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ABSTRACT The genome of a Serratia marcescens strain (C7) that was found in the
pitcher fluids of a Sarracenia rosea pitcher plant was sequenced using the Illumina
platform. A 5,543,750-bp genome assembly was obtained. A total of 6,278 coding
sequences are predicted from this assembly.

Serratia marcescens is a species of facultatively anaerobic bacteria that stains as
Gram-negative rods (1). The genus Serratia is in the family Enterobacteriaceae (1). S.

marcescens strains were previously isolated from soil (2) and plant tissue (3). Some
strains can promote enhanced plant growth and confer abiotic and/or biotic stress
tolerance (3–5). S. marcescens has also been isolated from humans (6). Some S.
marcescens strains cause various diseases, such as meningitis (7), urinary tract infec-
tions, and wound infections (8). S. marcescens has also been found in infections of other
animals, including some insects (9).

The strain investigated in this study (C7) was isolated from the pitcher fluids of
Sarracenia rosea pitcher plants from Splinter Hill Bog, AL (collected in March 2012). The
strain was isolated from pitcher fluids by plating on medium used for the culture of
Pyrococcus furiosus (10); single colonies were serially streaked on the same medium
three times, and then an individual colony was picked into nutrient broth (11) for
growth and eventual storage at – 80°C in 25% glycerol. DNA was extracted using the
Quick-DNA fungal/bacterial miniprep kit (product number D6005; Zymo Research). A
paired-end library was prepared using the Nextera XT DNA library preparation kit v2
(product number FC-131-1002; Illumina), with an average insert size of �400 bp, for
Illumina MiSeq sequencing. Of 17,917,430 Illumina raw reads, we retained 5,643,558
reads after quality filtering with Trimmomatic v0.36 (12). Then, FastQC v0.11.4 was
employed to check the quality of the trimmed reads (13). SOAPdenovo2 r240 (param-
eter K, 83) was used to assemble the reads into contigs (14). Contigs with lengths of
�400 bp were discarded. In total, 1,306 contigs were selected to be ordered in Mauve
(15), using Serratia marcescens strain FDAARGOS_65 (GenBank accession number
NZ_CP026050) as the reference genome. The draft genome was annotated using the
online RAST server (16). Default parameters were used for all software tools, unless
otherwise noted.

The final genome assembly was 5,543,750 bp, with a GC content of 58.1%. The
genome coverage was �300�, the N50 was 22,377 bp, and the L50 was 80. There were
6,278 coding sequences predicted in total, consisting of 6,189 protein-coding se-
quences and 89 RNA genes. Only 34.2% of the protein-coding sequences (2,122 genes)
for this genome could be grouped into the functional subsystems of the RAST SEED
server (17). The subsystem category distribution is shown in Fig. 1.

CGE ResFinder (18) was used to predict antibiotic resistance genes. The genome
assembly was predicted to contain the beta-lactam resistance gene blaACT-6 and the
aminoglycoside resistance gene aac(6=)-Ic. CGE PathogenFinder (19) predicted that the
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strain had a 77.2% probability of being a human pathogen. The average nucleotide
identities (20) determined by comparison with the two most closely related bacterial
strains (identified with BLASTn) in the NCBI database, Serratia marcescens strain AS1
(GenBank accession number CP010584) and Serratia marcescens strain UMH5 (GenBank
accession number CP018917), were both �94.2%; the average amino acid identities
were 96.1% and 96.0%, respectively. When PATRIC (21, 22) was used for comparison
with these two other S. marcescens strains (both from clinical samples), the pitcher S.
marcescens strain was determined to have a unique fluorobenzoate degradation path-
way and an increase in the number of genes involved in sulfur metabolism. This
comparison also demonstrated that the pitcher strain lacked carbamate kinase (EC
2.7.2.2) but had two more glutamate ammonia ligase (EC 6.3.1.2) and two more
glutamate synthase (NADPH) (EC 1.4.1.13) genes involved in nitrogen metabolism.

Data availability. This whole-genome shotgun project has been deposited in
GenBank under accession number NZ_QPFX00000000. The raw read SRA accession
number is SRX6867789. The version described in this paper is the first version. The
BioProject accession number is PRJNA481376. The BioSample accession number is
SAMN09666492.
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