et al., 2015), and reads with a PHRED score less
than 20 were discarded. The index-specific Illumina adapters
were removed using the Trim Galore tool (Krueger, 2015). The
preprocessed reads were subjected to spliced alignment using
hg38 genomic assembly and the STAR2.6 aligner (Dobin et al.,
2013). After spliced alignment, the samples’ alignment rates were
above 80% (uniquely mapped reads). We eliminated duplicates
using PICARD to reduce the erroneous read depth during variant
calling. We recalibrated the base quality score near the variant site
using the GATK4 (McKenna et al., 2010) recalibrating module.
The Haplotype caller was used to identify the variants. We
imposed hard filters such as PHRED quality score above 30
(denotes the variant base as 99.99% accurate) and supporting read
depth for variant ≥10. We categorized the variants exclusively
present in the disease population but not included in the control
subjects. We compared the variants with the Genotype-Tissue
Expression (GTEx) consortium (Carithers and Moore, 2015),
which helps filter out variants located in healthy brain tissues.
We compared the identified variants with an xQTL study and
discarded the matched hits for considering the aging effect. The
xQTL study (Ng et al., 2017) mainly included samples from
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the healthy aged subjects from BA9. The shortlisted variants
were compared with various eQTL and GWAS of AD and PD
(Supplementary Table S2; Pankratz et al., 2012; Lambert et al.,
2013; Greene et al., 2015; Deming et al., 2017; Jun et al., 2017). We
selected common variants present in AD and PD pathogenesis for
further analysis. Most of the variants were located in the 3′ UTR
region and we predicted the effect of variants on transcription
factor binding using Haploreg, SNP2TFBS, and GWAS4D (Ward
and Kellis, 2012; Kumar et al., 2017; Huang et al., 2018). The
effect of non-coding variants was predicted using the in silico
tools CADD, DeepSea, Eigen, GWAVA, Funseq2, FATHMM, and
REMM (Dayem Ullah et al., 2018).

3′ UTRs are involved in numerous regulatory processes,
including transcript cleavage, RNA binding protein, stability and
polyadenylation, translation, and mRNA localization. These 3′
UTRs contain some of the most conserved regulatory elements
within the mammalian genome and they serve as binding sites
for numerous regulatory RNA binding proteins and microRNAs.
The effect of variants on miRNA binding was predicted using
miRbase and vista (Dayem Ullah et al., 2018), variants on
RNA binding proteins were predicted using the RBP-var web-
based tool (Mao et al., 2016), and miRNA binding targets were
predicted using the miRDB tool (Chen and Wang, 2020).

Computing the Variant Nucleotide
Frequency Based on Genomic Location
We computed the propensity of nucleotides for the
identified variants based on their genomic locations
[control/AD/PD(BA9)/GWAS(AD/PD)] for determining
the preferences of nucleotide changes in AD/PD samples.
Supplementary Table S3 shows the frequency of nucleotides
based on their genomic location for the reference human
genome. From Supplementary Table S3, we observed that the
occurrence of nucleotide base T was higher in the intronic and
UTR3 regions. The occurrence of C and G was higher compared
to other bases in the upstream and UTR5 regions.

PN = fN/6A,T,C,G{N = A, T, C, G} (1)

Pi→j = fi→j//6A,T,C,G{i, j = A, T, C, G} (2)

P[(i→ j); i] = Pi→j/Pi (3)

We calculated the propensity matrix for the variants using
Eqs (2) and (3). For example propensity of i→j (A→T) change
in a given sample (control, AD/PD, GWAS) is calculated
using the occurrence of i→j change in the specified genomic
region (intronic/upstream/UTR3/UTR5/exonic) divided by the
occurrence of i in the human genome located in the
same genomic region.

Differential Gene Expression
The preprocessed RNA-seq reads were aligned with the hg38
human transcriptome (ensemble genomic build) using the
Salmon quantification (Patro et al., 2017). The counts were

normalized using transcript length and library size. We calculated
the gene abundance using tximport. We performed differential
gene expression using DEseq2 (Love et al., 2014), and rigorous
statistical testing to filter the gene expression level (Benjamini–
Hochberg Q value < 0.05, minimum fold change | log2 FC| > 1).
We only selected genes that were upregulated (or) downregulated
in both disease conditions from the BA9 RNA-seq profile data.
We compared the gene expression fold change with various RNA-
seq and microarray datasets available in the literature [single
cell (Lau et al., 2020) and other tissue RNA-seq data (Donega
et al., 2019; Simchovitz et al., 2020; Srinivasan et al., 2020)]. The
identified differentially expressed genes (BA9) were compared
with the GTEx consortium to understand the expression pattern
in other normal tissues (skin, heart, bladder, kidney, spinal cord,
blood, BA9, adipose, small intestine, lungs, and pancreas) that are
not affected by these diseases. The median transcript per million
counts (TPM) for various normal tissues was compared to BA9
[control and disease (AD/PD)].

Tissue-Specific Functional
Interaction/Co-expression Network and
Enrichment Analysis
We built a BA9-specific functional interaction network between
the variant associated genes, transcription factors (TFs), and
differentially expressed genes (DEGs) using Reactome FI, the
KEGG parser pathway tuning module, and HIPPIE web tools
(Wu et al., 2014; Alanis-Lobato et al., 2017). This study helps to
understand the functional relationship between TFs and DEGs.
We constructed the co-expression network using the information
available in the HumanBase and TCSBN databases (Greene et al.,
2015; Lee et al., 2018). This network aids in interpreting genes,
which are co-expressed together in BA9. We performed network
analysis such as degree and centrality measures to identify the
network hubs. The identified DEGs and TFs were subjected to
tissue-specific functional module analysis using HumanBase. The
functional significance of these gene sets were elucidated by
enrichment analysis.

Expression Signature/Perturbagen
Analysis
The Connectivity map (cMAP) and LINCS web-based tools
include transcriptional expression data accumulated from
various perturbations (genetic, small molecule), which help to
identify drug molecules based on disease-specific upregulated
gene expression profiles (Lamb et al., 2006; Subramanian et al.,
2017; Stathias et al., 2020).

1. We submitted the list of upregulated genes to these portals
and obtained a set of drug molecules along with their
respective targets. The scores ranged from -100 to + 100,
which denotes that a given drug molecule is positively or
negatively connected with a given target. These scores were
derived from cMAP. For this analysis, we selected drug
molecules which scored more than 85.

2. We also overlaid drug molecules from various repositories
such as chEMBL, DrugBank, and PubChem to the
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functional interaction network using the Reactome
FI cytoscape app.

3. We identified common drug molecules and their respective
targets using both methods (1) and (2). We shortlisted
the inhibitors and carefully reviewed the literature to
understand the functionality of selected targets for further
explorative studies. We have represented the workflow in
Supplementary Figure S1.

RESULTS

Variant Analysis of BA9 Samples
Obtained From AD and PD
We analyzed the BA9 samples of AD and PD and identified
167 variants present in both AD and PD samples, which were
not present in the control population. The identified variants
from the current study were compared with various GWAS
data (AD/PD) to understand whether the variant was already
reported for the disease or not. GWAS provides information on
the variants predominantly present in the disease population,
but the effect of those variants on transcription factor binding,
expression, and miRNA binding are not explored. Hence we
used in silico tools to predict the impact of the variants.
Supplementary Figure S2A shows that 128 variants residing in
non-coding regions may play an essential role in gene regulation
(Siepel et al., 2005; Araujo et al., 2012). Most of the variants
were found in non-coding regions in both control and disease
samples. But in the disease sample, the number of 3′ UTR variants
was higher compared to other regions. GWAS studies showed
that most of the disease-associated variants were located in the
regulatory region and in the UTR regions compared to coding
segments (Ma et al., 2015; Steri et al., 2018). We also calculated
the percentage of variants in each genomic location [control,
AD/PD(BA9), and GWAS variants (AD/PD)], and the results
are shown in Supplementary Figure S2B. We observed that
intronic variants were higher than the coding segments due to
the high percentage of the intronic region in the human genome
compared to the coding region.

We also computed the nucleotide frequency for the
identified variants based on their genomic locations
[control/AD/PD(BA9)/GWAS(AD/PD)] for determining
the preferences of nucleotide changes in AD/PD samples. In
the control dataset, A- > G, T- > C variants were high in the
intronic region. In disease samples, the frequency of G- > A,
C- > T was high both in the current study and in GWAS studies
(Supplementary Table S2). This shows that epitranscriptomic
modification plays an essential role in the disease mechanism
(Angelova et al., 2018). Detailed information about the nucleotide
frequency is represented in Supplementary Table S4.

Mostly identified variants were located in the non-promoter
region. Mapping regulatory features such as enhancers and
conserved transcription factor binding motifs to these variants
may help to predict the effect. Albert and Kruglyak (2015)
reported that the 3′ UTR variant found in the CELSR2 gene
disrupts the cis-regulatory binding motif of C/EBP transcription
factor (TF), and subsequent eQTL studies have shown that this

variant affects the gene expression of SORT1 which is 40kb away
from the variant site and is involved in myocardial infarction.
We predicted the variant effects using various in silico tools
(described in the section “Materials and Methods”). Of the 167
identified variants, 103 affected the binding affinity of 47 known
transcription factors, which are already implicated in AD and
PD. Microarray studies reported in the literature showed that
these TFs are dysregulated in both disease conditions (Blalock
et al., 2004; Lesnick et al., 2007; Zheng et al., 2010; Narayanan
et al., 2014; Wang et al., 2016; Berchtold et al., 2019; Patel et al.,
2019; Piras et al., 2019). Table 1 lists some of the crucial variants
affecting the conserved regulatory motifs of the transcription
factors involved in both diseases. Detailed information about the
identified variants and their predicted effects are represented in
Supplementary Table S5.

DNA methylation plays a crucial role in epigenetic regulation
and gene expression. The 3′ UTR region is enriched with
methylation sites and is positively correlated with gene expression
profile (McGuire et al., 2019). Studies showed that (Wang et al.,
2019) 3′ UTR variants affect the methylation pattern as well
as gene expression. We observed that the identified variants,
which mainly affected the regulatory elements, were involved
in demethylation (DNMT1), histone acetylation (KAT2B), and
deacetylation (HDAC1), and these genes are dysregulated in
AD and PD. Table 1 shows that the STARD10 [rs14823530
(C/T)] variant disrupts the binding of CREBBP TF and regulates
other transcription factors involved in synaptogenesis through
histone acetylation (Valor et al., 2013). CREBBP is upregulated
in both diseases. Variants such as DGKQ [rs75067698 (G/A)],
NCALD [rs113375628 (G/A)], NAB2 [rs3024983(C/T)], and
CTIF [rs141179242(G/T)] affect DNMT1 binding. DNMT1
is involved in DNA methylation and thereby controls gene
expression and is upregulated in AD and PD. The SRD5A1
[rs1042150 (G/A)] variant disrupts KAT2B TF binding and is
involved in transcription activation by transferring the acetyl
group. KAT2B is upregulated in AD and PD. The MUM1
[rs139291622 (C/T)] variant disrupts HDAC1 binding, and this
TF is implicated in transcriptional repression by deacetylation,
which is downregulated in AD and PD (CoppedÃ, 2014). The
TWISTNB [rs17354985 (T/C)] variant impairs the MEF2A TF
binding. This TF negatively regulates mitochondrial function
which dampens ATP functionality and is upregulated in both
diseases. The CTNS [rs111977802 (C/T)] variant disrupts the
binding of REST which participate in neurogenesis. REST is
downregulated in both diseases. SRRM3 [rs77373389(G/A)],
IRF2BPL [rs76980172 (G/C)], and UNC45A [rs144002184 (C/T)]
variants disrupt ZBTB7A TF binding. This TF acts as a
transcriptional repressor and is upregulated in AD and PD. This
analysis revealed an imbalance in the transcriptional network
that leads to aberrant activation or inactivation of downstream
genes. Additionally, the ZCCHC24 [rs147555076(T/C)] variant
disrupts Bcl2 binding, is involved in apoptosis regulation, and is
upregulated in these diseases. Furthermore, we identified that the
SZRD1 [rs138678090 (C/T)] and YWHAB [rs188983062 (C/G)]
variants affect hsa-miR-301a-3p and hsa-miR-212-3p miRNA
binding. These miRNAs are downregulated in both diseases,
as reported in the literature using miRNA signature studies
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TABLE 1 | Common variants and their effect on regulatory elements.

Chromosome Position Reference
allele

Alternative
allele

Genomic
location

Gene name SNP ID Regulatory
element (TF)

AD/PD TF expression
(fold change)

11 72756232 C T Intronic STARD10 rs148235301 CREBBP Up (2.7, 1.4)

4 959671 G A UTR3 DGKQ rs75067698 DNMT1 Up (5.4, 3.8)

8 101689173 G A UTR3 NCALD rs113375628

12 57095374 C T UTR3 NAB2 rs3024983

18 48859991 G T UTR3 CTIF rs141179242

19 1376842 C T UTR3 MUM1 rs139291622 HDAC1 Down (−4.7, −3.5)

5 6668802 G A UTR3 SRD5A1 rs1042150 KAT2B Up (6.8, 2.7)

7 19696657 T C UTR3 TWISTNB rs17354985 MEF2A Up (2.7, 1.4)

17 3636541 T C UTR5 CTNS rs111977802 REST Down (−2.7, −4)

12 84861228 T C UTR3 SLC6A15 rs143168309 RXRA Down (−4.2, −5.5)

7 76273420 G A Intronic SRRM3 rs77373389 ZBTB7A Up (8.7, 3.7)

14 77028141 G C UTR5 IRF2BPL rs76980172

15 90947604 C T Intronic UNC45A rs144002184

10 79386308 T C UTR3 ZCCHC24 rs147555076 BCL2 Up (3.5, 2.2)

The highlighted genes are involved in histone acetylation and methylation.

(Kumar and Reddy, 2016; Pallarès-Albanell et al., 2019). 3′ UTR
variants such as rs72984526 (CAPZA1), rs149358308 (PBX1),
rs1042150 (SRD5A1), and rs41305489 (CENPP) affect the RNA
structure (riboSnitch) along with the RBP binding motif, which in
turn affects miRNA binding. Details are given in Supplementary
Table S5. In summary, we observed the effect of variants at
multiple hierarchies such as 27 TFs, two miRNA, and 30 RBP
binding motifs which were altered by 3′ UTR variants. We
represent this information in Supplementary Figure S3 along
with the tools used to predict the effect of variants.

Differentially Expressed Genes in AD and
PD
We identified differentially expressed genes with similar gene
expression profiles in both AD and PD. We observed that
100 and 98 genes were up and downregulated in AD and PD
pathogenesis, respectively. The details of count tables along with
the volcano plot are given in Supplementary Table S6 and
Supplementary Figure S4.

Comparison of BA9 Gene Expression (Disease) With
GTEx Normal Tissue Expression
The upregulated and downregulated gene expression profiles
of the BA9 disease samples were compared with the GTEx
consortium to understand the expression pattern in other normal
tissues that are not affected by these diseases. The details are
provided in Supplementary Figures S5, S6. The TPM value was
high for the disease BA9 tissue for upregulated genes and low
for downregulated genes. The pattern of gene expression in the
disease sample differed from that of other control tissues.

Comparison of BA9 Gene Expression (Disease) With
Other RNA-Seq Data (AD/PD)
Due to the unavailability of BA9 RNA-seq data in both diseases,
we compared expression profiles with recently published RNA-
seq data from various other tissues. Details are provided in
Supplementary Table S7.

The single-cell RNA-seq data obtained from the prefrontal
cortex (BA9) were available for Alzheimer’s disease. It consisted
of 80,660 cells from six different cell types derived from 12
AD disease samples (Lau et al., 2020). The expression pattern
(fold change) of single nucleus RNA-seq data was compared
to the bulk RNA-seq data expression pattern (BA9-current
study). Bulk RNA-seq data showed a similar expression pattern
with single-cell RNA-seq data (Figure 1). FLT1 gene expression
was high in endothelial, astrocytes, and excitatory neurons,
and bulk RNA-seq also captured this gene as upregulated in
disease conditions. PSMD1 was downregulated in endothelial
cells, excitatory neurons, and microglia and bulk RNA-seq data
showed that this gene was downregulated in disease conditions.
Detailed information about the fold change in bulk and single
nuclei RNAseq data (BA9) are given in Supplementary Table S7.
Most of the gene expression patterns matched the single-
cell RNA seq data.

Biological Classification of Differentially Expressed
Genes
We grouped the differentially expressed genes based on up and
downregulation. Using the clueGo cytoscape app, we classified
genes based on their biological functions. The functional
enrichment modules for upregulated and downregulated genes
in AD and PD pathogenesis are shown in Figure 2. Furthermore,
genes related to negative regulation of endothelial function
and cellular senescence were upregulated, while genes involved
in mitochondrial function and neuromuscular processes were
downregulated. The list of differential gene expression is given
in Supplementary Table S6. Upregulation of the FLT1 and
FGFR1 genes may affect the blood-brain barrier (Mahoney
et al., 2019; Chen et al., 2020; Lau et al., 2020). Additionally,
cellular senescence is provoked by various factors such as
mitochondrial dysfunction, oxidative stress, inflammation, and
protein mishandling. The upregulation of senescence-related
genes (BCL6, SIRT1) may lead to the deterioration of
functional features.
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FIGURE 1 | Comparison of gene expression profiles between bulk and single nuclei RNA-seq (disease/BA9).

On the other hand, mitochondrial localization (MFN2,
TIMM10, TOMM22) and neuromuscular function (MYH10,
RBFOX2, PAFAH1B1)-related genes were downregulated. We
observed that the dysregulation of genes related to endothelial
function influence BBB damage, which leads to impairment in
vascular dynamics. Additionally, mitochondrial function-related
genes were dysregulated and led to inadequate energy resources
(Bélanger et al., 2011; Freeman and Keller, 2012; Sweeney et al.,
2018a). All these events led to oxidative stress, which ultimately
influences cellular senescence (Sweeney et al., 2018a). In addition,
we also generated a boxplot based on the normalized count values
obtained for these genes using control, AD, and PD datasets, and
the data are shown in Supplementary Figure S7.

Effect of Variant, miRNA Binding, and
Downstream Expression
We observed that the 3′ UTR gene variants SZRD1 and
YWHAB affected the regulatory binding motifs of hsa-miR-
301a-P and hsa-miR-212a-p binding (Figure 3). These miRNAs
were downregulated in both disease conditions. We predicted
potential miRNA targets and observed that these targets were
upregulated in both disease conditions. hsa-miR-301a-p miRNA

targets the genes SUN2, NFIB, LRP4, and PHF20 whereas hsa-
miR-212a-p targets DOCK4, PNISR, CLMN, LSIRT1, and TJAP1.
All these genes were upregulated in both disease conditions.
Both of these miRNA target the following genes MAPK1, QKI,
and ZBTB20 and these genes are upregulated in AD and PD
(Supplementary Table S6).

Tissue-Specific Functional Interaction
and Co-expression Networks
We identified common variants, which may create or disrupt
the conserved regulatory binding motifs of TFs involved in AD
and PD. These TFs may activate or inhibit various downstream
genes. To understand the functional relationship between TFs
and DEGs, we built a tissue-specific interaction network.
We also identified fewer overlaps between these classes (TF,
DEG, and variants). The below mentioned genes overlapped
in either of two groups: TF/DEG TCF12, variant/DG FLT1,
and variant/TF TAL1.

Figure 4 illustrates the interaction between some of the
essential TFs and DEGs. These TFs showed increased
connectivity (degree > 5). The relationship between the
identified DEGs and TFs can reveal important insights into

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 639160

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639160 March 15, 2021 Time: 15:59 # 7

Dharshini et al. Therapeutic Targets for Neurodegenerative Disorders

FIGURE 2 | Biological classification and functional enrichment modules for upregulated and downregulated genes in AD and PD pathogenesis. Modules are shown
in different colors and the size of the node denotes the number of genes.

FIGURE 3 | Effect of 3′ UTR variants in miRNA binding and downstream gene expression.

neuronal cell survival. Figure 4 denotes that CHD9 activates
CREBBP, and both TFs are upregulated in AD and PD. NCOR1
and JUN inhibit CREBBP, and these TFs are downregulated and
co-expressed in BA9. KAT2B and FGFR1 interact with CREBBP,
and these genes are co-exprssed and upregulated in AD and PD.
CREBBP activates FLT1, CTBP1, BCL2, NFIB, BCL6, PBX1,

and CUX1. All these genes are upregulated in both diseases.
CREBBP TF binding is affected by the intronic variant (Table 1).
CHD9, HDAC1, PBX1, JUN, CTBP1, CREBBP, and KAT2B
genes are involved in NOTCH signaling, which is essential
for endothelial cell migration, axonal sprouting, and neuronal
survival (Lasky and Wu, 2005).
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FIGURE 4 | Tissue-specific (BA9) functional interaction network between transcription factors and differentially expressed genes involved in AD and PD.

JUN, TRIM28, and E2F1 activate HDAC1, and all these genes
are downregulated in disease conditions. HDAC1 inhibits E2F1,
IRF1, JUN, and GATA3, and these genes are downregulated in
AD and PD. HDAC1 interacts with BHLHE41, DNMT1, REST,

and BCL6, and is co-expressed in BA9. DNMT1 TF binding is
affected by UTR variants (Table 1). E2F1, JUN, and BCL6 are
involved in cellular senescence and autophagy. JUN, DNMT1,
and REST genes are implicated in AKT cell survival signaling,
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which shows that genes participate in autophagy, and cell survival
signaling is dysregulated in both of the disease conditions.

KAT2B is activated by ZBTB7A and upregulated in disease
conditions. KAT2B inhibits HDAC1 and interacts with CREBBP,
DNMT1, KLF2, KAT2A, SIRT1, CTBP1, E2F1, and JUN, and
is co-expressed in BA9. KAT2B TF binding is affected by
UTR variants (Table 1). Major constituents of these gene sets
are involved in NOTCH signaling and oxidative stress related
senescence. IRF1 and FGFR1 activate MAPK1, and these genes
are upregulated in the disease conditions. MAPK1 regulates
the expression of YWHAB, RXRA, STAT3, FGFR1, and BCL2
genes. These genes participate in synaptic transmission and are
dysregulated in disease conditions.

Downregulated RXRA activates STAT5A, JUN, and NCOR1,
and these genes are downregulated in these disorders. RXRA
inhibits CHD9 and CREBBP. RXRA TF binding is affected
by UTR variants (Table 1). Dysregulation of these genes
resulted in aberrant long term potentiation and survival
signaling pathways. From this study, we found an inherent
relationship between TFs and DEGs in disease conditions which
may involve various crucial signaling pathways, including the
regulation of endothelial cells, oxidative stress response, and cell
survival pathways. Detailed information about the functional
interaction and co-expression of other genes are provided in
Supplementary Table S8.

Functional Module Network Analysis
The most common identified differentially expressed genes
and transcription factors were subjected to tissue-specific
functional enrichment analysis. Modules were denoted as
enriched biological functions obtained from the tissue-specific
community network from the list of DEGs/TFs. Figure 5
illustrates functional enrichment modules and shows various
tissue-specific functional modules dysregulated in AD and PD.
We observed that 65 genes (47 upregulated, 18 downregulated)
were dysregulated. These genes were involved in vascular smooth
muscle cell regulation and are essential for preserving blood
pressure in the brain (Ni et al., 2018). We found that inter-
module interactions were predominant between endothelial cells
(M2) and smooth muscle cell regulation (M6) (Figure 5). In this
section, we discuss a few hubs, which are identified based on the
network properties (degree > 5, detweenness centrality ≥ 0.5),
and are highlighted in Figure 5.

The PSMD1 and UBE2N genes are involved in proteolysis
and DNA damage response. They are downregulated in
AD and PD. The QKI gene belongs to the RNA binding
protein that regulates myelination. The QKI gene interacts
with UBE2B and MYH10, and these genes are essential for
the regulation of ubiquitination and cytoskeleton-mediated
motility. These genes are downregulated and therefore
show impairment of proteasome-mediated ubiquitination
and cell transport processes under disease conditions.
This may affect mitochondrial and vesicular mobility
and hinder the quality control of mitochondria, thereby
depleting ATP production. The PPM1B gene interacts with
G3BP2 and participates in NF-kB regulation, which plays
a key role in inflammation and apoptosis. The SIRT1 gene

interacts with KAT2B, NAA16 is involved in the acetylation
process, and all of these genes are upregulated under
disease conditions.

In this study, the variant FLT1 (rs144398423-3′ UTR;
VEGFR1) was identified in AD and PD. The FLT1 gene interacts
with USF2, TAL1, ZBTB16, and GATA2, and these genes are
involved in the development of the blood vessels and vasculature.
The ATP-sensitive potassium channel (KCNJ2) interacts with
FLT1 in the endothelial vascular pathway. Following an action
potential, the potassium concentration of the extracellular region
is higher, dilating the blood vessel for subsequent neuronal
activity. In disease conditions, it has been observed that the
dysregulation of potassium-related genes affects vasodilation
through vascular smooth muscle and endothelial cell pathways.
Both pathways are essential to maintain vascular integrity
and the blood-brain barrier (Zenaro et al., 2017). We found
that identified hub genes interact with other genes in specific
biological functions from this enrichment analysis. From the
above analysis, the BBB is essential for functional homeostasis of
the human brain, and hence we propose that restoring the BBB
may save the neuron against degeneration in both the diseases.

Identification of Common Potential Drug
Targets in AD and PD
We identified common druggable targets to treat AD and PD
disease pathogenesis and mapped the known drugs with the
tissue-specific functional module network. We obtained a set of
drugs based on gene expression profiles and a connectivity map,
which targeted various kinase families represented in Figure 6.

From this analysis, we found that potential druggable targets
MAPK1, FGFR1, and FLT1 are upregulated in both AD and
PD pathogenesis. The pattern of gene expression in the disease
sample differs from that of other control tissues. In BA9 disease
tissue, the TPM count values for these genes are high compared to
control tissues (Supplementary Figure S8). Selective inhibition
of these targets may provide common therapeutic interventions.
However, the mapped drugs showed off-target effects and are
listed in Supplementary Table S9. To understand these selected
target mechanisms, we carefully mined the literature, and the
details are illustrated in Figure 7.

Mitogen-activated protein kinase 1 (MAPK1), widely known
as p38, participates in cell proliferation, inflammation, and stress-
mediated cell death. The mechanism of proposed possible targets
is explained below:

(i) MAPK1 hyper-phosphorylates Tau and converts them into
insoluble aggregates, which affects synaptic transmission.

(ii) Insoluble protein aggregation activates p38 signaling which
acts as a double-edged sword by releasing proinflammatory
cytokines and neurotrophic factors, which may save the
neuron from the insult, or it may destroy the endothelial
cells by releasing cytotoxic cytokines.

(iii) Insoluble protein aggregation interrupts mitochondrial
function and increases ROS production which ultimately
leads to oxidative stress, which in turn activates p38
signaling and induces apoptosis (Gerschütz et al., 2014; von
Bernhardi et al., 2015).
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FIGURE 5 | Tissue-specific (BA9) enrichment functional module network (transcription factors and differentially expressed genes).

The inhibition of p38 reduces oxidative stress and provides
neuroprotection by regulating autophagy (Chen et al., 2018). On
the other hand, designing a specific kinase inhibitor is challenging
due to its cross signaling with other kinase proteins. Most of
the claimed inhibitors activate or block other kinase families
(Supplementary Table S9). Further studies are required to
understand and selectively target MAPK1 signaling to overcome
the inflammation threat.

Fibroblast growth factor receptor-1 (FGFR1) is another
potential drug target for neurodegeneration and plays an
essential role in glia/endothelial cell regulation, angiogenesis,
and wound healing. We found that FGFR1/FGF2 is
upregulated in AD and PD.

(iv) FGFR1 provides a “help-me/eat-me” signal to microglia
and astrocytes through activating p38-MAPK signaling.
This signaling helps clear debris, provides neuroprotection,
and provokes inflammatory cytokines, affecting the
damaged neuron and endothelial cells. Further, FGFR1
expression is higher near the senile plaques of deceased
patients (Ye et al., 2019; Chen et al., 2020). This shows that
FGFR1 upregulation may be neuroprotective or harmful
to the neuronal population. A recent study showed that
after traumatic injury, FGF binds to FGFR1 and increases

adhesion and tight junctions, which in turn reduces
blood-brain barrier permeability and guards the neuron
against chronic insult (Shi et al., 2018). The role of
FGFR1 in neuroinflammation and neuroprotection needs
to be elucidated through activation and antagonization
of the receptor.

VEGFR1, VEGFR2, and VEGFR3 mainly regulate the VEGFR
pathway and are mainly activated by permeability factor VEGF-
A (Mahoney et al., 2019). This pathway is essential to regulate
endothelial cell migration, blood-brain barrier permeability, cell
survival, and angiogenesis. Vascular endothelial growth factor
receptor-1 (VEGFR1), also denoted as FLT1, is an attractive
neurovascular target for both AD and PD (Weddell et al., 2018).
During hypoxic conditions, such as cerebral hypoperfusion
(decreased blood pressure), VEGF-A predominantly binds to
FLT1, thereby regulating angiogenesis and inflammation.

(v) The upregulated FLT1 modulates microglia migration
through MAPK signaling and promotes the inflammatory
response. During cell stress, the reactive astrocytes release
proinflammatory cytokines and VEGF-A, which affects
BBB integrity, or it may provide neurotrophic factors to
overcome the insult (Patel et al., 2010; Cho et al., 2017;
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FIGURE 6 | Drug connectivity map along with the proposed possible drug targets.

Zenaro et al., 2017). Yang et al. (2004) showed that
increased VEGF-A expression and FLT1 form leaky blood
vessels near amyloid plaques. On the other hand, plaques
affect VEGF-A binding to its receptor VEGFR2 which
impacts neuronal survival and vascular integrity, showing
that a higher concentration of VEGF-A leads to leaky
blood vessels and BBB. Further research may be needed to
identify the VEGF concentration (by selectively blocking
VEGFR1 signaling), reduce inflammation, and improve
vasculature and BBB integrity. Selectively targeting these
kinase receptors is challenging due to cross signaling with
other pathways and domain similarity. It is necessary
to perform further explorative experiments to evaluate
these targets for therapeutic intervention to reduce BBB
permeability and neuroinflammation.

DISCUSSION

In this study, we explored potential druggable targets for AD
and PD using BA9 RNA-seq data. We identified variants and
compared them with GWAS studies. We found that 167 variants
are common between AD and PD, which are not present in
control samples. We evaluated the effect of these GWAS variants
using various in silico tools. A total of 128 variants are located in
non-coding regions, affecting the regulatory elements involved in

gene expression. The SZRD1 [rs138678090(C/T)] and YWHAB
[rs188983062(G/C)] variants affect hsa-miR-301a-3p and hsa-
miR-212-3p miRNA binding and these miRNAs are found to be
downregulated in both diseases. The identified 3′ UTR variants
disrupt the regulatory binding motif of 47 TFs, known to
participate in AD and PD pathogenesis. DNMT1 and HDAC1
TFs regulate DNA methylation and histone acetylation, thereby
affecting downstream signaling genes.

We built BA9 specific co-expression and functional
interaction networks, and we identified the functional association
between variants, DEGs, and TFs. For example, the CREBBP TF
regulatory motif is disrupted by the STARD10 (rs148235301)
gene variant. CREBBP activates the genes FLT1 and FGFR1, and
is co-expressed in BA9; these genes are upregulated in disease
conditions that are involved in vascular smooth muscle and
endothelial pathways. These pathways are essential to maintain
the vascular integrity and restoration of BBB and provide
neurotrophic factors and metabolites to save the surviving
neuronal population against various stress stimuli. Therefore,
loss of BBB integrity results in disruption of neurovascular
communication and cerebral blood flow (Sweeney et al., 2018b).
In AD and PD, reduced regional cerebral blood flow was
observed in the motor cortex (Sweeney et al., 2018a). These
events led to impairment in vascular-glial communication
resulting in an energy crisis and influence the energy craving
neurons. Due to metabolic stress, these neurons are unable
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FIGURE 7 | Plausible mechanism of proposed possible drug targets to reduce BBB permeability and neuroinflammation.

to meet their energy requirement for securing functional
homeostasis. Gene signature analysis and an in-depth literature
search revealed that MAPK1, FGFR1, and FLT1 are promising
therapeutic targets for AD and PD.

Abnormal neuroinflammation is the biggest threat
to the BBB and endothelial cells. Investigating MAPK1
and FGFR1 targets may reduce neuroinflammation and
extend neuronal survival. Modulating the FLT1 pathway
may provide therapeutic VEGF concentration, which may
activate the VEGFR2 pathway, reducing BBB permeability
and leaky blood vessels. The proposed possible targets to treat
neurodegeneration belong to the kinase family. Designing
selective inhibitors for the kinase family is strenuous due to
its domain functionality and cross-talk between various other
kinases. A recent study explains the role of the kinome and
its inhibitor design can open new ventures for neuroscientists
to treat CNS degeneration (Krahn et al., 2020). Exploring
these targets may reduce pathological neuroinflammation
and increase vasculature integrity, saving the neuron from
chronic insult.

LIMITATIONS

Major limitations of the present study are the small sample
size (28 PD and nine AD samples) and the fact that we used
in silico tools to predict the effect of variants. Although the
results are reported using a small dataset all the variants identified
in the work showed good agreements with other eQTL and

GWAS studies of AD and PD using large datasets. The results
obtained in this work could be strengthened upon the availability
of a wide volume of data and experimental validation of the
identified variants.

Another limitation of using pathological tissue samples is that
it is not possible to distinguish targets that will address primary
causative events from downstream pathology. For example, if
cell type A (BA9) dies in both diseases, this would be reflected
in the differential expression and appear to target this analysis.
However, many possible scenarios could complicate this logic: (i)
cell type A (BA9) could die via different mechanisms in these two
diseases (AD/PD), making the target different (and unknown) in
each condition and (ii) cell type A (BA9) might die only because
cell type B has some primary malfunction that is not detected
by the differential expression analysis and in this case, we would
need to target cell type B.
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