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To date, CNS disease and neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied
compared to end-organ failure and peripheral pathology. In this review, we focus on a specific mouse model of lupus and the
ways in which this model reflects some of the most common manifestations and potential mechanisms of human NP-SLE. The
mouse MRL lymphoproliferation strain (a.k.a. MRL/lpr) spontaneously develops the hallmark serological markers and peripheral
pathologies typifying lupus in addition to displaying the cognitive and affective dysfunction characteristic of NP-SLE, which may
be among the earliest symptoms of lupus. We suggest that although NP-SLE may share common mechanisms with peripheral organ
pathology in lupus, especially in the latter stages of the disease, the immunologically privileged nature of the CNS indicates that
early manifestations of particularly mood disorders maybe derived from some unique mechanisms. These include altered cytokine
profiles that can activate astrocytes, microglia, and alter neuronal function before dysregulation of the blood-brain barrier and
development of clinical autoantibody titres.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune
disease that is typified by multiple abnormalities of the
immune system, and which results in widespread pathology
of multiple organs, including skin, kidney, heart, lungs,
and joints. In addition to peripheral organ dysfunction in
SLE, there is a high incidence of neuropsychiatric symptoms
especially headaches, cognitive dysfunction, and psychi-
atric disorders [1], with roughly 40–70% of SLE patients
demonstrating affective disorders [2]. Brain pathology, loss
of integrity of the blood-brain barrier and autoantibodies
are thought to play a role in neuropsychiatric systemic
lupus erythematosus (NP-SLE), although some patients with
behavioral symptoms have histologically normal brain tissue
and no identifiable markers in serum or CSF [3–11].

Neuropsychiatric symptoms, particularly affective disor-
ders, may be among some of the earliest manifestations of
SLE [12–14]. Approximately 40% of the NP-SLE symptoms

develop before the onset of SLE or at the time of diagnosis
and about 60% within the first year of diagnosis [13,
15, 16], indicating that neuropsychiatric symptoms are
reliable indicators of disease activity and are often evident
even before gross peripheral organ pathology occurs (in
particular kidney disease). Symptoms of NP-SLE may also
be independent of active disease in other organs [17–19].
This was found to be the case also in the animal model
of lupus which is the subject of this paper, the MRL/lpr
mouse, where depressive-like behavior is evident in young
animals before significant levels of autoantibody titers and
nephritis are evident [14, 20]. There are obvious limits
to the search for mechanisms of CNS disease in human
patients, and furthermore the diagnosis is often made
after lupus is in late stages of progression. Thus, murine
models can offer many advantages to elucidate the early
mechanisms of neuropsychiatric manifestations of NP-SLE
and help to distinguish between CNS-specific mechanisms
and nonspecific illness. In this paper we focus on a specific

mailto:maria.gulinello@einstein.yu.edu


2 Journal of Biomedicine and Biotechnology

murine model of lupus, the MRL/lpr strain, and the ways
in which this model reflects some of the most common
manifestations of human NP-SLE. In addition, we discuss
experimental data pointing to viable pathogenic mechanisms
that underlie CNS involvement in SLE. Excellent reviews
about other aspects of this and other murine models of lupus
can be found elsewhere [3, 11, 21–34].

1.1. Murine Models of NP-SLE. To best represent human
disease and explore relevant translational aspects of patho-
genesis and novel treatment approaches, it is crucial to
identify the most appropriate animal model from among the
several available mouse strains which spontaneously develop
lupus-like disease. Although there are induced models of
SLE in nonautoimmune mouse strains, organ involvement
as a rule is less severe than that observed in genetically
susceptible animals [35, 36]. Therefore, spontaneous lupus
models are often preferred for modeling of lupus-associated
neuropsychiatric or other target organ disease. Murine
models that spontaneously develop hallmark diagnostic signs
of SLE include NZB × NZW F1, NZM2410, BXSB, and
MRL/lpr mouse strains. All of these strains (to a varying
degree) develop lymphoid hyperplasia, B cell hyperactivity,
autoantibodies, circulating immune complexes, complement
consumption, and glomerulonephritis [21]. These strains
differ from human SLE in that they display a high pene-
trance and relatively uniform disease expression over time.
However, the disease course in murine lupus models (in
the absence of extraneous intervention) is progressive, in
contrast to the fluctuating course of flares and remissions
typical in human SLE [26, 27, 37]. Although many of the
spontaneous models of SLE develop behavioral abnormali-
ties at some point in the disease [27], the MRL mouse model
has some advantages in the investigation of specific CNS
dysfunction and NP-SLE.

First, NZB- and BXSB-derived strains of mice have
a high incidence of inherited brain anomalies [38] which
can confound the assessment of autoimmunity-induced
brain damage and the links between lupus-like disease
and behavioral changes. Thus the MRL/lpr model permits
the examination of interrelationships between behavioral
outcomes and their underlying mechanisms without the
potential confound of pre-existing CNS abnormalities [38–
40]. As human SLE is overwhelmingly more common in
females (about a 9 : 1 female to male ratio), mouse models
that reflect this sex bias, such as MRL/lpr [14], are also likely
to be useful in elucidating the relationship of hormones,
negative outcomes, and potential sex-differences in efficacy
of therapeutic agents in autoimmune disease. MRL/lpr mice
[41] also express cardiolipin autoantibodies [42], one of
a class of antiphospholipid autoantibodies thought to be
important in the development of behavioral outcomes and
CNS damage [43–45]. Although the molecular defect in the
Fas gene underlying abnormal B cell regulation in MRL/lpr
mice is not believed to be a cause for human SLE [46, 47],
it is clear that the B cell dysregulation that characterizes this
murine model is also a critical pathological aspect of human
SLE [48, 49]. Moreover, the early onset, rapid progression,

and other similarities to the human disease state in MRL/lpr
mice are also useful features of this model.

The MRL lymphoproliferation strain (lpr) MRL/Tnfrsf6
lpr/lpr (a.k.a. MRL/lpr) differs from the congenic (con-
trol) MRL/+ strain by a defect in membrane apoptotic-
signaling Fas protein, which is due to a retrotransposon
in the Fas gene [50, 51]. In addition to the typical signs
of peripheral SLE, including autoantibodies, skin disease,
arthritis, lymphadenopathy, and nephritis, MRL/lpr mice
develop a constellation of behavioral outcomes referred to as
“autoimmunity-associated behavioral syndrome” [24], par-
ticularly in the behavioral domains of emotional reactivity,
motivated behavior, and cognitive function [14, 20, 22, 24,
33, 52–75].

1.2. NP-SLE. Nervous system involvement in lupus can
include seizures, stroke and other cerebrovascular events,
psychosis, cognitive dysfunction, and notably a very high
incidence of mood disorders, particularly anxiety and
depression [2, 18, 76–78]. Estimations of the prevalence
of NP-SLE in human lupus range from 15% to 75%
(or higher), reflecting variable diagnostic methodologies, a
lack of standard criteria, and the sensitivity of diagnostic
instruments to assess various behavioral outcomes [1, 2, 79].
Furthermore, many clinical studies of NP-SLE address only
the most severe CNS symptoms, such as seizure, psychosis,
and stroke, thus both the prevalence and importance of
other neuropsychiatric symptoms are often underestimated.
Generally, when specific and well-validated cognitive and
affective diagnostic batteries are administered, rather than
simple quality of life exams, studies consistently indicate that
a great majority of SLE patients have some CNS outcomes,
particularly mood disorders and cognitive dysfunction. NP-
SLE is a major determinant of morbidity and mortality and
is associated with increased disease severity, poorer prog-
nosis and earlier mortality [80–85]. Furthermore, NP-SLE
can necessitate potent and long-term immunosuppressive
treatment with attendant side effects, is a detriment to quality
of life in lupus patients, may be a major factor in employment
disability, and substantially increases the financial and emo-
tional costs of SLE [86, 87]. Comprehensive reviews of NP-
SLE manifestations, diagnosis, pathology, and treatment in
humans are outside the scope of the paper, and can be found
elsewhere [2, 4, 9, 88–94].

1.3. Neuropsychiatric Deficits in MRL/lpr Mice. As in hu-
mans, development of SLE in MRL/lpr mice is also
consistently accompanied by behavioral and neurological
abnormalities. The most robust and reproducible deficits
in MRL/lpr mice are emotional dysfunction, particularly in
assays of depressive-like behavior such as the forced swim test
and anhedonia. The forced swim test [95, 96] assesses behav-
ioral despair as the proportion of immobility when rodents
are placed in a tank of water [97, 98]. Normal rodents placed
in a narrow tank of water from which there is no escape
will exhibit vigorous swimming and struggling activity for
the duration of the test (typically 6–12 minutes) and only
rarely adopt a characteristic immobile posture (floating).
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In contrast, animals treated with either pharmacological
agents (such as hormones or via depletion of the amino
acid tryptophan necessary to make serotonin [99, 100]),
environmental manipulations (unpredictable chronic stress,
social isolation [101–103]), or genetic alterations (Flinders
strain, SERT knockouts [104, 105]) thought to be important
in the etiology of depression more rapidly become immobile
and maintain this immobility for a significantly great pro-
portion of time than control subjects [106]. This is thought
to represent “behavioral despair” or helplessness. The forced
swim test has been extensively validated, as immobility is
reduced by a wide range of clinically active antidepressant
drugs [98] and has predicted the antidepressant efficacy
of novel therapeutic agents [97]. MRL/lpr mice develop
depression-like behavior in the forced swim test as early as
5 weeks old, and this persists throughout the course of the
disease [14, 20, 58, 65].

In addition to feelings of helplessness and despair,
depressed patients report anhedonia—the inability to expe-
rience pleasure or reward from events that normally have
a positive hedonic value, such as eating, social interaction,
or sexual activity. In rodents, a commonly used measure of
anhedonia is the failure to prefer sweet solutions [107, 108].
MRL/lpr mice exhibit this lack of normal preference for
sweet solutions as early as 5-6 weeks old [59] and continue
to exhibit anhedonia during the active disease phase (4-
5 months old) [52, 53, 55, 109]. Further symptoms of
depression-like behavior include decreased activity, fatigue,
and apathy. In rodents, this can be assessed as decreased
voluntary activity and exploration in a novel environment,
such as an open field [110]. MRL/lpr mice exhibit reduced
exploration and activity during both the nocturnal and
diurnal phases [63, 65] by 8–11 weeks old [14, 33].

Despite the high prevalence of depression in lupus
patients and recent evidence that antidepressants may reduce
symptoms of depression, in part, by reducing inflammatory
responses [111, 112], there have been few studies investigat-
ing the efficacy of antidepressant therapies in human lupus
[113] or in murine models [58]. Immunosuppressive agents
typically used to treat SLE, such as cyclophosphamide and
steroids, do reduce measures of depression-like behavior in
MRL/lpr mice [33, 55, 59, 114] and also typically reduce
the other hallmarks of SLE, including autoantibody titers,
proteinuria (nephritis), and the levels of proinflammatory
cytokines [55, 59]. However, there have been few systematic
studies to determine if these are effective at reducing
measures of NP-SLE, especially cognitive and affective
dysfunction, in humans. Several studies indicate that high
levels of both affective and cognitive disorders are present
and persistent in NP-SLE patients undergoing such therapies
[115, 116], though these traditional immunosuppressive
agents do seem to be effective to prevent and/or treat
the more severe NP-SLE outcomes, such as seizure and
cerebrovascular events [13, 117, 118].

Anxiety disorders are also common in NP-SLE [1,
119] and are often comorbid with depressive disorders.
Several commonly used methods can be applied to assess
anxiety in rodents, and these include the elevated plus
maze and the acoustic startle test [120–127]. The elevated

plus maze (EPM) essentially assesses a preference between
a comparatively safe environment (the closed arms) and
a risky environment (elevated open spaces). The general
principle is that the more “anxious” the subjects are, the
less likely they will be to explore the open arms. The EPM
has been validated pharmacologically, with other tests of
anxiety-like behaviors, and physiologically [120–123]. With
respect to anxiety in murine models of lupus, there have been
conflicting reports. Some groups have reported increased
anxiety in MRL/lpr mice assessed in the elevated plus maze
[65], while others have reported that MRL/lpr mice have
normal or less anxiety than MRL/+ controls [14, 20, 70]. The
lack of anxiety phenotype is also supported by a generally
lower startle reactivity till 11 weeks old [70].

There is also no clear consensus with respect to cognitive
dysfunction in murine models of lupus. Mild spatial memory
deficits have been reported in the water maze, assessed as
the latency to find a new platform position after previous
training in the water maze [63] and as deficits in linear maze
acquisition as early as 8 weeks [68]. However, behavior in the
object placement and novel object recognition tasks [128–
130] is normal [14, 20].

The predominance and reproducibility of affective dys-
function in MRL/lpr mice are consistent with known pathol-
ogy and/or dysfunction in several neurotransmitter systems
and brain regions important in the regulation of mood
[131]. These include altered responses to the dopaminergic
drugs amphetamine and apomorphine [52, 109, 132] and
higher levels of apoptosis in the dopaminergic neurons in
the nucleus accumbens and substantia nigra (thought to be
involved in response to reward and anhedonia) in MRL/lpr
mice [52, 109]. There are also decreased levels of serotonin in
brain regions such as the hypothalamus, which regulate stress
and response to appetitive stimuli (among other things)
[133], and increased levels in the hippocampus [58]. This
observation is consistent with altered serotonin levels in
lupus patients similar to those that occur in depressed
patients [134–136], including those in which depression has
been induced by cytokine therapy [137–139]. Decreased
levels of noradrenaline evident in the prefrontal cortex of
MRL/lpr mice would also be consistent with depressive-like
behavior [58, 140–142].

1.4. Comparison of More and Less Affected Lines. There is
also a fascinating “accidental” experimental difference in
MRL/lpr mice. Over time, this strain of mice displayed a
lessening of symptoms such as lymphoproliferation, a greatly
delayed development of nephritis, and a longer lifespan.
The line was eventually reconstituted and again mani-
fests rapid development of the typical severe autoimmune
profile (http://jaxmice.jax.org/: re-coding of stock #485-
attenuated disease to stock #6825-reconstituted severe line).
This serendipitous circumstance permits the differentiation
between negative behavioral outcomes that may result
from gross peripheral pathology and specific CNS-mediated
behaviors [14, 143].

A major difference in the disease-attenuated line is the
long delay to develop renal disease and profoundly decreased
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proteinuria [14, 20]. The levels of autoantibodies tend to
increase earlier and to a greater extent in the reconstituted
severe line. Furthermore, the disease-attenuated line has
normal open field activity from 8 to 18 weeks [20] while in
the reconstituted severe line, the females have lower activity
levels from 5 weeks, although MRL/lpr males exhibit normal
open field activity until at least 18 weeks old [14, 20].
Cognitive functions assessed in novel object exploration and
placement tasks were normal in mice 5–18 weeks old in
both sexes and both lines [14, 20]. Motor coordination in
the balance beam and anxiety in the elevated plus maze
were also comparable in both lines from 5 to 18 weeks
old [14, 20]. Interestingly, there was no evidence of social
withdrawal assessed in the social preference test [144] in
either line from 5 to 18 weeks compared to age- and
sex-matched controls [14, 20]. However these results were
likely due to the very low social preference evident in both
MRL/+ female controls and female MRL/lpr mice [20]. It
is thus not clear if social withdrawal, a typical symptom of
affective disorders, is evident in the MRL/lpr females due
to SLE or if there is some influence of the background
strain that induces social withdrawal by some other route in
females.

Depression-like behavior is robustly evident in disease-
attenuated line in the forced swim test by 8 weeks [20] and
in reconstituted severe line by 5 weeks [14], although earlier
time points were not tested in the disease-attenuated line.
Given that there is no evidence of kidney pathology in the
disease-attenuated mice, these data confirm the robustness
of emotional dysfunction and provide further support
that such outcomes are likely a primary manifestation of
autoimmunity rather than arising from nonspecific illness
and peripheral organ pathology. Finally, the presence of
two MRL/lpr strains that share a mutated Fas yet which
differ in their autoantibody profile and neurobehavioral
manifestations [14, 143] is strong evidence that the CNS
manifestations in these mice are primarily immunologically
mediated, rather than resulting from possible effects of
abnormal Fas-mediated apoptosis on brain development or
glial function.

2. CNS Mechanisms and Pathology

Several different pathogenic mechanisms are postulated to
be involved in CNS manifestations of lupus. These include
B cell/autoantibody-mediated nervous system compromise,
immune complex deposition, vasculitis, microthrombosis
and vasculopathy, aberrant MHC Class II antigen expression
with T-cell mediated disease, autoactivated T-cells, and
cytokine-induced brain inflammation [145, 146]. However,
as there are multiple and quite disparate expressions of lupus
involving the nervous system, it is unlikely that a single
mechanism can account for every clinical manifestation of
NP-SLE. As the most common behavioral manifestations of
NP-SLE in both patients and murine models are affective and
cognitive disorders, especially in the early stages of SLE, we
focus on below mechanisms thought to be involved in the
etiology of affective and cognitive dysfunction.

2.1. Autoantibodies. MRL/lpr mice express a range of auto-
antibodies [147] including antinucleosome [148], antiribo-
somal [149] antiphospholipid, and phosphoprotein (such as
anticardiolipin [42] and antinucleolin) [150] autoantibodies
[151]. A critical role of autoantibodies in the etiology
of lupus-associated nephritis has been well documented.
Nephritogenic lupus autoantibodies initiate immune deposit
formation through direct or indirect interaction with glom-
erular antigens [152, 153] and result in kidney pathology that
can be prevented by administration of an immunoglobulin-
binding peptide [151, 154]. It has been suggested that
autoantibodies reacting with brain antigens may similarly
play a role in CNS pathology and negative behavioral
outcomes in NP-SLE [90, 155].

Evidence supporting the role of autoantibodies in the
pathogenesis of NP-SLE includes the increased titer of
autoantibodies in serum of diseased MRL/lpr mice [156–
158], which occurs earlier in females [156, 159], consistent
with the earlier onset of depressive-like behavior in MRL/lpr
females [14]. There is also evidence that some of these serum
autoantibodies react with brain antigens [160, 161] and
occur in serum of as early as 2-3 months old in MRL/lpr mice
[61] and in CSF as early as 4-5 months [162]. Nevertheless,
as further discussed below, the fact that behavioral deficits
are present before major rises in serum autoantibody titers
or detectable breaches in the blood-brain barrier indicates
that serum antibodies alone are clearly not the sole important
pathogenic factor in NP-SLE, at least early in the disease.

The relationship of serum and CSF levels of autoanti-
bodies to the disease process is complex, but it is likely that
intrathecal autoantibodies are likely to be more critically
related to NP-SLE than are serum autoantibody titers. Some
evidence does suggest a role for serum autoantibody levels in
NP-SLE, as mice with more severe peripheral and behavioral
manifestations of SLE also have more pronounced changes
in hippocampal and cortical morphology and increased
indices of cell death [163–166]. This can be prevented with
doses of cyclophosphamide that reduce serum autoantibody
titers [165], although CSF levels of autoantibodies were
not assessed. However, IgG levels in serum, but not CSF,
are positively correlated with spleen weight, suggesting that
central autoimmune processes are relatively independent
from systemic manifestations [167]. This is supported by
the fact that the patterns of autoantibody expression in
serum and CSF is not correlated over time in patients
with NP-SLE [168]. Finally, CSF from diseased MRL/lpr
mice which was treated to remove cytokines is cytotoxic to
cultured cells [71, 169] and was more cytotoxic than serum
derived from diseased animals [71], indicating a primary
intrathecal source of cytotoxic autoantibodies. Cytotoxicity
in culture was correlated with the extent of apoptosis in the
brains of aged LPR mice from which the CSF was derived,
thus toxic mediators produced by the CNS of diseased
MRL/lpr mice are likely to be more pathogenic than those in
serum. Therefore autoantibodies recognizing brain antigens
are plausible candidates as neurotoxic moieties. The site of
production of brain reactive antibodies in MRL-lpr mice is
however not conclusively identified, although this remains a
subject of intense research interest [162].
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Autoantibodies recognizing brain antigens, such as the
NMDA receptor subtype of the excitatory neurotransmitter,
glutamate, are also present in the serum and CSF of
patients with NP-SLE [168, 170]. When injected directly
into the brain of otherwise healthy mice, or when injected
peripherally to animals with a compromised blood-brain
barrier, these are neurotoxic and result in impaired cognition
and emotional behavior [171–173]. In addition, intrathe-
cal administration of antiribosomal P antibodies induces
depression-like behavior in the forced swim test [174]. There
have also been reports of positive correlations between
serum levels of brain reactive autoantibodies and cognitive
dysfunction and depression-like behavior [90, 155, 175]
although other studies have failed to find such relationships
[61, 161, 176] in patients with NP-SLE. It has thus been
suggested that CSF levels of brain-reactive autoantibodies
may be more important factors than serum titers to the
genesis of NP-SLE pathology and symptoms [90, 177]. These
data further support the notion that CNS-derived specific
factors and possibly intrathecal production of autoantibodies
can lead to brain pathology and corresponding negative
behavioral outcomes [52, 162, 169].

However, the blood-brain barrier restricts the influx of
circulating factors, including lymphocytes and antibodies,
from entering the brain and cerebral circulation. The
brain also does not have resident antibody-producing cells.
Generally, influx of antibodies or lymphocytes requires
disintegration of the blood-brain barrier as general or
localized lesions [27]. There is no convincing evidence to
date that this occurs as early as the earliest manifestations
of the negative behavioral outcomes. Therefore, while it is
probable that the loss of integrity of the blood-brain barrier
eventually occurs and obviously plays role in the resulting
CNS pathology [9, 178–181], possibly in part by permitting
the entry of autoantibodies and antibody-producing cells,
negative behavioral outcomes might rather be initiated by
different mechanisms than those that regulate pathology in
peripheral organs and later onset, more severe symptoms of
NP-SLE. Thus, autoantibodies are possibly not the sole or
primarily etiology of several of the symptoms of NP-SLE,
especially given the notable role of cytokines and chemokines
in affective and cognitive disorders [182–186].

Indeed, several lines of evidence suggest that autoan-
tibodies may not be sufficient to induce NP-SLE in the
MRL/lpr strain. First, increased secretion of chemokines and
cytokines (such as interferons) cause inflammatory pathol-
ogy in kidney [187, 188], even in the absence of autoantibody
deposits [189]. Furthermore, the high proinflammatory
cytokine levels in MRL/lpr mice are progressive and corre-
lated with increasing disease severity [190]. Conversely, anti-
inflammatory cytokine therapy is beneficial [191]. In fact,
numerous anti-inflammatory agents with a wide variety of
underlying mechanisms of action increase survival, reduce
peripheral organ pathology, and normalize T-cell pheno-
types in mice without altering the level of autoantibodies
[192–197]. However, neuropsychiatric symptoms have not
been systematically assessed in most of these studies so it
is not clear if there are also similar benefits to behavioral
outcomes. Further evidence suggesting that autoantibodies

are not sufficient to produce NP-SLE includes the fact that
DNA-binding antibodies derived from autoimmune MRL
mice fail to induce SLE-like changes when administered to
healthy animals [198]. Actually, all strains of mice thus far
tested show some brain reactive autoantibodies in serum
[199] even in the absence of abnormal behavior. Last,
MRL/lpr mice that express a mutant transgene that prevents
the secretion of circulating IgG still develop nephritis despite
the lack of soluble autoantibody production, indicating that
circulating autoantibodies are neither requisite nor sufficient
to induce pathology [200].

Thus, serum antibodies could be neurotoxic, but they
can only access brain tissue after a compromise of blood-
brain barrier integrity. Lymphocytes can also not access the
brain through an intact blood-brain barrier. Furthermore,
insults to the blood-brain barrier are likely to be regional
rather than global and may occur later in the disease than the
onset of robust emotional disturbances. So if brain-reactive
autoantibodies are not engendering such symptoms early in
NP-SLE, then what is?

2.2. Chemokines and Cytokines. Cytokines and chemokines
are likely to be critical early factors regulating the negative
behavioral outcomes, as they need not pass the blood-
brain barrier to regulate neural function [57, 183, 201].
Detection of increased secretion of peripheral inflammatory
cytokines can occur across an intact blood-brain barrier, in
part via the vagus nerve. This induces glia and microglia
to produce cytokines and other inflammatory and cytotoxic
agents (including prostaglandins and nitric oxide). These are
well documented to elicit the physiological and behavioral
symptoms of mood disorders, including lethargy, decreased
social interaction, immobility in the forced swim test, and
anhedonia [183, 184, 202–204]. Finally, cytokines have
been linked to depression in humans [205–213] and to
neuropsychiatric symptoms in NP-SLE patients [8, 12, 170,
185, 214, 215].

The role of cytokines in emotional disturbances in
MRL/lpr mice is supported by numerous studies. In very
large samples, the severity of behavioral deficits in MRL/lpr
mice does not relate strictly to autoantibody titers or
brain infiltration by T cells [57], which would indicate
a compromised blood-brain barrier. Cytokine, chemokine,
and prostaglandin dysregulation occurs as early as 1–4 weeks
in MRL/lpr mice, well before disease onset and upregulation
of autoantibodies [26, 30, 216–223].

Clinically, cytokine-mediated depression has certainly
resulted from cytokine administration when used as treat-
ments in cancer and viral infections [224–228]. Increased
levels of IL-6 and other cytokines have been found in the
cerebrospinal fluid and brains of patients with NP-SLE
[229]. In MRL/lpr mice, treatment with anti-inflammatory
cytokines reduces disease severity [189, 230–237] while
administration of proinflammatory cytokines accelerates
glomerulonephritis, vasculitis, and other disease manifesta-
tions [231, 233]. MRL/lpr mice lacking the IL-6 receptor
have delayed mortality and nephritis and a reduction of
autoantibody complex deposition [238], though these mice
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have not been behaviorally tested, so the affect on symptoms
of NP-SLE is not known.

The early dysregulation of cytokine production, espe-
cially TNF-alpha, IL-1, IL-2, and IL-6 [188, 223, 239,
240], corresponds to the onset of symptoms of depressive-
like behavior, such as anhedonia and behavioral despair
in MRL/lpr mice [59] and in other rodent strains [241,
242]. Anhedonia can be ameliorated by cyclophosphamide,
which abolishes the typically early and significant rise
of cytokines, particularly IL-6 [59]. Notably, anhedonia
and other behavioral indices of depressive-like behavior in
mice can be replicated by exogenous IL-6 [59] and are
prevented by knockout of the IL-6 receptor [203]. Other
proinflammatory immunomodulators, such as TNF-alpha,
also increase behavioral indices of depressive-like behavior
in mice [243] while blocking their secretion or receptors
decreases depressive-like behavior [242, 243]. High levels of
proinflammatory cytokines may also impair the function
of the blood-brain barrier [244, 245] and may thus be
permissive to the negative effects of autoantibodies and
lymphocytes. Finally, cytokine dysregulation is a shared char-
acteristic of murine lupus models with different underlying
genetic mechanisms [246].

Thus, while recent and substantial evidence indicates
a role for cytokines in the early mechanisms of NP-SLE,
several obstacles have prevented the further studies needed to
elucidate the specific underlying etiology. First, it is impor-
tant to recognize that local alterations in brain cytokine
levels that can be very relevant to NP-SLE pathogenesis
may be present early in the disease course, yet these
may not necessarily be reflected in abnormal serum levels.
Second, there are numerous cytokines, and it is a gross
oversimplification to assume that an individual cytokine is
pro- or anti-inflammatory. Rather, the precise proportions
of cytokine levels in serum and brain are likely to be more
important than absolute levels of a single cytokine. However,
comprehensive analysis of multiple cytokines is prohibitively
expensive. Furthermore, cytokines are necessary for normal
brain development and cognitive function [247–250], and
thus global knock-outs of specific cytokine receptors can
be problematic, as these can cause cognitive, reproductive,
and other deficits [248, 251] and also require large breeding
colonies to achieve appropriate genotypes. More precise
timing of cytokine receptor knockdown can be accomplished
by viral vectors, but these are also less than ideal in studies
of SLE as they are thought to induce immune responses
[252]. Other methods of receptor knockdown that are more
promising include siRNA.

3. Sex Differences

There is a much higher incidence of SLE in females than
in males. Moreover, females with autoimmune disease have
a higher risk of psychiatric disorders, particularly depression
[80]. Disease severity and rate of progression are also
accelerated in female MRL/lpr mice as compared to males
of this strain. Serum autoantibodies appear earlier in female
MRL/lpr mice [14, 156]. Female MRL/lpr mice also have

higher levels of IgG in the CSF compared to males [253].
Symptoms of depressive-like behavior are also worse in
female MRL/lpr mice [14].

One possible mediator of sex differences in the preva-
lence and outcomes of SLE is sex steroid hormones, such as
estrogens [254–263]. Administration of exogenous estrogens
can induce a lupus-like syndrome in otherwise healthy mice
[258] and exacerbate symptoms in MRL/lpr mice, in which
estrogens globally increase IgM levels [264] autoantibody
titers [156], glomerulonephritis, lymphoproliferation, mor-
tality [257], and cytokine levels [265]. Conversely, treatment
with the estrogen receptor antagonist, tamoxifen, reduces
proteinuria, serum tiers of anti-dsDNA autoantibodies and
increases survival [266]. Estrogens also differentially affect
B and T cell-mediated immune responses in MRL/lpr mice
[255, 256]. Immune complex-mediated glomerulonephritis
is significantly accelerated by estrogens whereas T cell-
mediated lesions, such as renal vasculitis and periarticular
inflammation, are reduced in MRL/lpr mice after estrogen
treatment [255, 256]. Estrogens can also modulate blood-
brain barrier permeability [267, 268] and increase cytokine
levels in patients with SLE [259, 262, 269, 270]. Moreover,
the myriad effects of estrogen on neuroprotection are being
increasingly recognized [271–273]. While space constraints
prevent going into further details about the role of sex
hormones in maintaining the integrity of the blood-brain
barrier and providing neuroprotection, the interested reader
can find additional details in some recent comprehensive
reviews [267, 271, 272, 274, 275]. These sex and hormone
differences may have clinical implications for treatment of
SLE, as cyclophosphamide prevents pulmonary disease in
male but not female MRL/lpr mice [276]. Similarly, sex
differences in the efficacy of treatment in autoimmune
disorders is not uncommon [277]. Furthermore, there are
notable sex differences in both humans and in animal
models in the susceptibility of depression, responses to
antidepressant treatments, and in underlying hormonal,
immune, and neurochemical alterations in affective disor-
ders [278, 279].

4. Conclusion

CNS disease in NP-SLE may share common mechanisms
with peripheral organ pathology in SLE, especially in the
latter stages of the disease, but the distinct nature of CNS-
mediated immunity and the blood-brain barrier indicates
that early manifestations of particularly mood disorders may
be derived from some unique mechanisms. Additionally,
agents critical to the pathology of NP-SLE, such as cytokines,
are regulated by sex and steroid hormones, which is consis-
tent with the predominance of SLE and mood disorders in
females. Altered cytokine profiles in serum and/or CNS can
result in the activation of astrocytes, microglia, and changes
in neuronal function and morphology and dysregulation of
the blood-brain barrier. Pathology of the blood-brain barrier
could lead to altered homeostasis and play a significant role
in impairment of CNS function seen in later onset of NP-SLE
as well many other immune disorders.
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Despite the importance of the MRL/lpr and other murine
models for elucidating the underlying mechanisms of NP-
SLE, there are yet many questions that have not been
conclusively answered. These include relating measures of
the earliest onset of negative behavioral outcomes with
intrathecal levels of cytokines and native brain-reactive
autoantibodies, systematic study of the efficacy of alternative
therapeutics (such as traditional and novel antidepressants),
and comprehensive analysis of the time course of blood-
brain barrier dysfunction.
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