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Abstract

Species can sometimes spread significant distances beyond their natural dispersal ability by anthropogenic means.
International shipping routes and the transport of shipping containers, in particular are a commonly recognised pathway for
the introduction of invasive species. Species can gain access to a shipping container and remain inside, hidden and
undetected for long periods. Currently, government biosecurity agencies charged with intercepting and removing these
invasive species when they arrive to a county’s border only assess the most immediate point of loading in evaluating a
shipping container’s risk profile. However, an invasive species could have infested a container previous to this point and
travelled undetected before arriving at the border. To assess arrival risk for an invasive species requires analysing the
international shipping network in order to identify the most likely source countries and the domestic ports of entry where
the species is likely to arrive. We analysed an international shipping network and generated pathway simulations using a
first-order Markov chain model to identify possible source ports and countries for the arrival of Khapra beetle (Trogoderma
granarium) to Australia. We found Kaohsiung (Taiwan) and Busan (Republic of Korea) to be the most likely sources for
Khapra beetle arrival, while the port of Melbourne was the most likely point of entry to Australia. Sensitivity analysis
revealed significant stability in the rankings of foreign and Australian ports. This methodology provides a reliable modelling
tool to identify and rank possible sources for an invasive species that could arrive at some time in the future. Such model
outputs can be used by biosecurity agencies concerned with inspecting incoming shipping containers and wishing to
optimise their inspection protocols.
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Introduction

Species can spread and establish in new regions at distances that

far exceed the limit of an organism’s natural dispersal ability, but

only if the species can find an appropriate vector to carry the

organism beyond its biological spread range. This long-distance

spread is often driven by human activities, usually by international

trade and transportation [1,2], which has increased dramatically in

the last fifty years [2]. In particular, international marine shipping,

which carries 90% of world trade [3], has been acknowledged as

the primary means for the introduction of many invasive species

[2,4,5].

International marine shipping networks therefore provide a

prominent pathway for the introduction of invasive species and

there are many cases to illustrate this. For example, the spread of

Asian tiger mosquito, Aedes albopictus [6] and Aedes japonicas [7] to

numerous countries are both believed to be caused by the

international marine trade in used tires. The invasive pathogen,

pine wilt disease is also believed to have been spread around the

world via contaminated wood in ships [8]. Dutch elm disease

arrived to the UK from Canada via the shipment of Rock Elm [9],

and numerous marine species have been translocated around the

world as a result of shipping [10].

Identification of the potential pathways and sources of human-

assisted introductions of invasive organisms presents significant

challenges because it often requires an understanding and

quantification of the relevant socio-economic activities. Consider-

ing the immense amount of environmental and economic damage

invasive species cause worldwide [11,12,13], it is important that

researchers attempt to assess potential risks and identify likely

origins of existing and future infestations. In this way, the

government agencies responsible for protecting a country’s

borders and natural resources from these invasions can use this

information to prioritize surveillance and plan for post-detection

mitigation efforts.

The analysis and modelling of trade and transportation

networks is becoming an increasingly used method to assess the

potential of organisms to establish at previously uninvaded areas

[4,5,14,15,16]. Recent studies also link the analysis of complex

trade and transportation networks with the application of

simulation models of an organism’s spread and establishment

[4,5,17,18]. While an application of simulation models to estimate
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movement of invasive organisms is a common analytical approach

[19], fewer studies have performed analyses and simulations in the

domain of transportation or trade networks [4,5,17]. Note that

network-based analyses could potentially provide more targeted

assessments of long-distance human-mediated spread, which

traditional spatial dispersal models do not predict well [20–23].

Furthermore, the potential of an invasive species being introduced

at a location of interest (such as port of entry or urban area) can be

estimated from each potential origin (such as a foreign port) and

then all potential points of origin can be ranked to identify the

ports and countries that are the most likely to be a source for a new

incursion.

In this paper we analyse a complex network of international

shipping routes using a first-order Markov chain model to identify

potential origins of introduction (i.e. source countries and

international foreign ports) for the highly invasive Khapra beetle

(Trogoderma granarium) to Australia. We also identify and rank those

Australian ports most likely to receive this invasive species. This

analysis was undertaken with a probabilistic pathway model that

describes the likelihood of the pest being moved from port i to port

j as a linear function of the number of trips made by container

ships through the segment ij and depicted as a matrix of the

transmission probabilities pij. This matrix is then used to simulate

the sequential pathways of the invasive pest’s transmission from

the ports of origin where the pest is known to occur to the locations

of interest (i.e. Australian ports of entry).

The pathway modelling approach presented here has some

similarities with the raster-based gravity models [24,25], however

our study uses directional, vector-based information and thus helps

uncover the pathway ‘‘crossroads’’ and the ports - transit hubs

through which the movement of infested cargoes is most likely.

Because shipping containers are infrequently inspected during the

transit, and may be transported over long distances before being

opened [26], the use of marine traffic data helps better direct

surveillance efforts to the most probable origin locations of

accidental pest’s at the ports of entry.

The Khapra beetle is a pest of stored grain, causing significant

economic damage across the world [27], and has been nominated

as among 100 of the ‘World’s Worst’ invaders [28]. If the Khapra

beetle became established in Australia, it could have a significant

impact on the Australian grain industry via reduced yields and

increased treatment costs [29].

As such, the Khapra beetle has been identified as a high priority

exotic pest of the Australian grains industry by Plant Health

Australia who have developed an industry biosecurity plan should

there be an incursion [27]. This study aims to identify those

countries and overseas ports most likely to be the source of a

potential incursion. This will aid in the development of more

effective surveillance and inspection efforts in order to prevent this

pest establishing in Australia.

Materials and Methods

Data
We obtained data from the Lloyd’s Maritime Intelligence Unit

(LMIU) detailing every fully cellular container ship that arrived

into Australian ports between January 1st, 2002 and December

31st, 2007. This data set contained the previous ten ports of call for

these container ships before arriving into one of 30 Australian

ports, documenting 25,507 arrivals and departures of 557

container ships, with many ships arriving multiple times during

this period. These ships travelled from and to 553 foreign ports in

126 countries.

In order to build the network of potential pathways of Khapra

beetle (Trogoderma granarium) introductions to Australian ports, we

used the world wide distribution of Khapra beetle from the CABI

Crop Protection Compendium [30]. This distribution was used to

identify the ports within the known species range. While the pest is

found in 36 countries, the container ships arriving into Australian

ports during this period only travelled to 24 of them (87 ports).

Pathway Model
We estimated the potential of Khapra beetle to arrive with

marine container vessels via the application of a pathway-based,

first-order Markov model of Khapra beetle spread with marine

container vessels through an international marine shipping

network.

For this study, we assumed that some transmission potential

existed between all intermediate locations within the shipping

route. Consider a vessel route A–B–C–D, where A, B, and C

denote the foreign ports of call and D is a destination port in

Australia. Given that the ship has taken and unloaded contain-

erized cargoes at each port, it is feasible to assume that the pest

could be moved through the segments A–B, B–C, C–D, as well as

segments A–C, B–D and A–D. Hence, we have decomposed all

routes that included more than two nodes in to the combinations

of unique segments i to j. This information then was used to

assemble a database of unique pairs of ‘‘origin’’-‘‘destination’’

ports, ij and the associated numbers of vessels travelled through

each particular segment i to j.

The records did not detail the actual number of containers that

have been unloaded or loaded at each particular port; hence we

assumed that each vessel would have similar capacity to carry the

pest in a containerized cargo. We acknowledge that more detailed

information on the cargo types in cellular containers and the

tonnages of loaded/unloaded containers could improve the

accuracy of the pathway predictions however this information

was not available. No future forecast was imposed on the container

shipment data; therefore, the analysis is best interpreted as

showing the present-day entry potential of Khapra beetle.

In summary, each unique pathway segment, i to j had an

associated number of trips between two given ports, i and j, mij. We

then rescaled the number of trips to the transmission rate value, pij,

of the beetle being moved from i to j over the six year survey

period (2002–2007) based on the total number of container vessels

travelling from i to j:

pij ~ mij l ð1Þ

where lt is the rate of Khapra beetle transmission with one

container vessel over the survey period t (six years). Essentially, lt is

a scaling coefficient that translates the number of trips to a

transmission rate value so the sum of the transmission rates is

below 1:

Xn

j~1

mijltv1 ð2Þ

The transmission matrix, Pt, of the pest being moved along each

pathway segment was then estimated accordingly:

Invasives in a Shipping Network
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Pt~

0 ltm12 ::: ltm1n

ltm21 0 ::: ltm2n

::: ::: ::: :::

ltmn1 ltmn2 ::: 0

2
6664

3
7775 ð3Þ

Note that the value of lt is relative only to the number of vessels

recorded in the Lloyds data between 2002 and 2007. Because the

pathway model was only used in a relative context – to order the

foreign ports by their relative potential to be the source of Khapra

beetle incursions at Australian ports (i.e. that the port X has a

higher potential to be the source of beetle incursions than the port

Y) – a precise estimation of lt was unnecessary. In our case, we

selected the lt value to ensure any row in the matrix Pt satisfies the

condition in Eq. 2 (so the row sum of the transmission rates is

below 1). Note that the use of small lt values that ensure the

conditions Spij ,1 was done for technical reasons so the ltmij

values could be treated as probabilities in the model simulations.

The matrix had a size, Y, equal to the number of port locations

in the Lloyds register data (i.e. the nodes of the shipping network).

The data did not provide information about the number of

containers unloaded/loaded at intermediate ports, so the diagonal

elements of Pt were set to 0.

We also added an extra column to the matrix Pt that describes

the potential of the Khapra beetle not surviving transit from i to j,

i.e.:

Pt~

0 p12 � � � p1n 1{
Pn
j~1

p1j

p21 0 � � � p2n 1{
Pn
j~1

p2j

..

. ..
. ..

. ..
. ..

.

pn1 pn2 � � � 0 1{
Pn
j~1

pnj

2
666666666664

3
777777777775

ð4Þ

where the elements 1{
Pn
j~1

pij describe the probability that the

Khapra beetle doesn’t arrive in port j.

The pathway matrix Pt was then used to generate stochastic

realizations of potential movements of the beetle from the foreign

ports in regions where the Khapra beetle is known to exist.

Starting at each port in the countries with Khapra beetle (one port

at a time), the model simulated the subsequent movements of the

beetle to other locations by extracting the associated vector of

transmission rates from the matrix Pt at each port’s location and

using it to select the next port. The process continued until the

chosen location had no outgoing paths recorded in the Pt or a

terminal state was selected based on the elements 1{
Pn
j~1

pij in Eq.

4. Finally, we estimated the rates of pest arrival from the location i

from j, Qij, from the number of times, Ji the pathways originated at

a given port i within a Khapra beetle range arrived at the port j

over the multiple stochastic pathway simulations:

Qij ~Ji=K ð5Þ

where K is the total number of individual simulations of the

pathway spread from i (K = 26106 for each port of origin i). Note

that the value of Qij was also estimated for each port in the network

i outside of the Khapra beetle known range, however our study

focuses on Australian ports only. Notably, the value of Qij is

conditional on the value of l chosen. However, since l was a linear

multiplier applied to each element of the matrix Pt, changes in its

value did not affect the partial order relationships based on the

estimated arrival rate values, Qij and consecutively, the ranking of

the individual ports by the Khapra beetle incursion potential.

Summary Metrics
The forward-looking simulations provided for each port within

the Khapra beetle range, i, list the arrival rates, Qij to the

destination ports j in Australia. For each port of origin i within the

Khapra beetle range, we then compiled the lists of the arrival rate

values, Qij for all other ‘‘destination’’ locations in Australia, j,

j = 1,…, n, j ? i. We then tabulated the Qij values in a way so each

‘‘destination’’ location in the shipping network, j (i.e. an Australian

port) had a corresponding list of the ports-potential origins, i (i.e.

from where the pathway simulations were originally started) with

the corresponding arrival rate values from the origin i to a

destination j. We then summarized movement of the pest through

the shipping network in two ways. First, for each Australian port, j,

we generated an overall arrival rate of the Khapra beetle from all

foreign ports as:

Qj~1{ P
n,j=i

j~1
1{Qij

h i
ð6Þ

where equation [6] is the product of all the beetle arrival rate

values from all foreign ports to an Australian port, j.

We then used Qj to rank the Australian ports by their potential

to receive containers from the ports in the regions infested with

Khapra beetle. We generated overall beetle arrival rates from each

foreign port to all Australian ports combined. These values were

then used to rank foreign ports by their potential to be the origin of

a Khapra beetle infestation to Australian ports. It is tempting to

identify arrival rates as arrival likelihoods, however these values

are a function of l, which currently is unknown. As such, we

calculated relative arrival rate values, which give an indication of

the relative difference in risk for foreign and Australian ports to

receive the pest. These relative arrival rates were calculated by

dividing a port’s arrival rate, Qij, by the mean arrival rate.

We have also provided a general characteristic of the shipping

network using the degree centrality metric. The degree centrality

denotes the sum of the total numbers of ship arrivals and

departures at a given port and is often interpreted as measure of

the importance of a particular node in the network [31]. We then

compared the degree centrality with the arrival rate, Qj for major

Australian ports.

Sensitivity Analysis
Uncertainties are an intrinsic feature of model-based assess-

ments of ecological invasions [32], therefore it is important to

estimate the impact of uncertainties on model results (the arrival

rate values in our study). Uncertainty in the structure of the

pathway network as well as key parameters of the pathway model

can propagate in the model outputs [33,34] and need to be

properly estimated.

In this study we estimated the impact of the uncertainty in key

elements of the pathway model on the port-specific arrival rates Qj.

First, we tested two scenarios that considered somewhat different

aspects of the uncertainty around the transmission rate values pij in

the pathway matrix Pt (Eq. 4). The first scenario added increasing

random variation bounds around the pij values but did not change

Invasives in a Shipping Network
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the mean pij values. Each pair of 6 0.3pij bounds defined the

endpoints for a symmetric uniform distribution (with an upper

bound of pij = 1.0 and lower bound of pij = 0) from which we

sampled values randomly for input into the model. This scenario

explored the impact of multiplicative errors in pij at the levels

proportional to the baseline pij values, so the higher pij values had

larger levels of uncertainty (and vice versa). The addition of

multiplicative errors alters all positive values of pij but does not

change the nodes with pij = 0. This implies that the multiplicative

errors do not add or remove additional pathways with positive

pest’s transmission potential and do not change the general

structure of the shipping network. In general terms, these errors

can be interpreted as uncertainty associated with the measurement

of the transmission rates but holding the assumption that the

general structure of the shipping network, the knowledge of ports

with known beetle infestations and the average trade flow values

are well known.

The second scenario estimated the impact of additive errors in the

transmission probability values by adding a small uniform random

variate to pij regardless of their absolute values (i.e. including the

nodes with pij = 0) and observing the impact on the location-specific

arrival rates, Qj. This scenario changes the mean values of pij and also

adds new nodes to the shipping network (by changing the pij = 0 to a

small positive random value and subsequently, altering the

configuration of the shipping network). In short, this scenario adds

the geographically uniform random variation to each network’s

topology by assuming a very low probability of pest’s transmission

through each possible network segment ij with a set of bounds [0;

0.05]. In broad terms, these additive errors in the pij values depict an

increasing lack of knowledge about the pij (i.e. from where and to

where the ships with potentially infested cargoes may be travelling)

that shifts the pij values towards a uniform random distribution and

thus changes the patterns of commodity flows and a configuration of

the shipping network (the latter aspect was also the reason of

choosing a relatively low upper bound, 0.05, of uniform distributions

of pij values).

We have also tested the topological stability of the shipping

network. Our third scenario explored the impact of uncertainty

about the configuration of the transportation network, which is the

presence or absence of a particular node in the network. This

approach goes beyond the traditional sensitivity analysis [35,36]

and focuses on changes in the network’s connectivity [37]. To keep

the analysis consistent with the abovementioned multiplicative and

additive error scenarios we used a relatively straightforward

technique and simulated added errors to knowledge about the

network’s connectivity by temporarily removing a random portion

of interlinked paths ij from the network and observed the

corresponding changes in arrival rate values, Qj. At each pathway

simulation event, the proportion of nodes (i.e. elements i,j in the

pathway matrix Pt) to be removed randomly was drawn from a

uniform distribution [0; 0.3]. In broad terms, the errors associated

with the presence or absence of a particular node depict the

potential lack of information about the connectivity of the shipping

network (for instance, the insufficient data about undocumented

intermediate stops in foreign ports before ship arrives to the final

destination port).

Figure 1. A geographical distribution of the Khapra beetle arrival potential to Australian ports. (A) Potential of foreign ports to be the
source of Khapra beetle arrival at an Australian port, (B) The potential of Australian ports to receive Khapra beetle from foreign ports infested with the
pest.
doi:10.1371/journal.pone.0044589.g001
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Results

Rankings of Foreign Countries as Potential Origins of KB
Arrivals

We found Taiwan and Republic of Korea had the highest

potentials for being a source of Khapra beetle (Trogoderma

granarium) incursions (Figure 1 and Table 1; for the full list see

Table S1). The relative arrival rate from these two countries to

Australian ports was considerably higher (more than 3 times) than

the third highest-ranked country (Egypt).

Rankings of Australian Ports to Receive the Pest from
Elsewhere

We found the port of Melbourne to have the greatest potential

to receive containerized cargoes infested with Khapra beetle, with

Botany Bay and Brisbane being the next two highest ranked ports,

respectively (Figure 1 and Table 2; for the full list see Table S2).

We then examined the rankings of foreign ports for each of the

ten Australian ports in Table 2 and found the ports of Busan

(Republic of Korea) and Kaohsiung (Taiwan) to be ranked first

and second (respectively) for nine of the ten Australian ports, with

their order reversed at Botany Bay (Table 3; for full lists see Tables

S3, S4, S5, S6, S7, S8, S9, S10, S11, S12). The relative rates of the

Khapra beetle arrival to Australian ports from these two foreign

ports are generally three or more times higher than from the third

ranked foreign port.

Sensitivity Analysis
Multiplicative errors in the transmission probability

values. We found the introduction of this type of error to the

pij values had little effect on the rankings of foreign ports,

particularly those ports that were ranked in the top half of the list

(Figure 2A: linear regression, t85 = 110.64, p,0.001, R2 = 0.997).

A similar pattern was found with the ranking of Australian ports by

their likelihoods to receive the Khapra beetle from foreign ports

(Figure 2B: linear regression, t29 = 42.40, p,0.001, R2 = 0.992).

Additive errors in the transmission probability

values. This introduced error changed the rankings of foreign

and Australian ports (Figure 2C and 2D), though the rankings

were still significantly correlated (foreign ports: linear regression,

t85 = 15.19, p,0.001, R2 = 0.855; Australian ports: linear regres-

sion, t29 = 6.37, p,0.001, R2 = 0.764).

Random removal of nodes from the shipping

network. The random removal of a proportion of nodes from

the shipping network (and associated pairs of origin-destination

ports) had little impact on the rankings. In particular, the rankings

of the top 30 foreign ports remained unchanged (Figure 2E: linear

regression, t85 = 155.22, p,0.001, R2 = 0.998). A similar pattern

was observed for the rankings of Australian ports (linear

regression, t29 = 114.23 at p,0.001, R2 = 0.999), with the ranks

of the top 20 Australian ports remaining unchanged (Figure 2F).

Discussion

Major Threats of Khapra Beetle Arrivals
The two ports, Busan (Republic of Korea) and Kaohsiung

(Taiwan) represent substantially greater threats for the arrival of

Khapra beetle to Australia, than any other international port.

Taiwan, was ranked as the greatest threat to Australia for this

beetle, and has two of its ports (Kaohsiung and Keelung) ranked in

the top three or four as potential sources of Khapra beetle arrivals

to Australia (depending on the Australian port considered:

Table 3). The high likelihood of ports in Taiwan and the Republic

of Korea being a source of Khapra beetle is likely a result of a large

number of container ships travelling through these two ports

before arriving into Australia. Examining the port rankings by

degree centrality (the total number of ship arrivals and departures

at a given port) revealed that Busan and Kaoshing had

approximately four times the degree centrality (3086 and 2979,

respectively) of the third ranked port, Keelung (758). A similar

pattern was observed when pooling degree centrality to the

country level and examining the rankings. Again Taiwan and the

Republic of Korea were the top two ranked by degree centrality.

While the combined number of arrivals and departures (degree

centrality) in this marine transportation network might be enough

to identify ports (or countries) of high infestation risk, this may not

always be sufficient to identify the gateways of pest introduction.

The particular corridor of pest arrival will be a result of the

configuration of the shipping routes (i.e. it becomes a function of a

network’s topology). For example, the degree centrality could be

distributed evenly within the network while some specific nodes

Table 1. Top ten ranked source countries for Khapra beetle
infestations at Australian ports.

Country Qij Relative Qij*

Taiwan 0.639 9.054

Republic of Korea 0.594 8.413

Egypt 0.155 2.197

Spain 0.096 1.355

Saudi Arabia 0.067 0.953

Sri Lanka 0.066 0.939

India 0.022 0.315

Yemen 0.013 0.186

Turkey 0.012 0.168

Pakistan 0.009 0.121

Countries ranked by the arrival rate (Qij) to all Australian ports from the ports in
a given country. For the full list see Table S1.
*denotes the pest’s relative arrival rate versus the avergae Qij values for all
network locations (Qij = 0.0706).
doi:10.1371/journal.pone.0044589.t001

Table 2. Top ten ranked Australian ports for receiving the
Khapra beetle from foreign ports.

Australian Port Qij Relative Qij*

Melbourne 0.547 8.921

Botany Bay 0.398 6.487

Brisbane 0.390 6.369

Bell Bay 0.217 3.537

Fremantle 0.154 2.517

Adelaide 0.095 1.548

Burnie 0.050 0.808

Sydney 0.026 0.418

Hobart 0.014 0.225

Newcastle 0.003 0.047

Ports ranked by arrival rate of Khapra beetle (Q ij) from foreign ports in the
countries with known beetle presence. For the full list see Table S2.
*denotes the pest’s relative arrival rate versus the avergae Qij values for all
network locations (Qij = 0.0613).
doi:10.1371/journal.pone.0044589.t002
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Figure 2. Sensitivity analysis. Changes in port rankings after the introduction of multiplicative errors (A–B), additive errors (C–D), and the random
removal of a portion of the nodes from the transportation network (E–F). All figures show significant (p,0.001) rank correlations (see Results for
details). The lowest rank values (starting from 1) indicate the highest risk.
doi:10.1371/journal.pone.0044589.g002
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(ports) may be part of a well-travelled transportation corridor that

connects particular regions with considerable trade flows. In this

case, undertaking the simulations of individual shipping pathways

through the network (as we have done in this study) may be the

only way to identify high ranked ports. This point can be

illustrated by examining the lower ranked countries in Table 1.

Yemen is ranked 8th, above Turkey and Pakistan, for arrival rate

of Khapra beetle. However, using degree centrality, Yemen would

be ranked below these two countries, with less than half the degree

centrality (Yemen = 57 degree centrality, Pakistan = 125, Tur-

key = 113).

Stability of the Ports’ Rankings to Uncertainty
The sensitivity analysis revealed that the rankings of Australian

and foreign ports are considerably stable. Despite the uniform

random variance introduced into the pij values, the rankings

remained relatively unchanged. These results are not surprising,

given that the model is essentially a first-order Markovian pathway

matrix, and the pij values did not include geographically explicit or

climate-specific modifications. Further research will be required to

better determine how pij (i.e. the transmission rate from one port to

the next) might vary with season and geographical location. A

better understanding of the value of pij could mean these arrival

rate values could be combined with establishment likelihoods [38]

Table 3. Port by port rankings.

Melbourne Botany Bay

Port of
origin i Qij

Relative
Qij*

Port of
origin i Qij

Relative
Qij*

Busan (KOR) 0.245 94.601 Kaohsiung (TWN)0.159 61.473

Kaohsiung (TWN)0.227 87.532 Busan (KOR) 0.158 61.020

Keelung (TWN) 0.075 28.912 Keelung (TWN) 0.053 20.370

Damietta (EGY) 0.039 14.925 Damietta (EGY) 0.025 9.702

Colombo (LKA) 0.021 8.025 Colombo (LKA) 0.013 5.029

Jeddah (SAU) 0.019 7.157 Jeddah (SAU) 0.012 4.704

Valencia (ESP) 0.018 6.916 Valencia (ESP) 0.012 4.593

Ulsan (KOR) 0.017 6.510 Port Said (EGY) 0.007 2.673

Port Said (EGY) 0.011 4.160 Barcelona (ESP) 0.005 1.737

Barcelona (ESP) 0.007 2.569 Ulsan (KOR) 0.004 1.500

Brisbane Bell Bay

Port of
origin i

Qij Relative
Qij*

Port of
origin i

Qij Relative
Qij*

Busan (KOR) 0.160 61.541 Busan (KOR) 0.084 32.346

Kaohsiung (TWN)0.158 61.098 Kaohsiung (TWN)0.070 27.181

Keelung (TWN) 0.052 20.153 Keelung (TWN) 0.023 8.947

Damietta (EGY) 0.023 9.043 Damietta (EGY) 0.012 4.681

Colombo (LKA) 0.012 4.453 Ulsan (KOR) 0.010 3.849

Jeddah (SAU) 0.010 3.715 Colombo (LKA) 0.007 2.511

Valencia (ESP) 0.009 3.388 Jeddah (SAU) 0.006 2.307

Port Said (EGY) 0.005 2.084 Valencia (ESP) 0.006 2.234

Gwangyang
(KOR)

0.004 1.611 Port Said (EGY) 0.003 1.274

Ulsan (KOR) 0.004 1.497 Barcelona (ESP) 0.002 0.803

Fremantle Adelaide

Port of
origin i

Qij Relative
Qij*

Port of
origin i

Qij Relative
Qij*

Busan (KOR) 0.051 19.612 Busan (KOR) 0.029 11.092

Kaohsiung (TWN)0.042 16.364 Kaoshiung (TWN)0.024 9.246

Damietta (EGY) 0.012 4.653 Damietta (EGY) 0.009 3.558

Keelung (TWN) 0.012 4.614 Keelung (TWN) 0.007 2.678

Valencia (ESP) 0.009 3.369 Colombo (LKA) 0.006 2.197

Colombo (LKA) 0.008 2.917 Jeddah (SAU) 0.005 2.022

Jeddah (SAU) 0.007 2.847 Valencia (ESP) 0.005 1.919

Port Said (EGY) 0.004 1.623 Port Said (EGY) 0.003 1.270

Barcelona (ESP) 0.003 1.014 Barcelona (ESP) 0.002 0.615

Gwangyang
(KOR)

0.002 0.814 Algeciras (ESP) 0.001 0.444

Burnie Sydney

Port of
origin i

Qij Relative
Qij*

Port of
origin i

Qij Relative
Qij*

Busan (KOR) 0.0177 6.8258 Busan (KOR) 0.0084 3.2404

Kaoshiung (TWN)0.0149 5.7627 Kaoshiung (TWN)0.0077 2.9682

Keelung (TWN) 0.0049 1.8764 Keelung (TWN) 0.0025 0.9821

Table 3. Cont.

Melbourne Botany Bay

Port of
origin i Qij

Relative
Qij*

Port of
origin i Qij

Relative
Qij*

Damietta (EGY) 0.0026 0.9920 Damietta (EGY) 0.0018 0.6922

Ulsan (KOR) 0.0021 0.8098 Colombo (LKA) 0.0009 0.3436

Colombo (LKA) 0.0014 0.5356 Jeddah (SAU) 0.0007 0.2680

Jeddah (SAU) 0.0012 0.4785 Valencia (ESP) 0.0007 0.2535

Valencia (ESP) 0.0012 0.4650 Port Said (EGY) 0.0005 0.1909

Port Said (EGY) 0.0007 0.2591 Ulsan 0.0004 0.1463

Barcelona (ESP) 0.0004 0.1726 Barcelona (ESP) 0.0003 0.1126

Hobart Newcastle

Port of
origin i

Qij Relative
Qij*

Port of
origin i

Qij Relative
Qij*

Busan (KOR) 0.0049 1.8767 Busan (KOR) 0.00089 0.34454

Kaoshiung (TWN)0.0041 1.5825 Kaoshiung (TWN)0.00082 0.31716

Keelung (TWN) 0.0014 0.5427 Keelung (TWN) 0.00028 0.10701

Damietta (EGY) 0.0007 0.2684 Damietta (EGY) 0.00018 0.06883

Ulsan (KOR) 0.0005 0.2113 Colombo (LKA) 0.00009 0.03605

Colombo (LKA) 0.0004 0.1521 Valencia (ESP) 0.00009 0.03335

Jeddah (SAU) 0.0004 0.1357 Jeddah (SAU) 0.00007 0.02564

Valencia (ESP) 0.0004 0.1350 Barcelona (ESP) 0.00005 0.01947

Port Said (EGY) 0.0002 0.0833 Port Said (EGY) 0.00004 0.01504

Barcelona (ESP) 0.0001 0.0488 Karachi (PAK) 0.00004 0.01407

Top ten ranked source ports for Khapra beetle introduction to the ten most
threatened Australian ports (see the rankings of Australian ports in Table 2). For
the full lists see Tables S3, S4, S5, S6, S7, S8, S9, S10, S11, S12.
*denotes the relative pest’s arrival rate versus the avergae Qij values for all
network locations (Qij = 0.00259).
doi:10.1371/journal.pone.0044589.t003
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and serve as inputs into economic analyses and risk assessments

associated with the particular groups of imports [39,40,41].

Indirect supportive evidence for this model comes from a

Khapra beetle incursion in Perth, Western Australia in 2007. The

beetle was found in the personal belongings of a family migrating

to Australia from Scotland, which were shipped to Australia in an

infected shipping container. A trace back of the container, which

carried the family’s belongings revealed that the container had

visited the following ports (in reverse order), Fremantle (Australia),

Grangemouth (Scotland), Felixstowe (England), Pt Qasim (Paki-

stan), Gwangyang (South Korea), Busan (South Korea), Hamburg

(Germany), Bangkok (Thailand) (personal communication – Rob

Emery, Dept of Agriculture and Food, Western Australia, 2011).

Although a molecular analysis to identify the exact source of this

incursion was never completed, we note that Busan, and

Gwangyang, were both visited by this container and were ranked

1st and 10th (respectively) as possible source ports for the receiving

Australian port – Fremantle (Table 3).

Potential Applications of the Pathway Model in
Biosurveillance

Currently, Australian government biosecurity agencies do not

identify a container’s previous ports (other than the immediate one

in which the container was loaded before arriving to Australia).

Considering the high risk posed by Khapra beetle and its ability to

survive for long periods, undetected [42], biosecurity agencies

should expand their screening efforts to collect a container’s

pathway history from shipping companies and use it to evaluate a

container’s risk profile. It would then be possible to optimise

current inspection protocols and more efficiently allocate resources

for biosecurity screening and surveillance.

Although the dataset used in our study documents the previous

ten ports visited prior to the arrival of a ship to Australian ports, it

is possible that the Khapra beetle could infest a container previous

to these ten ports. The data show the average number of days at

sea between ports is 7.9 days. Any ten-port steps would therefore

cover, on average, 71 days. While this time frame would normally

encompass the lifecycle of the Khapra beetle, its ability to go into a

prolonged period of diapause could result in this species surviving

long periods on a shipping journey [42,43].

Technical Aspects of an Application of the Pathway
Model

The probabilistic pathway model presented in this study

provides a computationally tractable and relatively simple way of

incorporating trade and transportation data into assessments of

human-assisted introductions of invasive pests. Essentially, the

pathway model represents a network of vectors, each character-

ized by the probability of an organism’s transmission based on the

frequency of container ships travelling between the ports in other

countries and Australian ports of entry. The model uses directional

marine traffic flows to estimate local rates of the invasive pest

arrival at Australian ports. In general, the behavior of the model is

similar to approximating the network of commodity marine traffic

flows with a gravity model [5], however our model is focused on

reconstructing the sequential pathways of movement of Khapra

beetle with container ships and does not attempt to recreate the

full topological structure of the marine shipping network.

The model presented here is a first-order Markov chain in

which the next pathway segment taken by a container vessel is

independent of its previous path. In short, when a container

arrives into a port on a ship, its future path is not bound to that

ship, but is considered a function of the number of ships travelling

from that port to other ports. Clearly, this assumption could vary

from port to port. For large hub ports, such as Singapore, where

many arriving ships unload their containers for transfer to other

ships, this is more likely to be a valid assumption. However, for

smaller non-hub ports, most containers are likely to remain on a

ship and continue along the predetermined path that ship travels.

While presently, the vessel-specific data on container transfer were

unavailable, we acknowledge that adding the port-specific

estimates of the likelihood of a container being transferred to

another ship after the arrival at the port would improve the

pathway model and likely refine its predictions and rankings.

Conclusions
The analysis of a marine shipping network represents a

significant step forward in the assessment of pathways of entry

and identification of potential source locations for invasive species,

which previously only assessed direct pathways of entry from a

source country. Considering the increasingly connected nature of

the world’s transportation and trade networks, and the increasing

multitude of potential carriers of invasive organisms from one part

of the world to another, this more sophisticated evaluation of

potential pathways would seem appropriate. Analysing trade and

transportation networks using pathway model simulations enables

the ranking of potential sources of invasive pest incursions, and can

be applied to any invasive species of concern and any country at

risk from invasion. Note that the method presented in this study

does not attempt to find the source of infestations per se (as would

be determined by genetic DNA testing methods), but rather

prioritizes the most likely sources of future infestations from a

multitude of potential locations of pest’s origins. Given the stability

of the outputs of this model in the presence of uncertainty about

the Khapra beetle’s port-to-port transmission potential, the

analytic approach presented in this study helps improve and make

more effective the current risk screening procedures of shipping

containers undertaken by government agencies and industry

stakeholders wishing to prevent the arrival and introduction of

an invasive threat.
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