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Abstract
Neonatal hypoxic ischaemic (HI) injury frequently causes
neural impairment in surviving infants. Our knowledge of the
underlying molecular mechanisms is still limited. Protein
deimination is a post-translational modification caused by
Ca+2-regulated peptidylarginine deiminases (PADs), a group
of five isozymes that display tissue-specific expression and
different preference for target proteins. Protein deimination
results in altered protein conformation and function of target
proteins, and is associated with neurodegenerative diseases,
gene regulation and autoimmunity. In this study, we used the
neonatal HI and HI/infection [lipopolysaccharide (LPS) stimu-
lation] murine models to investigate changes in protein
deimination. Brains showed increases in deiminated proteins,
cell death, activated microglia and neuronal loss in affected

brain areas at 48 h after hypoxic ischaemic insult. Upon
treatment with the pan-PAD inhibitor Cl-amidine, a significant
reduction was seen in microglial activation, cell death and
infarct size compared with control saline or LPS-treated
animals. Deimination of histone 3, a target protein of the
PAD4 isozyme, was increased in hippocampus and cortex
specifically upon LPS stimulation and markedly reduced
following Cl-amidine treatment. Here, we demonstrate a novel
role for PAD enzymes in neural impairment in neonatal HI
Encephalopathy, highlighting their role as promising new
candidates for drug-directed intervention in neurotrauma.
Keywords: hypoxic ischaemic encephalopathy, lipopolysac-
charide, microglia, neonatal, peptidylarginine deiminases,
protein deimination/citrullination.
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Brain injury around the time of birth is a major contributing
factor to cerebral palsy and other neurological disabilities
that affect one to three cases per 1000 births in the western
world, and to a higher extent in less developed countries
(Perlman 2006). Oxygen deprivation, and more recently,
infection (Wu and Colford 2000; Hagberg et al. 2002;
Mallard et al. 2003), have been identified as major causes of
perinatal brain injury in term as well as preterm babies. On
the experimental side, neonatal animal models have shown a
role for epigenetic mechanisms (Kumral et al. 2012), pH

changes (Robertson et al. 2004; Kendall et al. 2011a) as
well as for the tumour necrosis factor (TNF) gene cluster of
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cytokines in the context of a combined inflammatory and
hypoxic-ischaemic (HI) insult (Kendall et al. 2011b).
From a clinical perspective, several recent studies have

clearly shown a moderate but significant protective effect of
hypothermia (Wyatt et al. 2007). However, at present,
treatment of severe cases of HI Encephalopathy (HIE) is
still rather limited. Therefore, novel or adjunct treatments,
which would enhance post-insult neuroprotection beyond
what is observed with hypothermia alone, are of considerable
interest. For example, recent translational studies have
documented significantly enhanced neuroprotection follow-
ing cotherapy of hypothermia with Xenon (Faulkner et al.
2011) or with melatonin (Robertson et al. 2013). The
reoxygenation following a neonatal HI insult is frequently
followed by an intermediate ‘grace period’ with little overt
metabolic, NMR or histological abnormalities, and only then
by secondary energy failure (Faulkner et al. 2011; Wyatt
et al. 1989; Stys 1998) apoptotic, necrotic and/or autophagic
cell death and axonal degeneration (Dragunow et al. 1993;
Adhami et al. 2007). Changes in cellular transcription,
de novo protein synthesis and post-translational chemical
modification all play pivotal roles during this intermediate
phase (Culman et al. 2007; Pirianov et al. 2007; Yi et al.
2007). Identifying novel key factors mediating white and
grey matter damage will allow both better understanding of
the mechanism of the injury process as well as facilitating
clinical intervention.
Arginine deimination/citrullination is a post-translational

modification mediated by Ca+2-activated peptidylarginine
deiminases (PADs). Positively charged protein arginine
residues are modified irreversibly into hydrophilic but
uncharged citrullines on target proteins. This is distinct from
processes that create free L-citrulline as an intermediate in the
urea acid cycle or as a by-product of nitric oxide synthase
reactivity (Keilhoff et al. 2008). The substitution of an imino-
for oxy-group at the arginine guanidinium residue produces a
loss of one positive charge and release of ammonia
(Vossenaar et al. 2003). The incidental disruption of ionic
and hydrogen bonds within the substrate proteins causes
wide-ranging effects on structure and function of protein–
protein interactions. The PADs comprise a group of five
isozymes with tissue-specific expression and different pref-
erence for target proteins. PAD2 and PAD4 are regarded as
the prominent isozymes in the CNS, but PAD3 expression
has also been described in the CNS (Vossenaar et al. 2003;
Gyorgy et al. 2006). Studies on neuronal and inducible nitric
oxidase synthases, enzymes that convert free arginine to
citrulline, have shown them not to be involved in enhanced
peptidyl-citrulline immunosignalling (Keilhoff et al. 2008).
Structures especially prone to protein deimination are b-turns
and the intrinsically disordered proteins which are abundant
in the CNS (Gyorgy et al. 2006). Some of the main targets
identified are nuclear histones (Wang et al. 2004); structural
proteins including components of the myelin sheath; inter-

mediate filaments and associated adaptor proteins; extracel-
lular components such as fibrin and fibronectin (Gyorgy et al.
2006; Lange et al. 2011), and the chemokines (Loos et al.
2008, 2009; Proost et al. 2008). Deimination affects
upstream cytokines and chemokines such as TNFa and
CXCL8 & 10 (Moelants et al. 2011, 2013). Apart from being
involved in physiological processes during development
(Hagiwara et al. 2002; Li et al. 2008; Horibata et al.
2012), protein deimination has been detected in many human
inflammatory and degenerative diseases including multiple
sclerosis, Alzheimer’s dementia, Creutzfeldt–Jakob disease,
glaucoma and rheumatoid arthritis (Moelants et al. 2013).
Recently, Lange et al. (2011) demonstrated a novel func-
tional role in spinal cord injury by using pharmacological
inhibition of protein deimination with the pan-PAD inhibitor
Cl-amidine. This resulted in significantly reduced cavity size,
neuronal damage and apoptosis in the injured spinal cord. As
this was the first, and so far sole study to show a role for
PADs in neuronal injury, and protein deimination has not
been described in brain injury before, our question was if the
protective effect of PAD inhibition would be translatable to
other models of neuronal damage. In the current study, we
demonstrate a new functional role for the PADs in neuronal
damage in the neonatal brain in response to standard HIE
insult as well as in the infection/HIE synergy model. As in the
spinal cord, histone deimination suggested a role for epige-
netic regulation in response to injury, while changes in
deimination of cytoskeletal components could affect apopto-
sis, cell motility and the ability of injured neurons to regrow
axons (Lange et al. 2011), we focused on detecting changes
in total protein deimination, and specifically deiminated
histones, in response to PAD inhibition in the HIE model.
The identification of target molecules for drug-directed early
intervention in response to hypoxic insult is of great
importance in relation to the prevention of long-term damage
caused by oxygen deprivation and infections in neonates.

Materials and methods

Animals

All animal experiments and care protocols were approved by the
Home Office (Permit number 70/7173) and carried out according to
the UK Animals (Scientific Procedures) Act 1986. The ARRIVE
guidelines were followed. Operations were performed on C57/BI6
mice (Charles River, UK) at post-natal day 7 (P7), bred in house.
HIE: Animals at P7 were anaesthetized with isofluorane (5%
induction, 1.5% maintenance), the left common carotid artery
permanently occluded with an 8/0 polypropylene suture and the
wound closed with tissue glue. The mice were recovered at 36°C,
returned to the dam for 2 h and then placed in a hypoxia chamber and
exposed to humidified 8% oxygen/92% nitrogen (2 L/min) at 36°C
for 30 or 60 min. The mice were returned to the dam and left for 2, 4,
6, 8, 16, 24, 48 and 96 h, respectively, for post-hypoxia survival. In
the infection/HIE synergy model, P6 pups were injected with E. coli
lipopolysaccharide (LPS; 0.3 lg/g) 12 h prior to surgery.
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Tissue sample preparation

For histological assessment, animals were killed by intraperitoneal
(i.p.) injection of pentabarbitone and perfused with 30 mL of
phosphate-buffered saline (PBS). The brains were excised, post-
fixed by rotating immersion in 4% formaldehyde in PBS for 1 h at
4°C, followed by cryoprotection for 24 h in 30% sucrose in PBS at
4°C (Moller et al. 1996). Fixed cryoprotected brains were frozen on
dry ice, sectioned on a cryostat into sequential 40-lm sections and
stored at �80°C until required.

Pharmacological manipulation

Cl-amidine toxicity
Cl-amidine, a pan-PAD inhibitor (Luo et al. 2006) was dissolved in
sterile normal saline and the animals injected with a single i.p.
injection at dose of 30, 60 or 120 mg/kg (based on a previous study
in spinal cord damage; Lange et al. 2011) immediately following
60-min hypoxia. Survival was assessed after 24, 48 and 72 h.

Pharmacological pan-PAD inhibition
To investigate the effect of PAD inhibition on tissue damage in the
affected brain areas, animals were injected with a single i.p. dose of
Cl-amidine (30 or 60 mg/kg; n = 5 per group; based on Lange et al.
2011) immediately after a time period of 60-min hypoxia. The
Cl-amidine was diluted in saline so that all animals received a single
10 lL/g injection; control animals received the corresponding
volume of saline. To estimate an effect on the synergy of infection
and hypoxic ischaemic insult, Cl-amidine-treated LPS sensitized
animals (0.3 lg/g) were injected 12 h prior to surgery with LPS
(Kendall et al. 2011b), followed by one dose of Cl-amidine (30 mg/kg)
10 min after the LPS injection (n = 10 per group). A second dose of
Cl-amidine (30 mg/kg) was administered immediately after a time
period of 30-min hypoxia. Control LPS-treated animals received the
corresponding amount of saline in substitution for Cl-amidine. The
animals were left for 48 h, then sacrificed and brains collected for
tissue analysis.

Histological analysis

The differences in deiminated proteins, microglial activation, infarct
size and cell death were compared between control animals (sham-
operated control, saline treatment alone; LPS/saline treatment) and
the corresponding PAD inhibitor-treated animals (Sal/Cl-amidine;
LPS/Cl-amidine). All tissue sections were scored blindly twice by
two independent observers.

Immunohistochemistry

Tissue staining was performed as previously described (Hristova
et al. 2010). In brief, cryosections were thawed and rehydrated in
distilled water, spread onto glass slides coated with 0.5% gelatin
under a dissecting microscope, dried for 10 min, fixed in 4%
formaldehyde in 100 mM phosphate buffer (PB) for 5 min, treated
with acetone (50, 100, 50%: 2 min each), 0.1% bovine serum
albumin (PB/BSA) and washed twice in PB. The sections were
pre-incubated with 5% goat serum (Sigma, St. Louis, MO, USA) in
PB for 30 min and incubated with primary antibody overnight at
4°C (F95 (Nicholas and Whitaker 2002) 1/500; aMb2 (Serotec,
Oxford, UK) 1/5000; citH3 (Abcam, Cambridge, UK) 1/300).
The sections were then washed in PB/BSA, PB, PB, PB/BSA

(2 min each), incubated with secondary antibodies [biotin-labelled
anti-mouse IgM; anti-rabbit IgG 1/200; anti-rat IgG (Vector
Laboratories, Inc., Burlingame, CA, USA)] and visualized with
Avidin-Biotinylated peroxidase Complex (ABC, Vector Laborato-
ries, Inc.) and diaminobenzidine/hydrogen peroxide stain. Sections
were processed through alcohol and xylene and mounted with
DEPEX (Sigma). For quantitative immunohistochemistry, sections
belonging to the same experiment were stained together to prevent
differences in staining intensity.

Infarct volume measurement

Infarct volume was measured in 10 coronal sections at 400-lm
intervals from each forebrain, stained with cresyl violet (Nissl stain).
The Optimas 6.2 image analysis software (Meyer Instruments Inc.,
Houston, TX, USA) was used to calculate the surviving brain tissue in
each brain region as percentage between experimental and control side
to estimate reduction in infarct size following PAD inhibition. Tissue
injury score was calculated from the cresyl violet-stained sections
(Nissl) and sections stained for activated microglia (aMb2) as
previously described (Kendall et al. 2006). The injury score was
estimated on a scale from 0 to 4 for Nissl (0 = no damage,
1 = minimal evidence of damage without evidence of infarct,
2 = small infarct < 50% of the affected region, 3 = large infarct
> 50% of the affected region, 4 = total neuronal loss). Score for
microglial activation was on the scale from 0 to 3 (0 = no activation,
1 = focal activation, 2 = mild diffuse activation with occasional
phagocytic macrophages, 3 = widespread activation with predomi-
nant phagocytic macrophages).

TUNEL staining

Brain tissue sections were stained at 400-lm intervals for DNA
fragmentation using Terminal deoxynucleotidyl transferase dUTP
nick end labelling according to the manufacturer’s instructions
(TUNEL, Vectorlabs). Cell death was quantified by counting
TUNEL-positive nuclei in each brain region and compared in treated
versus control groups.

Statistics

Statistical analysis to assess the effect of treatment (PAD inhibitor)
proceeded in the following way. For each of the three outcomes,
tissue loss, cell death and microglial activation, linear mixed effects
models were fitted (using transformed data as necessary to satisfy
normality assumptions), to adjust for the correlation between
observations from the same subject arising from measurements in
several areas of the brain (repeated measurements). Estimation of
fixed effects was carried out using restricted maximum likelihood
owing to the small sample size and tested using Wald tests. An
interaction effect between the treatment group and the area of the
brain was initially included in the model for each outcome and
tested for significance. This tests whether the treatment difference is
significantly different in different areas of the brain, although this
test has low power to detect such a difference with small sample
sizes. For all three outcomes the interaction was not significant,
therefore main effects mixed models were fitted as the primary
analysis. This gave an overall estimate of the treatment effect for
each outcome with associated p-value related to testing the null
hypothesis of no difference between treatment groups. If the
treatment effect was significantly different from zero, (p < 0.05)
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further post hoc analysis was carried out to examine subregion
treatment effects. This was done by refitting the model with the
interaction to give estimates and associated p-values for the
treatment effect in each area of the brain. It was done in this way
rather than fitting separate regression models for each area to benefit
from the properties of the estimation procedure used in mixed
effects models that help retain the validity of the results in the
presence of incomplete data. No adjustments are made for multiple
comparisons as actual p-values are reported.

Results

Protein deimination in neonatal brain following HI insult

Total protein deimination detected with the pan-citrulline
antibody F95 (Nicholas and Whitaker 2002) showed that
protein deimination (F95 positive) started at 16 h, peaked at
24 h and was still detectable at 48–72 h following mild
(30 min) HI insult. Following strong (60 min) hypoxia,
deiminated proteins were detected at 8 h, increasing and
peaking at 16–24 h (Fig. 1a,b, b1) and still strongly
detectable at 48–72 h (Fig. 1c & c1). Deiminated proteins
were mainly detected in the hippocampus, cortex, striatum
and piriform cortex. Fig. 1 shows the several-fold increase in

total protein deimination (F95 positive) observed in the
hippocampus (hi) of the occluded side (Fig. 1a–c, b1 & c1)
following 60-min exposure to 8% oxygen compared with the
non-occluded side (Fig. 1a1). No protein deimination was
observed in the comparable regions in sham-operated
controls (Fig. 1a2).

Deiminated protein targets in the HI/infection synergy

model

Using the infection/HI synergy model by pre-exposing day 6
mouse pups to E. coli LPS, followed 12 h later by unilateral
carotid occlusion and 30 min of 8% oxygen, an overall
increase in pan-deiminated proteins was observed compared
to HI insult alone (not shown). Markedly, a massive increase
in deiminated histones (citH3), a target of the PAD4 isozyme,
was observed in the affected brain regions upon exposure to
HI/LPS (30 min HI; Fig. 2c1 & c2) but was not observed in
the control mild HI insult alone (30 min HI; Fig. 2e).

PAD inhibition reduces neuronal damage in HI and HI/

infection synergy models

The effects of the pan-PAD inhibitor Cl-amidine (Luo et al.
2006) on 48-h survival of 7-day-old mice in the HI insult
model were estimated to determine the optimal treatment
dose. Intraperitoneal application of Cl-amidine at doses of
30 mg/kg and 60 mg/kg were associated with 100% survival;
and 120 mg/kg with 75% survival. By itself carotid occlusion
and oxygen starvation was not associated with a 48-h loss.
Treatment with Cl-amidine at 60 mg/kg was determined for
further use as it gave maximum inhibition of damage
(compared to 30 mg/kg) and 100% survival. Using 60 mg/
kg Cl-amidine single dose, neuronal loss, cell death and
microglial activation were reduced in response to PAD
inhibition in HI alone following 60-min hypoxia (Fig. 3a–f;
n = 5). In the LPS/HI synergy model, Cl-amidine was
administered in 2 doses of 30 mg/kg each to inhibit PAD
after LPS stimulation (10 min post stimulation) and again
after HI insult (straight after 30-min hypoxia), a total of
60 mg/kg in a 24-h period, resulting in significantly decreased
neuronal tissue loss and cell death (Fig. 2a–d). For tissue loss,
significant differences were seen in the overall treatment
(p = 0.007), with some post hoc evidence of subregion
differences in the hippocampus and external capsule
(p = 0.059 and p = 0.013 respectively) (Fig. 2a). Cell death
was significantly reduced overall (p < 0.001), with post hoc
evidence of subregion differences in cortex, pyriform cortex
and striatum (p < 0.001, p = 0.019, p = 0.003), with some
post hoc evidence of an effect in hippocampus and thalamus
(p = 0.062, p = 0.058) (Fig. 2b). The presence of deiminated
histones was drastically reduced when applying Cl-amidine in
the LPS synergy model (Fig. 2d1–d2) compared with LPS-
stimulated groups (Fig. 2c1–c2). For microglial activation
(a � M), the overall adjusted treatment effect (CA) was
significant (p < 0.001), and post hoc evidence of subregion

(a) (b)

(c)

(b1) (c1)

(a1)

(a2)

Fig. 1 Protein deimination in neonatal hypoxic ischaemic (HI) hippo-

campus. Strong increase in hippocampal (hi) pan-peptidyl citrulline
immunoreactivity detected with F95 antibody on the occluded (occ)
side (a), compared with the contralateral (contra) (a1), after unilateral

carotid ligation in post-natal day 7 mice, 60-min exposure to 8%
oxygen (strong hypoxia) and 24-h recovery. Note the intense staining
in the dentate gyrus (dg) molecular layer and around the granular cell

band, as well as scattered, highly immunoreactive cells from the hilus
to the CA1 region and in the CA3 region. No protein deimination is
observed in sham-operated controls (b2; hippocampus at 24-h
recovery). Protein deimination is clearly detectable earlier at 16 h post

insult (b: b1) and still present at 48 h post insult when clear tissue
degradation in the damaged region is also observed (c; c1). b1 and c1
represent magnified images of the dotted boxes indicated in

the CA3 regions in b and c respectively. Scale bars: a–a2 = 500 lM;
b–c = 200 lM; b1–c1 = 100 lM.
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differences was found in the cortex, pyriform cortex,
hippocampus, striatum, thalamus and external capsule
(p = 0.012, p < 0.001, p = 0.017, p = 0.003, p < 0.001,
p < 0.001 respectively) (Fig. 4a). Moreover, while strong
microglial activation with phagocytic morphology was
observed in the LPS/Saline-treated brains (Fig. 4b & b1),
microglia displayed only focal activation in the presence of
the PAD inhibitior (Fig. 4c & c1).

Discussion

We have shown that protein deimination caused by peptidy-
larginine deiminases (PADs) plays a significant role in

neuronal loss following hypoxic ischaemic insult in the
neonatal mouse model and that pharmacological PAD
inhibition may be useful to reduce neuronal loss when
applied following hypoxia. Histones are one of the major
targets of deimination, and PAD4-mediated histone 3
deimination (citH3) is associated with both gene regulation
and the formation of neutrophil extracellular traps in
response to infection (Li et al. 2010). We found that histone
3 is significantly deiminated specifically upon stimulation
with LPS, as non-stimulated HI-treated control animals
showed very low or no histone deimination (Fig. 2E). Upon
Cl-amidine treatment, citH3 detection was drastically
reduced in LPS-stimulated animals and similar to that seen

(a) (c) (d)

(c1) (d1)

(c2) (d2)

(e)

(b)

Fig. 2 Peptidylarginine deiminase (PAD) inhibition reduces neuronal

loss and histone deimination. PAD inhibition results in reduced infarct
volume (a) and cell death (b) 48 h following lipopolysaccharide (LPS)
sensitized hypoxic ischaemic (HI) (LPS/HI) insult (n = 10 per group).

(a) For tissue loss, significant differences were seen in the overall PAD
inhibition [Cl-amidine (CA)] treatment (p = 0.007), with some post hoc
evidence of subregion differences in the hippocampus and external

capsule (p = 0.059 and p = 0.013 respectively) (b) Following PAD
inhibition (CA) cell death was significantly reduced overall (p < 0.001),
with post hoc evidence of subregion reduction in cortex, pyriform cortex
and striatum (p < 0.001, p = 0.019, p = 0.003), with some post hoc

evidence of an effect in hippocampus and thalamus (p = 0.062,
p = 0.058). (c, d) Nissl-stained brains of the LPS/HI animals post-
treated with saline (sal) show massive tissue loss on the occluded side

(left) in the cortex, hippocampus, striatum and external capsule (c);

those post-treated with Cl-amidine (CA, 1 9 30 lg/g 10 min after LPS
injection and again 1 9 30 lg/g immediately after 30-min hypoxia)
result in a greatly reduced infarct (d). c1 (boxed region in c): Massive

increase in deiminated histone 3 immunoreactivity (citH3) is observed
48 h following combined LPS/HI insult, and post-treatment with saline.
d1 (boxed region in d): CitH3 is suppressed in LPS/HI animals treated

with Cl-Amidine. c2 (higher magnification of c1): Histone deimination is
observed in the nucleus (arrowheads) and cellular cytoplasm (arrows)
in the damaged cerebral cortex in LPS/HI animals. d2 (higher
magnification of d1): Both types of citH3 immunoreactivity are

suppressed in LPS/HI animals treated with Cl-amidine and absent in
control 30 min HI alone (e). Scale bars: c & d: 1 mm; c & d1 = 250 lM;
c,2 d2 & e = 100 lM; *p < 0.02.
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in non-stimulated animals (30 min HI; Fig. 2d2 & e). The
strong up-regulation of citH3 in the LPS synergy model, and
the corresponding reduction of histone deimination following
PAD inhibition, indicates a possible epigenetic role for
PAD4. In terms of injury signals, the LPS/HI model of
infectious/ischaemic form of brain damage is known to be

strongly dependent on TNFa and related family of cytokines.
Global gene deletion of the whole TNF cluster of cytokines –
TNFa, LTa, LTb – has been shown to completely abolish the
synergistic, damage-enhancing effect of LPS on HI insult
(Kendall et al. 2011b). Exposure to elevated levels of TNFa
has also been demonstrated to elicit nuclear translocation of

(a) (b) (c)

(d) (e) (f)

Fig. 3 Peptidylarginine deiminase (PAD) inhibition reduces neuronal
damage in neonatal hypoxic ischaemic (HI) with 60-min (strong)

hypoxia. Following HI with strong (60 min) hypoxia, severe tissue loss
(a), strong microglial activation with phagocytic morphology (b) and
TUNEL-positive cells (c) were observed in the hippocampus after 48 h.

Upon treatment with one dose of Cl-amidine (CA; 60 mg/kg) immedi-

ately following hypoxia, reduced damage was seen in the hippo-
campus (d) and a significant difference was observed both in the level

of microglial activation (e) and TUNEL-positive cells (f). Scale bars: a
& d = 500 lM; b, c, e, f = 200 lM. For reference, the regions of
the hippocampus (dentate gyrus (dg) and CA 1, 2, 3) are indicated

in f.

(a)

(b)

(b1) (c1)

(c)

Fig. 4 Peptidylarginine deiminase (PAD) inhibition reduces microg-
lial activation in the neonatal lipopolysaccharide (LPS)/hypoxic

ischaemic (HI) synergy model. For microglial activation (a � M),
the overall adjusted treatment effect (CA) was significant (p < 0.001),
and post hoc evidence of subregion differences were found in

the cortex, pyriform cortex, hippocampus, striatum, thalamus and
external capsule (p = 0.012, p < 0.001, p = 0.017, p = 0.003,

p < 0.001, p < 0.001 respectively). Whereas LPS-treated control
brains show strong microglial activation with phagocytic morphology

(b & b1: hippocampus), Cl-amidine (CA)-treated brains show only
focal activation of microglia (c & c1: hippocampus: CA 1, 2, 3
regions). b1 and c1 are magnified images from the boxed regions of

CA3 in b and c respectively. Scale bars: b & c = 200 lm, b &
c = 100 lm; *p < 0.02.
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PAD4 isozyme in vitro, as well as in vivo, in a transgenic
model of multiple sclerosis (Mastronardi et al. 2006). Here,
we show that broad pharmacological inhibition with the pan-
PAD inhibitor Cl-amidine in the LPS/HI model causes a
significant reduction in infarct size, microglial activation and
TUNEL+ cell death compared to the control, LPS-treated
animals (Figs 2 and 4).
Overall, the data presented here support our hypothesis

that PAD activity is induced both in HI insult alone and in HI
insult combined with LPS stimulation. A more selective and
targeted inhibition of individual PAD enzymes, than dem-
onstrated here using a pan-PAD inhibitor, could lead to
enhanced neuroprotection following HI insult, as well as help
uncover the downstream targets of the neuro-destructive
proinflammatory cytokines. It has been shown, for example,
that TNFa appears to specifically affect PAD4 (Mastronardi
et al. 2006). The peak in TUNEL-positive cells being 8–16 h
for the 30 min HI and 16–24 h for the 60-min hypoxia,
respectively, shows that protein deimination in the strong HI
insult precedes detection of apoptotic cell death, while it
coincides in the milder (30 min) hypoxic conditions. This
may indicate a stronger involvement of PADs in cell death
under strong hypoxic conditions. The present findings are in
accordance with a previous study in the spinal cord injury
model where pan-PAD inhibition resulted in significantly
reduced injury volume, cell death and citH3 detection (Lange
et al. 2011), indicating that protein deimination plays an
important role in neuronal damage.
The neuroprotective effect we have demonstrated here

using pan-PAD inhibiton provides a platform for refined
isozyme-specific drug development for targeted intervention
in events of neonatal HIE. Our findings may be translatable
to other forms of neuronal damage and benefit intervention in
those cases. Ongoing studies aim to identify in depth the
respective PAD isozymes and target proteins for drug-
directed treatment in neonatal HIE. Novel drugs targeting the
appropriate PAD isozyme may be new candidates for the
prevention of neural impairment caused by oxygen lack and
infection in neonates.
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