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Abstract: In the nervous system, synapses are special and pervasive structures between axonal
and dendritic terminals, which facilitate electrical and chemical communications among neurons.
Extensive studies have been conducted in mice and rats to explore the RNA pool at synapses and
investigate RNA transport, local protein synthesis, and synaptic plasticity. However, owing to the
experimental difficulties of studying human synaptic transcriptomes, the full pool of human synaptic
RNAs remains largely unclear. We developed a new machine learning method, called PredSynRNA,
to predict the synaptic localization of human RNAs. Training instances of dendritically localized
RNAs were compiled from previous rodent studies, overcoming the shortage of empirical instances
of human synaptic RNAs. Using RNA sequence and gene expression data as features, various models
with different learning algorithms were constructed and evaluated. Strikingly, the models using
the developmental brain gene expression features achieved superior performance for predicting
synaptically localized RNAs. We examined the relevant expression features learned by PredSynRNA
and used an independent test dataset to further validate the model performance. PredSynRNA
models were then applied to the prediction and prioritization of candidate RNAs localized to human
synapses, providing valuable targets for experimental investigations into neuronal mechanisms and
brain disorders.
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1. Introduction

How people memorize, learn, and process external information largely depends on
the sophisticated connections between neurons [1]. Unlike typical cells, neurons have
a highly polarized architecture, consisting of the soma with the nucleus, and extended
protrusions, including dendrites and an axon [2]. Within a complex neural network,
the region where two neurons contact is referred to as a synapse, which is essential for
neural communications [3]. Extensive studies have been conducted to understand mRNA
transport and localization to synapses. It is commonly acknowledged that many mRNAs
are packaged into granules after being transcribed in the nucleus and then transported to
synaptic regions for local translation. The mechanism of local translation is supposed to
facilitate fast responses to environmental changes and synaptic inputs [4,5]. Thus, mRNA
localization plays a key role in neuronal protein translation, allowing the local synthesis of
components required for synaptic plasticity during brain development [5–8]. Dysregulation
of synaptic mRNA localization and translation can affect cellular functions, leading to
neurological diseases such as Fragile X Syndrome and Spinal Muscular Atrophy [9,10].
Moreover, synaptically localized RNAs may be involved in liquid–liquid phase separation
to form membraneless neurite compartments with diverse functions [11].

With highly polarized morphology, neurons offer a great model for studying RNA
localization [8]. Subcellular fractionation techniques and electron microscopy were origi-
nally used to understand the structure of synaptic terminals and internal contents [12–14].
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Recently, microarrays [2,6,15] and next-generation sequencing technologies have been used
to profile dendritic transcriptomes in rats and mice [16–20]. However, it is very challenging
to accurately profile dendritic transcriptomes, with major difficulties in the clean separation
of dendrites from cell bodies and the complexity of dynamic neuropil events [18]. Notably,
previous studies have only identified a small number of dendritic RNAs in common [16–20],
and the full synaptic RNA pool remains largely unclear.

Previous studies suggest that neuronal mRNAs may carry regulatory elements that
affect mRNA localization, stability, and translation [19,20], whereas the lack of localization
signals could be the reason why some mRNAs are retained in the soma [21]. For instance,
the 3′ UTR of Ca2+/calmodulin-dependent protein kinase II (CaMKIIa) targets the mRNA
to dendrites for local translation [22]. The loss of localization signals in the 3′ UTR of
CaMKIIa mRNA altered its distribution in dendrites, resulting in reduced accumulation of
CaMKIIa in postsynaptic densities (PSD) and impairments of synaptic plasticity and spatial
memory [23]. The 5′ UTR of sensorin mRNA has also been implicated in synaptic mRNA
localization in Aplysia [7]. These findings suggest that sequence features may be used to
predict synaptic RNAs.

Since many neuronal proteins are involved in synaptic plasticity and higher-order
brain functions such as learning and memory [24], synaptic genes may also display char-
acteristic expression patterns during neuronal development and aging. Interestingly, the
analysis of human brain time-series transcriptome data reveals that synaptic genes are
particularly sensitive to the aging process [25]. Moreover, functional genomic studies
using developmental human brain transcriptome data have shown that schizophrenia and
autism spectrum disorders partially converged on neurodevelopmental modules involved
in transcriptional regulation and synaptic function [26,27]. Thus, gene expression data may
also contain relevant information for predicting synaptic RNAs.

With the growing size and complexity of genomic data, machine learning techniques
have been increasingly used to extract hidden knowledge regarding a specific biological
problem. One intriguing problem is RNA subcellular localization, which plays an impor-
tant role in modulating protein distributions and cellular functions of various classes of
RNAs transcribed from the genome [28]. To date, machine learning models have been
developed to predict the subcellular localization of RNAs, with some models intended for
mRNAs [29–32] and others for long non-coding RNAs (lncRNAs) [33–35]. RNATracker
used a deep neural network to predict the subcellular localization of mRNAs from one-
hot-encoded transcript sequences [31]. mRNALoc employed support vector machine
(SVM) models to predict mRNA subcellular localization based on pseudo-K-tuple nu-
cleotide composition (PseKNC) features [29]. Recently, DM3Loc was developed, which
applied the multi-head self-attention mechanism to deep learning architecture [32]. For
lncRNAs, predictors such as lncLocator [33], iLoc-lncRNA [34] and DeepLncRNA [35]
utilized sequence-based features. lncLocator and iLoc-lncRNA were constructed using
conventional machine learning algorithms, and DeepLncRNA was based on a deep neural
network. Many methods mentioned above enable multi-label prediction for multiple sub-
cellular regions such as the nucleus, cytoplasm, ribosome, exosome, and so on. However,
no model has yet been reported to our knowledge for accurate prediction of synaptically
localized RNAs.

In this study, we developed a new machine learning method named PredSynRNA to
predict human synaptically localized RNAs. We compiled a training dataset from previous
studies and used RNA sequence and developmental brain gene expression data as features
to construct various models with different learning algorithms. Interestingly, the Support
Vector Machine (SVM) model using the expression features achieved the best performance.
PredSynRNA was then employed to predict and prioritize candidate RNAs, including
1070 mRNAs and 330 lncRNAs, which might be localized to human synapses.
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2. Materials and Methods
2.1. Compilation of Training Data Instances

Considering the lack of training instances of human dendritic and somatic RNAs,
we first collected those from respective lists published in five rodent studies that utilized
RNA-sequencing techniques [16–20]. For each RNA instance, we identified the human
orthologue using Ensembl BioMart [36]. To improve the quality of the dataset, we examined
the overlaps across different studies and only selected the dendritic and somatic RNAs
identified by at least two independent studies as potential instances using jvenn [37]
(Figure S1). In addition, any instances that overlapped with potential training positives
were excluded from the list of somatic RNAs. The dataset before feature encoding contained
1423 dendritically localized RNAs (positive instances) and 1617 somatically localized
RNAs (negative instances). Most, if not all, of the dendritic RNAs were considered to
be synaptically localized as axonal RNAs were normally at very low abundance when
synaptic transcriptomes were profiled in the previous studies [16–20].

2.2. Sequence and Expression Features

It was suggested that certain sequence elements might be responsible for mRNA
localization to synaptic neuropil [7]. We thus extracted sequence features by calculating
the k-mer frequencies of concatenated 5′ and 3′ UTR of an mRNA transcript (normalized
by the sequence length). Protein-coding transcript sequences were downloaded from the
GENCODE GRCh38 release 33 [38], and the longest protein-coding sequence was retained.
Sequence features derived from different k-mer combinations (k = 1, 2, 3) were examined
for model construction (Figure S2).

The gene expression features for each RNA instance were extracted from the BrainSpan
Atlas of the Developing Human Brain [39]. The BrainSpan dataset contained the expression
profiles of over 52,000 genes in 524 brain tissue samples from 26 brain structures for a series
of developmental time points ranging from 8 weeks post-conception (pcw) to 40 years
of age. The gene expression levels were represented by Reads Per Kilobase of transcript
per Million mapped reads (RPKM). The RNA instances with RPKM > 1 in at least 1%
of brain samples were retained, resulting in a training dataset of 1271 positive instances
and 1513 negative instances. The expression features were processed by log2(RPKM + 1)
transformation. The expression and sequence features were also normalized using the
min–max method.

2.3. Feature Selection

The high dimensionality of sequence and expression features might lead to model
overfitting. Feature selection could be utilized to remove redundant and irrelevant fea-
tures [40]. It was also of interest to identify and examine the most important features
for predicting synaptically localized RNAs. During model training, the importance score
of each feature was computed using the Random Forest (RF) algorithm [41]. The mean
importance scores calculated from five repetitions of 10-fold cross-validations were used to
rank and select the most relevant features. The importance scores of expression features
were also examined to reveal the significant time points during brain development.

2.4. Model Training

Various machine learning algorithms, including logistic regression (LR), support vec-
tor machine (SVM), random forest (RF), XGBoost (XGB), and artificial neural network
(ANN), were tested for model construction. LR is a statistical method that finds the best
fitting model to describe the relationship between the logit of outcome and a set of in-
dependent variables. SVM is a learning algorithm that aims to distinguish two classes
by a hyperplane with the maximal margin [42]. RF is an ensemble learning method that
constructs a multitude of decision trees for a classification task [41]. XGBoost is an imple-
mentation of gradient-boosted decision trees and has fast execution speed and good model
performance [43]. In this study, the LR, SVM, and RF models were implemented using
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Scikit-learn 0.21.2 [44] and XGB with xgboost 0.90. To find the optimal set of parameters for
each model, the grid search method was used. The class weights within the parameters
were set for the above models to address the imbalance of the training dataset. For the ANN
model, different numbers of hidden layers were tested, and the ANN with one hidden
layer was chosen in this study (Tables S1 and S2). The optimization of hyperparameters,
including hidden units, drop-out rate, and learning rate, was performed using Hyperopt
0.2.4 [45]. The ANN model was implemented with Keras 2.2.4 in Python. Tuned parameters
for three final, most representative models used for future analysis are provided in Table S3.

2.5. Model Testing

During model construction, PredSynRNA performance was evaluated by five repeti-
tions of 10-fold cross-validations, in which the training dataset was randomly divided into
10 equal-sized subsets: one holdout subset for testing and the remaining nine subsets for
training [46]. For the ANN model, an additional step of bootstrap resampling was used to
obtain a balanced dataset before 10-fold cross-validations.

Furthermore, an independent test dataset was collected from a previous study on the
somato-dendritic localization of mRNAs in mouse hippocampus [47] and used to validate
the generalization ability of PredSynRNA. Any instances in the training dataset were ex-
cluded from the independent test dataset. Sequence and expression features were extracted
in the same way as for the training instances. This test dataset contained 613 positive
instances and 925 negative instances.

2.6. Performance Metrics

The performance metrics used in this study are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Sensitivity =
TP

TP + FN
, (2)

Specificity =
TN

TN + FP
, (3)

F1 = 2× Precision × Recall
Precision + Recall

, (4)

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
. (5)

True positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
are tabulated and used to calculate the performance metrics shown above. The Matthews
correlation coefficient (MCC) measures the correlation between the predicted and actual
classifications on a scale of 0≤|MCC|≤ 1 [48]. The receiver operating characteristic (ROC)
curve plots the true positive rate (sensitivity) versus the false positive rate (1–specificity)
for varying output thresholds of the model. The ROC curve and the area under the curve
(ROC-AUC) are considered the most robust measures of model performance [49].

2.7. Prediction and Analysis of Candidate RNAs Localized to Human Synapses

After model validation, PredSynRNA was applied to the prediction of synaptically
localized candidate RNAs from a list of brain-expressed RNAs, including 7046 mRNAs
and 3331 lncRNAs. The top three PredSynRNA models with the best performance in cross-
validations and on the independent test dataset were used to predict the probability of a
given RNA transcript being synaptically localized, with the default probability threshold
of 0.5. The positive predictions shared by all the three models were referred to as the
high-confidence list of candidate RNAs.

To understand the biological processes or cellular functions in which the high-confidence
candidates might be involved, we performed functional annotation clustering analysis using
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DAVID Bioinformatics Resources 6.8 with the list of brain-expressed genes as the back-
ground [50]. High classification stringency was used, and the EASE score referring to the
one-tail Fisher exact probability value for the enrichment analysis was set to 0.01.

The high-confidence list of candidate RNAs was also compared with the SynGO
gene list, which included 1112 synaptic genes based on gene ontology (GO) annotations
and published, expert-curated evidence [51]. GSEAPreranked analysis (GSEA 4.1.0) with
default parameters [52] was performed to examine the enrichment of SynGO genes in the
ranked list of the brain expressed RNAs according to the probability scores predicted by
PredSynRNA.

3. Results

The machine learning task in this study can be defined as a binary classification
problem, and our method, PredSynRNA, is illustrated in Figure 1. Dendritically and
somatically localized RNAs were compiled from previous rodent studies [16–20] (Figure S1)
due to the lack of published RNA instances in human neurons. Human orthologues were
identified, and the RNAs shared in at least two studies were selected and taken as training
instances. For feature encoding, the k-mer frequencies of RNA transcript sequences and the
developmental brain gene expression profiles from the BrainSpan Atlas of the Developing
Human Brain [39] were used to construct models with different learning algorithms. A
Random Forest-based method was used for feature selection, and model performance was
evaluated by 10-fold cross-validations and an independent test dataset. The best models
were then utilized to predict and prioritize synaptically localized candidate RNAs.
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Figure 1. Schematic diagram of PredSynRNA for prediction of synaptically localized RNAs. First,
dendritically and somatically localized RNAs were compiled from previous rodent studies. Then,
human orthologues were identified and taken as the training instances. Second, features were
extracted from RNA sequence and developmental brain gene expression data. Third, feature selection
was conducted using a Random Forest-based method. Forth, various machine learning models were
constructed and evaluated. Lastly, the best models were applied to the prediction and prioritization
of candidate RNAs that may be localized to human synapses.

3.1. Prediction of Synaptically Localized RNAs Using Sequence and Expression Features

We first constructed and evaluated various machine learning models using sequence
features in terms of k-mer frequencies. Figure 2 show the ROC and precision-recall (PR)
curves of the SVM, ANN, and RF models using a combination of 1-mer, 2-mer, and 3-mer
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frequencies. Since the training dataset was imbalanced, PR curves were used to show the
model’s ability to predict positive instances [53]. A full comparison of the models using
different sequence features is shown in Figure S2. The SVM model appeared to slightly
outperform the ANN and RF models and achieved the ROC-AUC of 0.644 and PR-AUC
of 0.582 (Figure 2 and Table 1). Although the different machine learning models using
sequence features did not show good performance, they achieved higher ROC-AUC values
than random guesses (ROC-AUC = 0.5), suggesting that the 5′ and 3′ UTRs might contain
some relevant information for predicting synaptically localized RNAs.
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Figure 2. ROC (A) and PR (B) curves of different machine learning models using sequence and
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the area under the curve (AUC) for each model is given in the legend.

Table 1. Performance metrics of models using different features and learning algorithms. Support
vector machine (SVM), artificial neural network (ANN), and random forest (RF) models achieved
better performance using the expression features than the sequence features based on five repetitions
of 10-fold cross-validations.

Features Model ROC-AUC Accuracy Sensitivity Specificity F1 MCC

Sequence_full
SVM 0.644 0.615 0.529 0.688 0.556 0.220
ANN 0.639 0.603 0.549 0.649 0.554 0.201

RF 0.624 0.597 0.523 0.660 0.542 0.184

Expression_full
SVM 0.771 0.724 0.636 0.798 0.676 0.441
ANN 0.764 0.698 0.649 0.739 0.659 0.398

RF 0.739 0.693 0.572 0.794 0.628 0.378
Expression_Sequence_full SVM 0.768 0.722 0.639 0.791 0.676 0.436

Next, we built different machine learning models using developmental brain gene expres-
sion features. Based on the ROC and PR curves from 10-fold cross-validations, the expression-
based models clearly outperformed the sequence-based models (Figures 2 and S3). Particularly,
the expression-based SVM model achieved the ROC-AUC of 0.771 and PR-AUC of 0.758, con-
siderably higher than those of the sequence-based SVM model (Figure 2, Tables 1 and S4).
The results suggest that developmental brain gene expression profiles contain highly relevant
information for predicting synaptically localized RNAs. However, model performance was not
further improved by combining the expression features with the inherently different sequence
features (Table S4).
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3.2. Relevant Expression Features Learned by PredSynRNA

Feature selection was performed in this study to potentially improve model perfor-
mance and to identify the most relevant features for predicting synaptically localized RNAs.
We first computed the importance score of each feature using the RF-based method and
then utilized the top-ranked expression or sequence features to build various machine
learning models. However, when compared with using the full feature sets, feature selec-
tion did not significantly improve the performance of the expression or sequence-based
models (Figures S4 and S5; Tables S4 and S5). For the expression features, as the dimen-
sionality increased to 192 features, the models with different learning algorithms appeared
to reach close to the maximum performance (Figure S4), suggesting that the top-ranked
expression features captured most of the relevant information for predicting synaptically
localized RNAs.

We examined the expression features, which included a series of developmental time
points and brain tissue types of the samples in the BrainSpan dataset. As shown in Figure 3,
the top three developmental time points based on the importance scores of the expression
features included 2 years, 35 post-conception weeks, and 8 years, whereas the top three
brain tissue types were found to be the orbital frontal cortex (OFC), hippocampus (HIP), and
primary somatosensory cortex (S1C). The OFC is a prefrontal cortex region, which is critical
in many aspects of brain function, including cognitive abilities, decision making, emotional
processing, semantic memory, and language [54,55]. The HIP plays a key role in memory,
learning, and spatial orientation [56]. The S1C is part of the somatosensory system, which
is known for processing various somatosensory inputs from the body and has recently
been shown to be involved in emotional regulation [57]. Taken together, our findings
from feature selection are generally consistent with the knowledge that an explosion of
synaptogenesis occurs in cortical regions during early brain development [58,59], further
suggesting that the PredSynRNA models have learned relevant expression features for
predicting synaptically localized RNAs.
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The labels on the x-axis and y-axis have been arranged in descending orders based on the importance
ranks of developmental time points and brain tissue types, respectively (pcw: post conception week;
mos: months; yrs: years).
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3.3. Evaluation of Model Performance on an Independent Test Dataset

To further evaluate the predictive performance of the models, we compiled an inde-
pendent test dataset with 613 positive instances and 925 negative instances, which were not
included in the training dataset. Notably, almost all the tested models achieved comparable
performance on the independent test dataset as in cross-validations (Figure 4 and Table S5).
The performance metrics of the SVM, ANN, and RF models using the full expression
features are depicted in Figure 4. Interestingly, when compared with model performance in
cross-validations, the SVM and RF models achieved slightly higher ROC-AUC, accuracy,
and MCC on the independent test dataset, whereas the ANN model showed slightly re-
duced performance, probably due to the fact that ANN could be easily overfitted on a small
training dataset and the model generalization ability might be affected. In addition, feature
selection did not improve model performance on the independent test dataset (Table S5).
Overall, the results confirmed the predictive capability of the PredSynRNA models using
developmental brain gene expression data.
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3.4. Prediction and Prioritization of Candidate Human RNAs Localized to Synapses

To identify synaptically localized candidate RNAs, we applied the SVM, ANN, and RF
models trained with the full expression features to classify a list of 10,377 brain-expressed
RNAs, including 7046 mRNAs and 3331 lncRNAs. Overall, 2747, 1348, and 2777 mRNAs
were predicted to be synaptically localized mRNAs by the SVM, ANN, and RF models,
respectively (Figure S6 and Table S6). Particularly, 1070 candidate mRNAs were shared
by the three lists of predictions. Moreover, 330 lncRNAs were commonly predicted by
the three PredSynRNA models (Figure S7 and Table S7). These common predictions were
regarded as high-confidence candidate RNAs that may be localized to human synapses.

To characterize the high-confidence candidates, we performed DAVID functional
annotation clustering analysis [50]. As shown in Figure 5, six functional terms were
found to be significantly enriched in the candidate list, including extracellular exosome,
mitochondrial part, and ribosomal subunit as the top three gene ontology (GO) terms.
Exosomes, a class of extracellular vesicles, have been shown to play key roles in the
central nervous system, synaptic plasticity, and inter-neuronal communication [60,61].
At the synapse, membrane-bound vesicles store neurotransmitters, enabling the transfer
of information between neuron cells [62]. In addition, neurons highly rely on aerobic
oxidative phosphorylation together with the principal energy producers, mitochondria, to
support synapse dynamics. The dysfunctions of these crucial factors may contribute to the
pathology associated with neurodegenerative disorders such as Alzheimer’s disease [63,64].
Moreover, differential expression analysis in a previous study [18] suggested that the
mitochondrial membrane, ribosomal subunit, and electron transport chain are among the
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top GO terms enriched in dendrites. Therefore, the results demonstrated a significant
association between the candidate RNAs and synapse-related functions.
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functional annotation clustering analysis was performed for the list of 1400 high-confidence can-
didate RNAs predicted by PredSynRNA to be synaptically localized. GO terms (GOTERM_BP_4,
GOTERM_CC_4, and GOTERM_MF_4) were used for the functional analysis. For each annota-
tion cluster, the most enriched GO term, its gene count, and statistical significance are shown in
the diagram.

To further examine the functional association with synapses, we compared the candi-
date RNAs with a set of 1112 human synaptic genes curated by the SynGO database [51].
The list of 10,377 brain-expressed RNAs was ranked by the mean probability scores pre-
dicted by the SVM, ANN, and RF models of PredSynRNA, and the enrichment of synaptic
genes in the ranked list was analyzed using the GSEAPreranked algorithm [52]. As shown
in Figure 6, the synaptic genes from SynGO are significantly enriched near the top of the
ranked list, where the candidate RNAs are located. The enrichment score (ES) reaches the
maximum (0.2373) near the top of the ranked list, and the nominal p-value is estimated to
be zero (actual p-value < 0.001). A list of 82 SynGO synaptic genes showing core enrichment
is provided in Table S8. Taken together, our results suggest that the PredSynRNA models
can be used to prioritize the candidate RNAs for investigating their functional roles in
human synapses.
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Figure 6. Significant enrichment of synaptic genes in the ranked list of candidate RNAs. The list
of 10,377 brain-expressed RNAs was ranked by the mean probability scores predicted by the SVM,
ANN, and RF models using the full set of expression features. The GSEAPreranked analysis [51] was
then performed for a set of 1112 human synaptic genes obtained from the SynGO database [50]. The
enrichment score (ES) reaches the maximum (0.2373) near the top of the ranked list, and the nominal
p-value is estimated to be zero by an empirical phenotype-based permutation test procedure (actual
p-value < 0.001 with 1000 permutations).

4. Discussion

RNA localization to synapses is not only regarded as one of the driving forces for
developmental changes in the brain but is also implicated in neurological diseases. While
machine learning methods have been developed for predicting RNA localization to multi-
ple cellular compartments [29–35], such predictors are still lacking for synaptically localized
RNAs. In this study, we developed a new machine learning method, PredSynRNA, to
predict the synaptic localization of human RNAs. PredSynRNA models utilized develop-
mental brain gene expression data as features and achieved relatively high performance in
cross-validations and on an independent test dataset. Our results also suggest that the mod-
els can capture relevant expression features for predicting and prioritizing candidate RNAs
localized to human synapses. However, the performance of PredSynRNA might be limited
due to the lack of experimentally verified human RNA instances for model training. To
construct the models, we used human orthologues of rodent RNAs identified by previous
studies, which had only a small number of dendritic RNAs in common. Thus, PredSynRNA
model performance may be further improved by compiling a more comprehensive and
high-quality training dataset for this difficult machine learning task in the future.

Despite the limited and noisy training data, PredSynRNA models using the develop-
mental brain gene expression features achieved relatively high performance for predicting
synaptically localized RNAs. However, the addition of RNA sequence features in terms of
k-mer frequencies did not further improve model performance. This is rather surprising
as many previous studies attempted to identify potential localization elements present in
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the untranslated regions, mostly the 3′ UTRs of mRNA transcripts in neurites. Since these
elements can be heterogeneous to a great extent in size and structure, it may be hard to
predict and deduce the consensus sequence or structural motifs [65]. Moreover, mRNA
localization in neurites can also be affected by alternative splicing and polyadenylation.
Previous studies have also shown that neuronal mRNAs are prone to have diverse 3′ UTR
isoforms, which differ in subcellular locations, including soma and neurites [19,20,66,67].
Therefore, simple sequence features such as k-mer frequencies may not be able to delineate
the complex patterns of RNA localization to synapses.

Nevertheless, the results do not necessarily mean that RNA transcript sequences do
not contain relevant information for predicting synaptically localized RNAs. In future
studies, state-of-the-art deep learning techniques may be utilized to uncover the sequence
patterns that determine RNA localization to synapses. It is noteworthy that deep learning
techniques have been used to identify sequence motifs for mRNA subcellular localization
to the nucleus, cytosol, endoplasmic reticulum, and exosome [31,32]. RNATracker [31]
implemented a convolutional neural network (CNN) coupled with bi-directional long short-
term memory (LSTM) layers to learn and extract sequence information for predicting mRNA
subcellular localization, and the weights learned by the first CNN layer were converted
into position–weight matrices and matched with known motifs of RNA-binding proteins
to reveal the localization zip codes. DM3Loc [32] employed multiscale CNN filters and
multi-head self-attention layers to infer the localization zip codes. However, the lack of high-
quality localization data and the complexity of alternative splice variants for synaptically
localized RNAs make it difficult to apply sophisticated deep learning techniques.

Since the robust performance of PredSynRNA was demonstrated by cross-validations
and using an independent test dataset, the models were then utilized to predict and pri-
oritize candidate RNAs, mostly mRNAs, which might be localized to human synapses.
Interestingly, the top five candidate mRNAs include RPL8, MZT2B, RPS20, TMEM219,
and HBB (Table S6). RPL8 has been identified as one of the candidate proteins that are
significantly associated with the prognosis of the most aggressive brain cancer-glioblastoma
and temozolomide treatment [68]. MZT2B has been reported to be one of the potential
hippocampus genes associated with Alzheimer’s disease [69]. RPS20 has been suggested
as a candidate gene associated with medulloblastoma, the most common malignant brain
tumor in children [70]. The TMEM219 gene is located in a multigenetic copy number
variation region (16p11.2) associated with several brain disorders, including schizophrenia,
seizure, and Alzheimer’s disease [71–73]. HBB has been shown to be in mitochondrial
fractions of mammalian neurons and involved in neuronal metabolism to provide neuro-
protection in multiple sclerosis [74–77]. The PredSynRNA models have also been used to
predict a list of synaptically localized candidate lncRNAs, including SNHG8 and MALAT1
(Table S7). As the full set of human synaptic RNAs remains largely unclear, we anticipate
that the high-confidence candidate RNAs predicted by PredSynRNA can provide valuable
targets for further experimental studies. However, it should be noted that the human brain
is the most complex organ, which comprises different cell types of great diversity [78].
Although PredSynRNA has been trained using the developmental brain gene expression
data with most samples derived from cortex regions that tend to have high neuronal en-
richment, the predicted candidate RNAs may also be expressed in other non-neuronal
cell types such as glial cells. With the accumulation of single-cell RNA-seq data, which
provide fine resolution in examining cellular compositions and dynamics during brain
development [78,79], PredSynRNA may be further refined by incorporating comprehensive,
high-quality cell-type specific data in the future.

5. Conclusions

In this study, we developed a new machine learning method, PredSynRNA, to predict
the synaptic localization of human RNAs. The PredSynRNA model utilized developmental
brain gene expression data as features to achieve relatively high performance during
cross-validations and on an independent test dataset. Our results also suggest that the
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model is capable of capturing relevant expression features and can be used to predict and
prioritize candidate RNAs localized to human synapses. In the future, PredSynRNA model
performance may be further improved by compiling and curating a more comprehensive
and high-quality training dataset for this difficult machine learning task.
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