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Abstract: A simple single-stage approach, based on the hydrothermal technique, has been 

introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The tita-

nium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to 

graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent 

for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide 

nanoparticles with a narrow size distribution (∼20 nm). Transmission electron micrographs 

show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. 

Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability 

over the original components. The potential applications for this technology were demonstrated 

by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon 

electrode, which enhanced the electrochemical performance compared to a conventional glassy 

carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte.
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Introduction
Graphene is a monocrystalline graphitic film a few atoms thick and is stable under 

ambient conditions. The physical dimension of the film’s thickness ensures the 

electronic structure of the material is two-dimensional. Moreover, there is a small 

overlap between the valence and conduction bands, and graphene exhibits semimetal 

behavior. With the addition of a gate electrode, electron and hole concentrations in the 

channel can be as high as 1013 cm−3 with mobility at room temperature in the order of 

10,000 cm2V−1 s−1. These results make graphene an ideal candidate for the next gen-

eration of electronic devices.1 In addition, graphene has extremely good mechanical 

and thermal properties and thus has potential application over a wide variety of uses 

such as composite materials, fuel cells, batteries, chemical detectors, and solar cells.2–11 

Moreover, the integration of graphene with inorganic nanoparticles allows the proper-

ties of the nanocomposite to be engineered for specific applications, which is rapidly 

becoming a research trend as the nanocomposites are able to exhibit properties that 

are not found in the individual components.6,12–18

Nanocrystalline titanium dioxide (TiO
2
) is a promising candidate for solar energy 

 conversion applications such as photocatalysis, photochromism, and photovoltaics 

because of its unique optical and electrical properties.19 It is widely used in  applications 

such as hydrogen production,20,21 gas sensors,22,23 photocatalytic activities,24,25 and 

 dye-sensitized solar cells26,27 because of its relative high efficiency and high stability.
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The microbiocidal effects of TiO
2
 photocatalytic 

r eactions28 clearly have pharmacological applications and 

TiO
2
 photocatalytic reactions have been used to kill a wide 

spectrum of organisms including bacteria,29 viruses,30 fungi,31 

cancer cells,32 and algal toxins.33 In addition, antibacterial 

activity against four common human pathogens, namely 

Escherichia coli, Pseudomonas aeruginosa, Klebsiella 

pneumoniae, and Staphylococcus aureus, has also been 

demonstrated.34 In addition, the oxidizing power of TiO
2
 

when under irradiation of ultraviolet (UV) light in either 

water or an oxygen-rich environment means that irradiated 

TiO
2
 can be used in waste processing because of its ability 

to decompose and/or oxidize most organic and/or inorganic 

compounds.36,37 Interestingly, its high chemical stability and 

nontoxicity also makes TiO
2
 biocompatible, and it is used 

in many cosmetic products and as an alternative material 

for improving antimicrobial properties. For example, TiO
2
 

nanoparticles have been added to dental acrylic resins to 

improve the color.35

The challenge when developing convenient and effec-

tive processing technologies for the fabrication of graphene 

nanocomposites is the prevention of the restacking and/or 

agglomeration of the graphene sheets caused by the changes 

in the Van der Waals interactions due to the presence of 

metal oxide particles like TiO
2
.38,39 Recently, graphene/TiO

2
 

nanocomposites have been synthesized using technolo-

gies such as atomic layer deposition40 and electron beam 

 irradiation.41 Although successful, these methods are proba-

bly not commercially viable since the processes require a six-

step sequence with heat treatment at various temperatures40 

or pretreated graphene41 as a raw material. Furthermore, 

other reported techniques that use hazardous chemicals, 

such as hydrazine hydrate, create dangerous by-products 

such as hydrogen fluoride.42 Other reported problems in the 

formation of graphene nanocomposites include the lack of 

discrete nanocrystalline TiO
2
 particles before calcination43 

and agglomeration of the TiO
2
 particles.44,45

In this paper, a one-step hydrothermal route for the prepa-

ration of graphene/TiO
2
 nanocomposites using graphene 

oxide (GO) and titanium isopropoxide as starting materials 

with the addition of triethanolamine (TEA) is reported. The 

hydrothermal technique was chosen because it is a “soft 

solution chemical processing” technique, which provides 

an easier way to control particle size, particle morphology, 

microstructures, phase composition, and surface chemical 

properties with adjustments in experimental parameters 

such as temperature, pressure, duration of process, and pH 

value of solution.46–49 This one-step hydrothermal method 

is  convenient and safe, and with the addition of TEA to 

the solution, the process provides a route to manufacture 

 graphene/TiO
2
 nanocomposites where the TiO

2
 nanoparticles 

are discrete with no agglomeration of the particles. This is not 

the first time a single-step hydrothermal technique has been 

reported; however, there are significant differences between 

the process reported in this paper and those already published. 

Shen et al reported an “intrinsically pure process,” which 

utilized only water and glucose.50 However, their sample prior 

to hydrothermal treatment contained ammonium chloride, 

ethanol, glucose, and ammonium hydroxide.50 In the method 

reported here, only TEA and ethanol were added. Other 

reported one-step hydrothermal processing studies used 

ultrasonication to obtain a well-dispersed suspension of GO 

and TiO
2
. This step was omitted in the current work.

The objective of this work was to study the influence of 

the hydrothermal temperature on the crystallinity, size dis-

tribution, thermal stability, and electrochemical performance 

of reduced GO (RGO)/TiO
2
 nanocomposites. To the best 

of the authors’ knowledge, the effect of TEA and reaction 

temperature on the formation of RGO/TiO
2
 nanocomposites 

has not been previously reported.

Material and methods
Materials
Graphite 3061 and titanium isopropoxide (99%) were purchased 

from Asbury Graphite Mills Inc (Asbury, NJ) and Acros 

Organics (Geel, Belgium), respectively; TEA and potassium 

permanganate were obtained from R&M Chemicals (Systerm, 

Malaysia). The other materials – sulfuric acid, phosphoric acid, 

hydrogen peroxide, and ethanol – were purchased from Merck 

KGaA (Darmstadt, Germany). Unless otherwise specified, all the 

reagents and materials involved were used as received without 

further purification. Deionized water ( resistivity $18 MΩ) was 

used during the experimental process.

Synthesis of gO
GO was synthesized via the simplified Hummers method in 

which a 9:1 sulfuric acid:phosphoric acid (360:40 mL)  solution 

was prepared, into which 3 g of graphite was  added.51,52 Potas-

sium permanganate (18 g) was gradually added and the solu-

tion was left to oxidize for 3 days whilst being continuously 

stirred. After 3 days, the resulting solution was cooled to room 

temperature and poured onto ice (∼400 mL) along with 27 mL 

of 30% hydrogen peroxide. The solution was centrifuged 

(CR21GIII;Hitachi, Japan) and washed three times with 1 M 

hydrogen chloride and six times with water. The final solution, 

the GO dispersion, was light brown in color.
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Synthesis of RgO/TiO2
Titanium isopropoxide (3.72 mL) was added into 3.32 mL 

of TEA in a 25 mL volumetric flask (Favorit, PLT Scientific 

Sdn. Bhd) producing a titanium(IV) ionic (Ti4+) solution with 

a concentration of 0.50 M. In order to form the GO/TiO
2
 

solution, 10 mL of 1 mg/mL of GO solution was added into a 

water:ethanol mixture (1:14) mL with continuous stirring. After 

that, 3 mL of Ti4+ solution was added and the mixture stirred 

for 24 hours at room temperature to obtain a homogeneous 

suspension. The mixture was placed in a custom made Teflon-

lined autoclave and heated to 120°C for 24 hours. Two other 

samples were prepared by an identical procedure except for 

the final autoclave reaction temperature (150°C and 180°C). 

The samples were labeled as 120 RGO/TiO
2
, 150 RGO/TiO

2
, 

and 180 RGO/TiO
2
, with the number signifying the reaction 

temperature. The black precipitates were washed three times 

with ethanol, centrifuged at 13,000 g for 10 minutes, and dried 

at 60°C. Pure TiO
2
 samples were also prepared using the same 

procedure; these samples are denoted as 120 TiO
2
, 150 TiO

2
, and 

180 TiO
2
. RGO was also synthesized in the absence of titanium 

isopropoxide under the same conditions at 180°C.

Characterization
The atomic structure of the samples was investigated by X-ray 

diffraction (XRD, D5000, Siemen) (XRD) using copper Kα 

radiation (λ = 1.5418 Å) at a scan rate of 0.02 degrees s−1. 

This was complemented by transmission electron microscopy 

(CM12; Philips) operated at 100 kV, which allowed an image 

of the nanoparticles and graphene flakes to be acquired. The 

chemical stability was investigated using thermogravimetric 

analysis (TGA) (Q500; TA Instruments, New Castle, DE) and 

the bond structure investigated using UV-visible spectroscopy 

with a scan rate of 240 nm/mm (Evolution 300; Thermo Fisher 

Scientific, Pittsburgh, PA). The electrochemical performance 

was assessed using three-electrode cyclic voltammetry with a 

 silver/silver chloride 3 M sodium chloride reference electrode 

and a platinum counter electrode (CV-50W voltammetric 

a nalyzer; Bioanalytical Systems Inc, West Lafayette, IN).

Electrochemical performance
The working electrode was 3 mm in diameter and made from a 

glassy carbon electrode (GCE). Before modification, the bare 

GCE was polished with alumina slurry on microcloth pads 

(MetaServ 250, Buehler) and thoroughly rinsed with distilled 

water between each polishing step. The final cleaning step was 

successive washes with distilled water and anhydrous alcohol. 

The modified electrode was made by tapping the bare GCE 

onto the sample ten times  successively.53 The cell electrolyte 

was formed by mixing 10 mL of 0.1 M of potassium chloride 

with 190 µL of 1.0 mM mercuric chloride analyte. Once all 

three electrodes were immersed into the supporting electrolyte 

solution, nitrogen gas was bubbled through the solution for 

15 minutes to remove any dissolved oxygen before the vol-

tammogram was recorded. The potential range was checked 

before any readings on the voltammogram were recorded. 

All the voltammetric experiments were referred at an ambient 

temperature of 25°C ± 2°C.

Results and discussion
UV-visible absorption spectroscopy measurements for RGO/

TiO
2
 nanocomposites are shown in Figure 1 and indicate the 

degree of reduction in the increase of GO as the reaction 

temperature increased. For pure GO, there was a peak at 

about 227 nm and a shoulder at around 300 nm. The peak at 

227 nm is assigned to the pi to anti-pi (π → π*) transition of 

the aromatic carbon–carbon bonds and the shoulder at 300 nm 

to the n to anti-pi (n → π*) transitions of the carbon = oxygen 

bonds.54 The 120 RGO/TiO
2
 sample had a broad peak centered 

at 227 nm and a shoulder at approximately 300 nm. There was 

no evidence of a peak at 256 nm, which is a characteristic of 

graphene and is attributed to the aromatic carbon = carbon 

bonds. For the 150 RGO/TiO
2
 and 180 RGO/TiO

2
 samples, 

the peak at 227 nm right-shifted to 256 nm. This represents 

the partial restoration of the pi-conjugation network of the 

sample as a result of the hydrothermal and chemical reduction 

process. All the RGO/TiO
2
 nanocomposite samples showed 

typical absorption of TiO
2
 with an absorption edge of around 
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Figure 1 Ultraviolet-visible absorption spectra of reduced graphene oxide/titanium 
dioxide nanocomposites and graphene oxide.
Note: 120, 150, and 180 indicate the reaction temperature.
Abbreviations: gO, graphene oxide; RgO/TiO2, reduced graphene oxide/titanium 
dioxide nanocomposite.
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Figure 2 X-ray diffraction patterns of (A) graphite and graphene oxide and  
(B) reduced graphene oxide, titanium dioxide, and reduced graphene oxide/titanium 
dioxide nanocomposites.
Note: 120, 150, and 180 indicate the reaction temperature.
Abbreviations: gO, graphene oxide; RgO, reduced graphene oxide; RgO/TiO2, 
reduced graphene oxide/titanium dioxide nanocomposite; TiO2, titanium dioxide.

360 nm, while the 180 RGO/TiO
2
 sample showed a higher 

absorption edge of around 375 nm.

Figure 2A and B show the XRD patterns of the graphite, 

GO, RGO, pure TiO
2
, and RGO/TiO

2
 nanocomposites. The 

dominant diffraction peak centered at around eleven degrees 

in the XRD pattern of GO corresponded to reflection from the 

(002) plane,55,56 whilst for raw graphite this reflection occurred 

at around 26 degrees and was very intense. For the RGO 

samples, the (002) reflection peak was broad and was centered 

at around 25 degrees. The broad diffraction peak of RGO 

indicates poor ordering of the sheets along the stacking direc-

tion, which implies the sample was comprised mainly from 

single or only a few layers of RGO.57 The band at 43 degrees 

corresponded to the turbostratic band of disordered carbon 

materials.58 No diffraction peak attributable to reflections 

from graphite crystal planes was observed, which suggests the 

stacking of the RGO sheets remained disordered and were not 

stacked together to form a detectable graphite structure.

In addition to the peaks attributable to carbon-based com-

pounds, the XRD spectrum contained peaks which have been 

assigned to reflections from the anatase phase of tetragonal 

TiO
2
 with lattice constants of a = 3.7892 Å, b = 3.7892 Å, 

c = 9.5370 Å, and β = 90.0000 (JCPDS 71-1167). The dif-

fraction peaks can be indexed as reflections from the (101), 

(004), (200), (105), (211), and (204) planes, respectively. 

There was no evidence for the other phases of TiO
2
 being 

present. Comparing the 120 RGO/TiO
2
 and the 180 RGO/

TiO
2
 samples, there was an increase in peak intensities of the 

peaks attributed to the reflections from TiO
2
, which suggests 

the formation of larger TiO
2
 crystallites and enhancement of 

the TiO
2
 crystallization process.59 Full width at half maxi-

mum of the TiO
2
 (101) reflection for the 120 RGO/TiO

2
, 150 

RGO/TiO
2
, and 180 RGO/TiO

2
 samples was 1.1595 degrees, 

0.9832 degrees, and 0.6378 degrees, respectively. Since 

the full width at half maximum is inversely proportional to 

the nanocrystal size (Scherrer equation), this result further 

confirms the hypothesis that higher hydrothermal tempera-

tures produce greater TiO
2
 crystallization. The presence of 

graphene cannot be confirmed in the XRD spectra for the 

RGO/TiO
2
 samples because there was no peak in the XRD 

spectrum that can be attributed to graphene. The most likely 

explanation is that the relatively weak and broad characteristic 

peak of graphene at 24.5 degrees was masked by the strong 

(101) TiO
2
 reflections at 25.4 degrees.60

Transmission electron micrographs of the samples are 

shown in Figure 3 along with the size distributions of the TiO
2
 

nanoparticles. The nanoparticles were distributed uniformly 

on the basal plane of RGO nanosheets. The nanoparticles 

appeared to have a rounder shape in the 180 RGO/TiO
2
 

sample when compared to the 120 RGO/TiO
2
 sample. The 

average size of the nanoparticles for the 120 RGO/TiO
2
, 

150 RGO/TiO
2
, and 180 RGO/TiO

2
 was 20.4 ± 3.9 nm, 

20.5 ± 4.7 nm, and 21.3 ± 3.5 nm, respectively. The his-

tograms of the size distribution of the nanoparticles in the 

nanocomposites are exhibited on the right hand side of 

Figure 3. The size distribution of the TiO
2
 nanoparticles 

was narrower when the hydrothermal temperature increased. 

This trend agrees with the observation of more crystallized, 

round shaped, and homogeneous particles at 180°C com-

pared to the less crystallized, amorphous, and heterogeneous 

particles at 120°C. The role of TEA in the formation of the 

nanocrystals can be clearly seen in Figure 4 which shows a 

transmission electron micrograph of the RGO/TiO
2
 sample 

synthesized under the same conditions at 180°C but without 

the presence of TEA. The TiO
2
 nanoparticles agglomerated 

and did not distribute homogenously on the RGO sheet.
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Figure 3 (A, C and E) Transmission electron micrograph and (B, D and F) histogram of reduced graphene oxide/titanium oxide nanocomposites at (A and B) 120°C,  
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Figure 4 Transmission electron micrograph of reduced graphene oxide/titanium 
oxide nanocomposite synthesized without triethanolamine.

The successful decoration of TiO
2
 nanoparticles on RGO is 

also reflected in the TGA curves (Figure 5). The TGA curves for 

all the nanocomposites had four distinct regions (A, B, C, and D). 

In the region up to 100°C (region A), the sample weight loss 

was caused by the resorption of physisorbed water. Between 

150°C–300°C (region B), the weight loss was a result of the 

decomposition of labile oxygen groups like carboxylate, 

anhydride, or lactone groups. Region C occurred between 

300°C–500°C and was associated with the removal of more 

stable oxygen groups such as phenol, c arbonyl, and quinine. 

Above 500°C (region D), high temperature pyrolysis of carbon 

skeleton occurred.50 GO displayed a drastic weight loss (40% 

of its original weight) in region B caused by the decomposition 

of labile oxygen-containing functional groups such as epoxy 

and hydroxyl groups. There was a similar loss of weight for 

the RGO, but the change was not so big. This result indicates 

that most of the GO oxygen-containing functional groups were 

reduced during the hydrothermal process, thereby increasing 

the thermal stability of the RGO.61 For the nanocomposites 

in region B, the percentage of weight loss decreased with 

hydrothermal temperature. Specifically, the 120 RGO/TiO
2
, 

150 RGO/TiO
2
, and 180 RGO/TiO

2
 samples lost 14.1%, 7.9%, 

and 3.5% of their weight, respectively. This result indicates 

that the 180 RGO/TiO
2
 sample had the least amount of labile 

oxygen-containing functional groups attached to the surface. 

It also further indicates that a low hydrothermal temperature 
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(120°C) was unable to reduce the oxygenous groups of GO in 

the nanocomposites efficiently.

A plausible schematic formation of RGO/TiO
2
 is illustrated 

in Figure 6. GO was mixed with Ti4+ in the presence of TEA. 

This provided a platform for electrostatic interaction between 

the negatively-charged oxide functional groups of GO and the 

positively-charged Ti4+ (Figure 6B). Nucleation occurred at 

the sites, which resulted in the growth of TiO
2
 nanoparticles 

on the two-dimensional graphene nanosheets during the hydro-

thermal process (Figure 6C). The narrow size distribution of 

the TiO
2
 nanoparticles embedded on the graphene nanosheets 

may be due to the critical control of the TEA molecules. GO 

was reduced to graphene due to the simultaneous presence of 

Ti4+, TEA, and hydrothermal treatment.

Figure 7 displays the electrochemical performance of the 

samples examined by cyclic voltammetry with a scan rate of 

50 mV s−1. The background current behavior for bare GCE in 

potassium chloride supporting electrolyte with no mercury 

ions was almost flat and there were no  oxidizing and reducing 

reactions (Figure 7A). On the other hand, the results for the 

bare GCE using the potassium chloride electrolyte containing 

mercury(II) ions (Hg2+) in potassium chloride resulted in a dis-

tinctive oxidizing peak current observed between +0.1 V and 

+0.2 V (peak I; Figure 7B).The RGO-modified GCE in potas-

sium chloride supporting electrolyte added with Hg2+ had an 

additional reductive peak between −0.2 and +0.2 V (peak II; 

Figure 7C). The entire hydrothermally prepared RGO/TiO
2
-

modified GCE had improved electrochemical  performance, 

signifying an increase in sensitivity to the detection of Hg2+ 

(Figure 7D–F).The 150 RGO/TiO
2
-modified GCE exhibited 

additional oxidization reactions between +0.4 and +1.0 V 

(peak III) of all the samples. There were two distinct peaks. 

This oxidization reaction was in addition to the oxidative 

peak (peak I) seen in the RGO-modified GCE (Figure 7D). 

The sample also had a trough-like reductive peak (peak II), 

which shifted to a lower voltage by about 0.2 V, and there 

was a reductive shoulder between +0.2 and +0.8 V (peak IV). 

The 180 RGO/TiO
2
-modified GCE showed similar oxida-

tive (peaks I and III) and reductive peaks (peaks II and IV; 

Figure 7E). For the 120 RGO/TiO
2
-modified GCE, the two 

reductive peaks (peak II – which shifted by about 0.2 V to the 

left – and peak IV) were enhanced by approximately 40 µA 

( Figure 7F) when compared to the 180 RGO/TiO
2
-modified 

GCE. The peaks most likely arose through the stepwise 

reduction of Hg2+ + e−  Hg+ and Hg+ + e−  Hg0. The 

oxidative peak (peak II) that was so pronounced in the 150 

RGO/TiO
2
- (Figure 7D) and 180 RGO/TiO

2
-modified GCE 

(Figure 7E) was missing in the 120 RGO/TiO
2
-modified 
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Figure 7 Electrochemical analysis of (A) bare glassy carbon electrode in potassium chloride supporting electrolyte, (B) bare glassy carbon electrode, (C) reduced graphene 
oxide-modified glassy carbon electrode, and reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode at (D) 150°C, (E) 180°C, and 
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GCE. Among all the samples, the 120 RGO/TiO
2
-modified 

GCE possessed the best reducing reaction, which possibly 

makes it an efficient redox-recyclable material for the extrac-

tion of heavy element ions from wastewater.

Conclusion
TiO

2
 (with particle size of about 20 nm) decorated RGO with 

high uniformity and were successfully synthesized via a simple 

hydrothermal process using TEA as the coreducing agent and 

capping agent. This simplified method has great advantage over 

other published methods of producing graphene-decorated TiO
2
 

nanoparticles. The method allows control of the particle size 

distribution through alteration of the hydrothermal  temperature. 

This enables the properties of the nanocomposite to be tailored 

to a specific application, as demonstrated by the detection 

of mercury ions in the electrochemical cell where the redox 

peaks in the cyclic voltammetric depended on the hydro-

thermal reactor temperature. This synthesis method can be 

easily extended to the fabrication of other classes of RGO-

based nanocomposites. The red-shift phenomenon in the UV 

analysis demonstrates the applicability of nanocomposites in 

photovoltaic and photocatalytic applications. The RGO/TiO
2
 

nanocomposites demonstrated enhanced electrochemical per-

formance for the detection of Hg2+, suggesting the possibility 

of using them for detection of the heavy metal.
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