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Angiogenesis is a physiological process, where new blood vessels are formed

from pre-existing vessels through the mechanism called sprouting. It plays a

significant role in supporting tumor growth and is expected to provide novel

therapeutic ideas for treating tumors that are resistant to conventional therapies.

We investigated the expression pattern of angiogenesis-related genes (ARGs) in

ovarian cancer (OV) from public databases, in which the patients could be

classified into two differential ARG clusters. It was observed that patients in

ARGcluster B would have a better prognosis but lower immune cell infiltration

levels in the tumor microenvironment. Then ARG score was computed based on

differentially expressed genes via cox analysis, which exhibited a strong

correlation to copy number variation, immunophenoscore, tumor mutation

load, and chemosensitivity. In addition, according to the median risk score,

patients were separated into two risk subgroups, of which the low-risk group had

a better prognosis, increased immunogenicity, and stronger immunotherapy

efficacy. Furthermore, we constructed a prognostic nomogram and

demonstrated its predictive value. These findings help us better understand the

role of ARGs in OV and offer new perspectives for clinical prognosis and

personalized treatment.
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Introduction

Ovarian cancer (OV) is the most common gynecological

cancer with the highest mortality rate in the world, accounting

for 4.4% of female cancer-related mortality in 2018 (1, 2).

Annually, 225,500 new incidences of ovarian cancer are

diagnosed worldwide, resulting in 140,200 cancer-specific

deaths (2, 3). Due to the heterogeneity of OV, the World

Health Organization (WHO) classifies it into several

morphological categories based on cell type (4). Despite

significant differences in molecular biology and prognosis, they

are all treated identically with cytoreductive surgery and

platinum/taxane combined chemotherapy (5). Most patients

respond favorably to first-line treatment, but most patients

relapse and develop chemotherapeutic resistance (6–9). Worse

more, OV is insidious with few sentinel symptoms and lack of

effective diagnostic strategies (10–12). As result, more than two-

thirds patients were diagnosed with a bad prognosis in an

advanced stage (13, 14). Many studies have shown that early

diagnosis and appropriate treatment can significantly reduce the

metastasis and recurrence of OV (11, 15).

Late diagnosis and heterogeneous treatment result in poor

clinical outcomes of patients with OV (16). Thus, novel methods

of diagnosis and treatment are required. Immunotherapy has been

a research hotspot and an essential supplementary cancer

treatment method in recent years due to the in-depth

understanding of immune recognition and immunomodulatory

molecules (17). Molecular subtyping analysis of OV with complex

heterogeneity has a promising future due to the development of

molecular tools. Researchers around the world are attempting to

identify novel biomarkers that combine molecular characteristics

with traditional clinicopathological parameters to improve risk

stratification systems to predict clinical outcomes and response to

immunotherapy (18).

Angiogenesis, one of the hallmarks of cancer, is the

formation of new blood vessels from pre-existing ones through

a process called sprouting (19). Angiogenesis plays a significant

role in supporting tumor growth and progression, where

numerous angiogenic factors are often overexpressed (20, 21).

Suppression of angiogenesis has been recognized as a promising

therapeutic strategy, especially for cancers that are resistant to

conventional treatment (22). It is believed that anti-angiogenic

therapy could correct anatomical and functional abnormalities

in tumor blood vessels through the process called “vascular

normalization” (23, 24). Moreover, this may help prevent cancer

cells from developing aggressive phenotypes related to hypoxic

microenvironments (20, 25). These studies suggest that

exploring the molecular characteristics of angiogenesis-related

genes (ARGs) can help clarify the causes of OV heterogeneity

and provide new prognostic and therapeutic approaches.

Wang, G., et al. analyzed the molecular subtypes of ARG in

Glioblastoma multiforme and established a prognostic model to

predict the treatment response of patients (26). Based on the 48
Frontiers in Oncology 02
ARGs provided in their study, we developed a prognosis

prediction model in OV, which reveals the significant value in

prognosis, tumor microenvironment, and pharmacological

sensitivity. Furthermore, we incorporated the ARG score with

the clinical characteristics for clinical outcomes prediction and

verified its accurate prediction performance. Our research will

provide new concepts for accurate diagnosis and personalized

treatment of OV patients.
Methods and materials

OV dataset and reprocessing

Gene expression data and relevant clinical information of

OV patients are obtained from the public databases The Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO).

In this study, two cohorts, GSE9891 and TCGA-OV, were used

for subsequent analysis, where cases without complete clinical

data will be excluded to minimize statistical bias. The details of

the sample are displayed in Table S1. For differential analysis,

FPKM (fragments per kilobase) values of the TCGA-OV cohort

were converted to transcripts per kilobase million (27). We

combined the TCGA-OV and GSE9891 and corrected the

batch effects using the “ComBat” algorithm from the “sva”

package (28).
Consensus clustering analysis for ARGs

Forty-eight ARGs were derived from the previous study (26).

According to these gene expression profiles, “ConsumusClusterPlus”

was constructed for consumes clustering (29), where patients

were divided into various molecular subgroups on the basis of

gene expression pattern. For the major parameters in the

“ConsensusClusterPlus” function, we set the max clusters

number (maxK)=9, repeated times (reps)=1000, proportion of

items to sample (pItem)=0.8, proportion of features to sample

(pFeature)=1, cluster algorithm (clusterAlg)=hc/hierarchical,

distance= spearman (29). Subsequently, the principal

component analysis (PCA) was performed by the “ggplot2”

R package.
Identification of Gene subtypes based
on DEGs

Firstly, the R package “limma” was used to investigate the

differentially expressed genes (DEGs) between distinct clusters

with the standard of adjusted p-value < 0.05 (30). Following that,

two different gene subtypes were identified with the consistent

clustering algorithm. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were
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performed to further investigate the enriched molecular pathway

(31, 32).
Build prognostic risk signature related
to angiogenesis

After data reprocessing, OS-related prognostic OV samples

were screened out for further analysis. The TCGA-OV cohort

served as the training set, while samples from GSE9891 and the

set consisting of the TCGA-OV cohort and GSE9891 served as

the testing set to validate the performance of the signature. In the

training set, correlations between DEGs and OV survival were

determined by univariate Cox regression analysis. The R package

“glmnet” was then used to perform the least absolute shrinkage

and selection operator (LASSO) regression based on

angiogenesis-related prognostic genes to minimize the risk of

overfitting (33). Formula: risk factor =on
i=1coefi � expi was

employed to select candidate genes to build prognostic

signature based on ARGs using multivariate Cox analysis. The

coef and exp respectively refer to the risk coefficient and gene

expression level. The patients were classified into high-risk and

low-risk groups according to the median risk score.

Subsequently, we used the “survminer” software to conduct

the Kaplan–Meier analysis of survival. Receiver operating

characteristic (ROC) curves were then used to evaluate the

model’s precision. The performance of the model precision

was then assessed by plotted ROC curves.
Compared the risk score of different
clinical features and stratified analysis

The correlations between risk score and various

clinicopathological characteristics (grade, stage, age, fustat, and

histological type) were evaluated using univariate and

multivariate cox regression analysis, where Table S2 provides

clinical details. We conducted univariate and multivariate cox

analyses to investigate whether the risk score is a factor

independent of other available clinicopathological features.

Furthermore, stratified analysis was also conducted to examine

the performance of the model based on the clinical

characteristics described before.
Assessment of immune infiltration level

Cancers relied on their complex tissue environments for

sustained growth, invasion, and metastasis. Moreover, drug

resistance and tumor recurrence are intimately associated with

the tumor microenvironment (TME) as a potential therapeutic

target (34, 35). Gene sets of relevant biological processes were
Frontiers in Oncology 03
curated from previous research (36, 37). From the gene

expression pattern of these related pathways, the ESTIMATE

algorithm conducted through the R package “estimate” can

predict the status of TME (38, 39). Differences in immune

function between different subgroups were then demonstrated

by single-sample gene set enrichment analysis (ssGSEA), which

allows the quantitative evaluation of immune cell components

derived from complex gene expression data (40, 41).

Subsequently, the abundance of 22 tumor immune infiltrating

cells (TIIC) in risk groups was quantified by CIBERSORT.
Prediction of immunotherapy response

Immunophenoscore (IPS) was utilized to investigate the

immunotherapeutic function of immune cell infiltration

scores, which has been validated as a predictor of patient

immunotherapy response (42). Higher IPS refers to higher

immunogenicity. Tumor mutation burden (TMB) represents

the number of mutations per megabase of DNA sequence in a

given tumor, which can be used to identify patients who will

obtain the greatest benefit from immune checkpoint inhibitors

(ICIs) (43, 44). The burden of copy number variation (CNV)

gain or loss was evaluated by gene pattern (45).
Drug sensitivity analysis

The half-maximum inhibitory concentration (IC50) was

employed to assess the efficacy of chemotherapeutic drugs in

OV patients. The CellMiner database served as the drug

sensitivity data source, which was created in response to the

list of 60 types of cancer cells (NCI-60) compiled by the National

Cancer Institute’s Center for Cancer Research (46).
Construction of a nomograph system

To predict the prognosis of OV based on clinical

characteristics and risk score, a nomograph system was

constructed to measure the OS of 1-, 3- and 5- years through

R package “rms” (47). In the nomogram, each variable is

assigned a score, and the total score is obtained by adding the

scores of all factors to make an accurate prediction. Next, we

conducted the area under the curve (AUC) and c-index to

evaluate the prediction capacity of the nomogram (48–50).
Statistical analysis

All statistical analyses were conducted in R version 4.1.0 with

P < 0.05 defined as significant. The difference between the
frontiersin.org
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subgroups was determined by the student t-tests and variance

analysis. Spearman and distance correlation analyses were used

to compute the correlation coefficients between the expression of

ARGs and immune infiltrating cells.
Results

Genetic mutation landscape of ARGs
in OV

The analysis process of this study is shown in Figure S1.

Firstly, we investigated the different expression pattern of the 48

ARGs in tumor and normal samples within the TCGA-OV

dataset (Figure 1A). The string website was then employed to

conduct a protein-protein interaction (PPI) analysis of DEGs

(Figure 1B). Subsequently, the incidence of CNVs and somatic

mutations of ARGs were analyzed in OV, where 47 mutations
Frontiers in Oncology 04
occurred in 436 samples with 10.78% somatic mutation. It is

observed that VCAN has the highest mutation frequency (2%),

followed by COL3A1, COL5A2, and other genes (Figure 1C).

Furthermore, we investigated the CNV mutational incident,

which had significantly increased in genes like PTK2, S100A4,

and APOH but decreased in genes like VCAN, PDGFA, and

PGLYRP1 (Figure 1D). Figure 1E displays 48 ARGs’

chromosomal locations of the CNV alterations. Among the 48

genes, 27 ARGs presenting significant prognostic values were

identified (Figure S2). The above results suggest the potential

regulatory role of CNV in ARGs expression, which plays an

important role in the development of OV.
Identify ARGclusters in OV

In the angiogenesis network, the ARGs interactions,

regulator relationships, and their prognostic significance in
A B

D

E

C

FIGURE 1

Genetic mutation landscape of ARGs in OV.(A) Expression pattern of ARGs in OV and normal tissues. (B) The interactivity of DEGs is revealed by
PPI analysis. (C) genetic alternation of ARGs where mutations occurred in 47 of 436 OV patients. (D) CNV gain, loss, and non-CNV frequency in
ARGs. (E) The chromosomal distributions of CNV alterations in ARGs. Adjusted p-values were shown as ns, not significant; *p<0.05; **p<0.01;
***p<0.001.
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OV patients were illustrated (Figure 2A). To further analyze the

expression features of ARGs in OV, we conducted the consensus

clustering analysis, where the patients were classified from k = 2

to k = 9 (Figure S3). The results revealed that k=2 was the

optimal clustering variable (Figure 2B). Moreover, PCA analysis

also verified the discrepancies between these two ARGclusters

(Figure 2C). Between the two ARGclusters, there were 181

differently expressed genes (Figure 2D). Furthermore, a

substantial OS time disparity was detected between the two

ARGclusters., where patients in ARGcluster B have a higher

survival probability (p=0.003, Figure 2E). Then we examined

the ARGs expression levels and clinicopathological

characteristics between the ARGclusters and identified the

distinctions (Figure 2F).
Characteristics of TME in
different subtypes

According to the gene set variation analysis between these two

ARGclusters, it was observed that cluster A was enriched in cancer-

related pathways (like Glioma, Renal cell carcinoma, and

Melanoma) and metastasis-related pathways (like focal adhesion,

cell adhesion molecule, and ECM receptor interaction)

(Figure 3A). Then ssGSEA was employed to explore the immune

infiltration levels in these two ARGclusters, where significant

enrichment difference was noticed. The enrichment levels of

innate and adaptive immune cells were all significantly higher in

ARGcluster A (Figure 3B). Subsequently, the correlation between
Frontiers in Oncology 05
two ARGclusters and 22 TIICs was determined using CIBERSORT

(Figure 3C). We noted that the expression levels of immune

checkpoints, PD1, PD-L1, PD-L2, and CTLA4, were all higher in

ARGcluster A (Figures 3D–G). Moreover, it was observed that

ARGcluster A has higher TME scores (Figures 3H–J). ARGcluster

A is usually identified as “hot” tumors characterized by strong

immune infiltration levels that will benefit more from the

immunotherapy, while ARGcluster B can be characterized as a

“cold” tumor with low intensity of immune infiltration and

relatively unsuitable for immunotherapy. Furthermore, we

explore the correlation between known biological processes and

these two ARGclusters, where some immune-related processes like

CD8 T effector, antigen processing machinery, and Pan−F−TBRS

were prominent in ARGcluster A (Figure 3K). Additionally,

ARGclusters A also had markedly higher expression levels of

human leukocyte antigen (HLA) related genes (Figure 3L).
Identification of gene subtype based
on DEGs

The “limma” package was employed to conduct functional

enrichment analysis and screen out the DEGs between two

ARGclusters. GO and KEGG analysis revealed that DEGs

between two ARGclusters were primarily enriched in immune-

related pathways, indicating their importance in the

immunological regulation of TME. (Figures 4A, B) .

Subsequently, univariate COX analysis and consensus clustering

analysis were employed to categorize the samples into different
A B

D

E
F

C

FIGURE 2

Generation of the ARGclusters in OV. (A) The network of interactions between ARGs in the TCGA-OV cohort, where the line thickness indicates
the correlation strength. (B) The consensus clustering analysis classified samples into two subgroups when k = 2. (C) PCA analysis revealed the
obvious distinctions in transcriptomes of two subtypes. (D) Venn diagram showing the similar parts between two clusters. (E) The difference in
survival probability between two ARGclusters. (F) The distinctions in gene expression levels and clinicopathological characteristics.
frontiersin.org

https://doi.org/10.3389/fonc.2022.995929
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tang et al. 10.3389/fonc.2022.995929
clusters based on the DEGs in OV patients. The results indicated

that the clustering effect was the best when k=2 (Figure S4).

Kaplan-Meier curve demonstrated that patients in gene cluster B

had a higher survival probability (P = 0.002; Figure 4C). Patients in

ARGcluster B are basically patients of gene cluster B, which was

associated with better survival status, and early-stage (Figure 4D).

The immune infiltration levels in these two gene clusters were

investigated by ssGSEA, where gene cluster A has a higher

enrichment level of immune cells (Figure 4E). Additionally, the

results of CIBERSORT algorithm revealed that gene cluster A was

primarily infiltrated by adaptive immune cells like B cells naive and

macrophages M1 (Figure 4F). Moreover, the expression of

immune checkpoints and TME scores were all higher in gene
Frontiers in Oncology 06
cluster A (Figures 4G–M). Gene cluster A also has higher

expression levels of HLA related genes and classical biological

pathways like CD8 T effector, EMT and Pan-F-TBRS were more

prevalent (Figures 4N, O). The above immune signatures indicate

that gene cluster A can be defined as a “hot” tumor.
Establish and validate the prognostic
model based on ARG score

To estimate the prognosis of individual OV patients, we

developed an ARG scoring system based on these DEGs.

Figure 5A shows the distributions of the patient in two
A
B

D E

F G IH

J K L

C

FIGURE 3

Correlations between TME and ARGclusters. (A) GSVA of biological pathways between ARGclusters, where red indicates activation while blue
indicates inhibition. (B) The abundance of infiltrating immune cells in two ARGclusters. (C) 22 TIICs were evaluated by the CIBERSORT algorithm in
two ARGclusters. (D–G) The expression level of immune checkpoints in two ARGclusters. (H–J) Comparison of TME scores in two ARGclusters.
(K) Correlations between known relevant biological processes and two ARGclusters. (L) HLA expression levels in two ARGclusters. Adjusted p-values
were shown as ns, not significant; *p<0.05; **p<0.01; ***p<0.001.
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ARGclusters, two gene clusters, and two risk score groups. To

establish the optimal predictive model, LASSO and multivariate

cox analysis were performed on the DEGs of 317 samples from

the training set (Figure S5). We finally screened out four genes

(TENM3, GFRA1, HOXA3, and CXCL13) associated with the

OV survival were screened out based on the minimum partial

likelihood deviation and multivariate cox regression analysis.
Frontiers in Oncology 07
The ARG score can be calculated as following: Risk score =

(0.127* expression of TENM3) + (0.1368* expression of

GFRA1) + (0.1358* expression of HOXA3) + (-0.1879*

expression of CXCL13). It is observed that the risk score of

gene cluster B and ARGcluster B was significantly lower

(Figures 5B, C). The patients were divided into a high-risk

group and a low-risk group based on the median risk score
A B

D
E

F G

I

H

J K L

C

FIGURE 4

Identification of gene subtype based on DEGs. (A, B) GO and KEGG enrichment analysis. (C) Kaplan-Meier curve for OS of OV patients. (D)
Correlation between two gene clusters and clinicopathologic features. (E, F) Immune infiltration levels in two gene clusters. (G–J) Immune
checkpoints expression levels in two gene clusters. (K–M) TME scores in two gene clusters. (N) HLA expression levels. (O) The scores of
immune infiltrations. Adjusted p-values were shown as ns, not significant; *p<0.05; **p<0.01; ***p<0.001.
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(Figure 5D). Moreover, the expression patterns of four genes in

the two groups were shown in the heatmap, and the fustat of

patients was shown in the scatter plot (Figures 5E, F). Patients

with low-risk scores had better OS performance than those with

higher scores (P < 0.001; Figure 5G). The AUC values of ROC

curves for 1-, 3-, and 5-year survival rates were 0.642, 0.635, and

0.637, respectively (Figure 5H). Then the above results were

validated by using the GEO cohort and data set comprised of the

GEO cohort and TCGA cohort as the testing set (Figure S6).
Compared the risk score of different
clinical characteristics and
stratified analysis

The risk scores of individuals with various clinicopathological

characteristics were examined to determine their association. It

was observed that a higher risk score corresponds to worse fustat

status and advanced stage (Figures S7A–D). Subsequently, Cox

regression analysis of risk score and clinical characteristics (age,

grade, and stage) illustrated that risk score was an independent

prognostic factor for OV patients (Table S2). Following that, we

conducted the subgroup analysis to validate the prediction
Frontiers in Oncology 08
capacity of the signature. As depicted in Figures S7E–J, except

for the patients with stage I- II, the survival outcomes of the high-

risk score group were worse than that of the low-risk group,

regardless of their clinical features.
Estimation of TME based on ARGs

To further investigate the TME status in different subgroups,

we utilized GSEA and found that the high-risk group was enriched

in some cancer-related pathway and metastasis-related pathway,

while the low-risk group was enriched in the pathways related to

the immune disease (Figures 6A, B). Following that, ssGSEA

revealed that the low-risk group has high immune infiltration

levels (Figure 6C). To further investigate the characteristic of these

subtypes, we divided 220 TCGA patients into various immune

subgroups. C2 is the most prevalent subtype and has the lowest risk

score, while C1 has the highest risk score (Figures 6D, E). It was

observed that the risk score has negative correlation with estimated

scores, immune scores, and stromal scores (Figures 6F–H). After

comparing the TME scores of these two groups, we found that the

low-risk group has higher estimated scores but lower immune

score (Figure 6I). Subsequently, we further investigate the
A B

D
E

F

G H

C

FIGURE 5

Construction of the ARG score in the training set. (A) The dispersion of patients. (B) Difference of the risk score in two gene clusters. (C)
Difference of the risk score in two ARGclusters. (D) Distribution of risk scores in two groups. (E) Expression pattern of four ARGs in two groups.
(F) The fustat of patients. (G) The comparison of the OS between two groups. (H) The sensitivity and specificity of 1-, 3- and 5-year survival
rates were predicted based on ARG scores.
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correlation between DRGs and immune cell abundance. A

significant difference in the abundance of innate and adaptive

immune cells was observed between the two risk groups

(Figures 7A–C). Furthermore, just as Figure 7D illustrates, the

ARG score was positively correlated with T cells CD4 memory

resting, B cells naive, macrophages M2, mast cells activated, and

neutrophils, but the opposite relationship was observed with T cells

CD4 memory activated, T cells CD8, T cells gamma delta, T cells

follicular helper, macrophages M1 and plasma cells. Then we

explored the relationship between the selected ARGs in the

prognostic signature and immune cells abundance, where the

results indicate that many immune cells like T cells regulatory, T

cells gamma delta, and T cells CD4 memory resting were strongly

correlated with these genes, especially for the gene CXCL13 and

GFRA1 (Figure 7E). Further research indicates that the low-risk

group has higher HLA related genes expression levels and higher

immune checkpoint expression levels (Figures 7F, G). The six

genes selected like CTLA4, HAVCR2, and CD274 were all

negatively correlated with the risk score (Figure 7H). Moreover,

IPS scores of patients were higher in low-risk groups, which

indicates that they have higher immunogenicity (Figures 7I–L).

Based on the above findings, it can be inferred that the low-risk

group can be characterized as the “hot” tumor mentioned before.
Frontiers in Oncology 09
Relationships between ARG score
and TMB

Numerous studies have demonstrated that tumor mutation

burden (TMB) can be used to predict tumor immune response,

thereby identifying patients who may benefit from ICIs (43, 44).

Our results revealed that there were no difference between risk

and TMB (Figures S8A, B). Subsequently, to further investigate

the impact of TMB on OV patients, we analyzed the survival

probability in different TMB subgroups. The patients in the L-

TMB group present a low survival probability compared with the

H-TMB group (Figure S8C). Furthermore, we integrated

the TMB and risk score for survival probability analysis, where

the group with high TMB and low risk has the highest survival

probability, while the group with low TMB and high risk was the

lowest (Figure S8D). Next, we assessed the distribution of

somatic mutations between two risk score subgroups in the

TCGA-OV cohort. The mutation incidence of these two

subgroups presented some similarity, where genes like TP53,

TTN, MUC16, and CSMD6 all presented high alternations,

especially for TP53 and TTN. However, except for the gene

TTN, all these major mutated genes showed a higher alternation

in the low-risk group (Figures S8E, F)
A B

D
E F

G IH

C

FIGURE 6

Estimation of TME based on ARGs. (A) GSEA of high-risk score group. (B) GSEA of low-risk score group. (C) The difference in immune infiltration
levels. (D) 220 TCGA patients were divided into three immune subgroups. (E) Risk scores of three immune subgroups. (F–H) Correlations
between risk scores and estimated scores, immune cells, and stromal cells. (I) Comparison of TME scores in two ARG score groups. Adjusted
p-values were shown as ns, not significant; *p<0.05; **p<0.01; ***p<0.001.
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Analysis of drug sensitivity

To further examine the efficacy of the ARG score as a marker

predicting the therapeutic response of the patients, we calculated

the sensitivity of different subgroups of patients to five

chemotherapeutic agents commonly used in OV. As depicted

in Figure S9A, IC50 values of three chemotherapeutic drugs

chosen (gemcitabine, paclitaxel, and vinblastine) were lower in

patients of the low-risk group, while the other two (bleomycin

and docetaxel) were lower in patients of the high-risk group.

Following that, we calculated the correlation between ARGs and

different drugs, and the results further verified the associations

between the ARGs and drug sensitivity (Figure S9B).
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Develop nomograms for
survival predicting

Given the important role of the risk score in the prognostic

model, we incorporated it with clinical characteristics like age and

stage to construct a nomogram, aiming to estimate the clinical

outcomes for 1-, 3- and 5- years (Figure 8A). The C-index of the

nomogram developed was higher than other models that only

consider one clinical feature (Figure 8B). Subsequently, we

estimated the AUC values of these models for predicting the

clinical outcomes at 1-, 3- and 5- years, where the nomogram has

the highest AUC values as we expected, indicating that the

nomogram combined ARG risk score, age and stage has a better
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FIGURE 7

Immune infiltration characteristics of the two subgroups. (A–C) Differences in immune cell abundance. (D) Correlations between risk scores and
immune cell abundance. (E) Correlations between selected genes in prognostic model and immune cell abundance. (F) The expression level of
HLA in two risk groups. (G) Differential expression of thirty-four immune checkpoints in the two subgroups. (H) Correlations between selected
immune checkpoints and risk score. (I–L) The m6Ascore of ips_ctla4_neg_pd1_neg, ips_ctla4_neg_pd1_pos, ips_ctla4_pos_pd1_neg and
ips_ctla4_pos_pd1_pos in two subgroups. Adjusted p-values were shown as *p<0.05; **p<0.01; ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.995929
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tang et al. 10.3389/fonc.2022.995929
prediction performance (Figures 8C–E). The subsequent calibration

diagram further validated the accurate prediction performance by

comparing it with the actual OS observed (Figure 8F).
ARG model as a new predictor of OV

To further demonstrate the predictive capacity of our model,

we examined and compared three previously established OV

prognostic models with our own (51–53). To make them

comparable, multivariate analysis was employed to calculate

the risk value of each dataset with these three published

models. The analysis of survival probability revealed that the

prognosis of the low-risk patients was much better in all of these

three models (Figures S10A–C). However, the ROC curves

indicate that the AUC value of our model was higher than

these three models (Figures S10D–F). Then the C index was

calculated utilizing the restricted mean survival (RMS) package,
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where we observed that the C index of our model was 0.621,

higher than previously established models (Figure S10G). The

above results make us convinced that our model has better

prediction performance.
Discussion

OV is a prevalent gynecological malignancy worldwide with

the highest mortality (54). Every year, more than 240,000

women are diagnosed with OV, responsible for 150,000 deaths

(55). The vast majority of ovarian cancer fatalities are

attributable to the chemoresistant and widely metastatic

disease in the late stage (56). Worse more, while the majority

of patients will respond to first-line chemotherapy, disease

recurrence rates remain high and the 5-year survival rate is

extremely low (57–59). There is an urgent need for the

development of novel therapeutic methods that take advantage
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FIGURE 8

Construction and validation of the nomogram. (A) Nomogram constructed for predicting the clinical outcomes at 1-, 3, and 5- years for OV
patients. (B) The consistency index of prognosis factors. (C–E) The ROC curves of the nomograms for 1-, 3-, 5- years OS in OV patients. (F)
Nomogram calibration curve of 1 -, 3 -, and 5 years.
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of the diverse genetics and unique tumor microenvironment of a

patient’s cancer. Angiogenesis is a natural and complicated

process controlled by various biomolecules produced in the

body. Effective suppression of tumor angiogenesis can help

halt tumor progression, especially when combined with

chemotherapy (60). Moreover, Numerous studies have

demonstrated the inextricable link between intrinsic immunity

and angiogenesis, and angiogenesis inhibiting may play a crucial

role in boosting tumor immunotherapy (61, 62).

Therefore, it is of great significance to explore the role of

angiogenesis in tumors, and many studies have established

prognostic models to assess prognosis and immune

microenvironment in OV (63, 64). The results of our study

demonstrated the function of ARGs in (OV), where we screened

two distinct molecular subgroups based on 48 ARGs and found

that patients in ARGcluster B had superior survival and

clinicopathological features. Subsequently, we investigate the

feature of TME among these two subgroups, where

ARGcluster A has a higher infiltration level of immune cells

and is predicted to benefit more from immunotherapy. In

addition, ARGs are predominately enriched in immune-related

pathways, illustrating their substantial effect on the

immunological regulation of TME. Subsequently, two gene

clusters were identified based on DEGs, where the results

demonstrated the potential of ARGs serving as predictors for

the clinical outcomes and immunotherapeutic response of

patients. Interestingly, patients in gene cluster A have higher

immune infiltration levels, TME scores, and ARG expression

levels but worse survival status. Gene cluster A can be identified

as a “hot” tumor based on these markers, which corresponds to

prior results of ARGclusters, as gene cluster A is an identical

subset of the ARGcluster A.

Based on DEGs, we constructed an ARG-based prognostic

model for individual OV patients. This model consists of

TENM3, GFRA1, HOXA3, and CXCL13. A gene-based query

at the Human Protein Atlas revealed the correlation between

poor survival and high TENM3 expression in the majority of the

examined malignancies, including ovarian, endometrial, and

glioma cancer (65). In addition, immunotherapy has been

developed in response to the identification of TENM3 as one

of the neoantigens expressed in recurrent OV patients (66).

GFRA1 plays a crucial role in the formation and maintenance of

the nervous system, whose abnormal expression level is

frequently observed in numerous cancer cells (67). Mounting

evidence revealed the involvement of GFRA1 in the

development and progression of tumors (68–70). HOXA3 is a

member of the HOX transcription factor family, which regulates

gene expression in embryonic development and performs crucial

physiological functions. The expression of HOXA3 is associated

with the immune system and cancer development, where it has

been used as the diagnostic biomarker in various cancer (71–74).

As for CXCL13, it has functions in inflammatory, infectious, and

immune responses. CXCL13 is involved in the control of cancer
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cell phenotypes and play an important role in the progression

and metastasis of solid tumor (75). Furthermore, a recent study

revealed its function in maintaining the antitumor environment

and supported clinical investigation on the combination of

CXCL13 and PD-1 blockade therapy for high-grade serous

ovarian cancer (76). Accordingly, the ARG score model

comprised of these four genes has the potential to predict the

clinical outcomes and immunotherapy response of OV patients.

TME refers to the ecosystem around the tumor in the body,

which has been considered the crucial determinant in the

incident and progression of OV (77, 78). Moreover, previous

studies have highlighted TME reactive therapy as a promising

strategy for developing accurate cancer-targeted therapies (79,

80). Therefore, we further investigate the TME status in two

ARG score subgroups, where the results revealed that patients in

the low-risk score group have a high estimated score, immune

cells, and stromal cells. Moreover, the ARG score was negatively

correlated with the abundance of some innate and adaptive

immune cells like CD8+ T cells, T cells follicular helper, Gamma

Delta T cells, and macrophages M1. CD8+ T cells often serve as

the backbone of cancer immunotherapy for their prominence as

anticancer immune response effectors (81, 82). The presence of

T follicular helper cells in solid tumor tissue is indicative of a

favorable prognosis, which is indispensable for the potent

antibody responses of B cells (83). As the bridge between

innate and adaptive immune systems, Gamma Delta T cells

are involved in various immune responses during the

progression of the tumor. Moreover, Gamma Delta T cells

have received extensive attention in cancer immunotherapy for

their antitumor cytotoxicity and potent cytokine production

(84). Macrophage M1 has a pro-inflammatory effect, whose

expression is positively correlated to the prognosis of patients

with OV (85). Furthermore, some immune-related processes like

CD8 T effector, antigen processing machinery, and

Pan−F−TBRS were more prevalent in ARGcluster A and gene

cluster A. Subsequently, we further investigate the discrepancies

in the characteristics of TME and the abundance of 22 TIIC

between subgroups, which illustrates the significance of ARGs in

the OV progression.

Currently, the only treatment strategy for OV is

cytoreductive surgery and platinum/taxane combined

chemotherapy. Fortunately, immunotherapy has made great

progress in gynecological malignancies, especially for ICIs

(86). Moreover, a recent study demonstrated that combining

immunotherapy with chemotherapy can considerably enhance

treatment efficacy (87). Further research revealed that the low-

risk score group has higher HLA and immune checkpoint

expression levels. Besides, the high IPS scores in the low-risk

score group indicated higher immunogenicity. As for the six

genes selected, CTLA4, HAVCR2 and CD274 had a negative

correlation to the risk score. All these three genes have been well

studied and proved to be important immunotherapeutic targets

(88–91). TMB is regarded as a significant immunotherapy
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predictor, where multiple tumor instances demonstrated that the

TMB score is positively correlated to the immunotherapy

outcome, corresponding to our findings (92). The above

results demonstrated that the low ARG score group is more

suitable for immunotherapy.

The mutation rate of the two ARG score subgroups

presented some similarity, where genes like TP53 (>80%), and

TTN (>20%) all presented high alternations. These two genes

have been demonstrated to play important roles in tumor

progression and immune infiltration of TME in previous

research (93–95). Nowadays, chemotherapy resistance remains

a major challenge in the treatment of ovarian cancer (96). This

study further investigated potentially sensitive agents in patients

of different ARG score groups, which may help alleviate drug

resistance and improve clinical outcomes. It was observed that

the IC50 values of three chemotherapeutic drugs (gemcitabine,

paclitaxel, and vinblastine) were lower in the low ARG score

group, while the other two (bleomycin and docetaxel) were lower

in the high ARG score group. Moreover, significant differences

in drug sensitivity were detected between the two risk groups,

where specific people identified can be treated with drugs of

higher sensitivity.

Finally, we incorporated the ARG scores and clinical features

like age and stage into a nomogram to illustrate the function of

these factors in OV prognosis and thereby improve the clinical

application of the ARG score. In this study, three previously

established models were selected and their prediction

performance was compared (51–53). Nevertheless, current

research has limitations. All conclusions are based on the

processing and analysis of public database data, but there is a

dearth of clinical data and experimental studies to verify the results.

Future research into the clinical applicability of the model will

necessitate the collection of additional OV cases and the execution

of a substantial number of prospective clinical evaluations.
Conclusion

Our comprehensive analysis of ARGs successfully

demonstrated its value in the field of TME, prognosis, and

clinical characteristics of OV patients. Our study also

highlights the value of ARGs in the prognostic model and

their potency as the biomarker of the immunotherapy

response. Our findings validate the great clinical significance

of ARGs and provide new guidance for further research on

personalized therapy strategies for OV patients.
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The flow chart of this study.

SUPPLEMENTARY FIGURE 2

Correlation between the OS variations and gene expression level.

SUPPLEMENTARY FIGURE 3

Consensus clustering analysis. (A) Uniform clustering cumulative

distribution function (CDF) with the number of clusters k, ranging from
2 to 9. (B) The change of area under CDF curve with k ranging from 2 to 9.

(C) Tracking plot of the cluster when k = 2.

SUPPLEMENTARY FIGURE 4

Consensus clustering analysis. (A) Uniform clustering cumulative
distribution function (CDF) with the number of clusters k, ranging from

2 to 9. (B) The change of area under CDF curve with k ranging from 2 to 9.
(C) The samples were classified into two clusters when k = 2. (D) Tracking
plot of the cluster when k = 2.

SUPPLEMENTARY FIGURE 5

Identification of representative candidate prognostic genes. (A, B) The
LASSO regression analysis and partial likelihood deviance on the

prognostic genes.
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SUPPLEMENTARY FIGURE 6

Validation of the prognostic model based on ARG score. The expression
patterns of eight genes between the two groups in testing set_GSE9891

(A), testing set_GSE9891+TCGA (B). Themedian risk score to separate the
patients in testing set_GSE9891 (C), testing set_GSE9891+TCGA (D). The
fustat of pat ients in test ing set_GSE9891 (E) and test ing
set_GSE9891+TCGA (F) were shown in a scatter plot. Kaplan–Meier

analysis reveals the difference of the survival probability between the
two groups in testing set_GSE9891 (G), testing set_GSE9891+TCGA (H).
ROC curves were performed to predict the sensitivity and specificity of 1-,

3- and 5-year survival according to the CRG score in testing set_GSE9891
(I), testing set_GSE9891+TCGA (J).

SUPPLEMENTARY FIGURE 7

Clinical correlation analysis and stratified analysis of the model. (A–D)
Comparison of risk scores of patients with different ages, fustat, grade and

stage. (E–J) Survival analysis ofOV patientswith various clinical characteristics.
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SUPPLEMENTARY FIGURE 8

Analysis of TMB in ARG score groups. (A, B) Relationships between ARG
scores and TMB. (C) Analysis of survival probability in different TMB

groups. (D) Analysis of survival probability combined TMB and ARG
scores. (E, F) The distribution of somatic mutations in two ARG

score groups.

SUPPLEMENTARY FIGURE 9

Analysis of drug sensitivity. (A) The difference of bleomycin, docetaxel,

gemcitabine, paclitaxel and vinblastine IC50 between high and low risk

groups of patients, respectively. (B) Correlation between common drugs
and ARGs

SUPPLEMENTARY FIGURE 10

Comparison of our risk model with three published models. (A–C) Analysis
of survival probability for three published models. (D–F) ROC curves of

three published models. (G) Comparison of the C-index in four models.
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