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Abstract Introduction: We examine interactive and intensification effects of type 2 diabetes (T2D) with
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APOE and an Alzheimer’s disease genetic risk score (GRS) on neurocognitive speed performance
and change in nondemented older adults.
Methods: In an accelerated longitudinal design, we used latent growth modeling to test moderators
of level and change in a neurocognitive speed latent variable for 628 adults (baseline median
age 5 69.0) followed over 9 years. The GRS was compiled using the cumulative risk of APOE,
CLU, CR1, and PICALM.
Results: First, T2D predicted slower speed performance at centering age (75). Second, no predictive
effects were associated withAPOE or GRS. Third, a significant interaction showed that high risk from
both T2D and GRS was selectively associated with steeper longitudinal slowing than all comparison
cross-domain risk groups.
Discussion: Higher AD-related genetic risk intensified deleterious effects of diabetes on neurocog-
nitive slowing in nondemented aging beyond the independent influence of APOE.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Risk factors associated with Alzheimer’s disease (AD) can
be identified several years before the onset of the disease (e.g.,
obesity [1]). Prominent clusters of risk factors for AD also in-
fluence patterns of nondemented cognitive aging. These
include biological (genetic polymorphisms), medical (type
2 diabetes [T2D]), lifestyle, and environmental factors. T2D
is a potentially modifiable risk factor that has been linked to
increased risk of AD [2,3] and to changes in the non-AD
brain (e.g., exacerbated insulin dysregulation, disrupted Ab
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clearance). These changes are associated with decrements
in neurocognitive performance in cross-sectional and longitu-
dinal studies [4–9]. The effects of T2D on nondemented
cognitive aging may be modified or intensified by other risk
factors including genetic risk [10–12].

Although APOE is the gene most consistently linked to
AD risk, genome-wide association studies have identified
several additional genotypes associated with AD [13–15].
These include clusterin (CLU), complement component
(3b/4b) receptor 1 (CR1), and phosphatidylinositol-binding
clathrin assembly protein (PICALM). APOE has been
associated with AD, mild cognitive impairment [16,17],
and nondemented cognitive decline [18–20]. Specifically,
34 carriers are at higher, and 32 carriers at lower, risk for
cognitive deficits, including neurocognitive speed
[18,20,21]. CLU, CR1, and PICALM all contribute to AD
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risk, but the effects on cognitive outcomes show mixed
results. The CLU risk allele (i.e., C) has been linked to
faster rates of memory decline in individuals who
eventually convert to mild cognitive impairment or AD
[22]. The CR1 risk allele (i.e., A) has been associated with
faster decline in a five-domain global cognition measure
[23]. For the PICALM risk allele (i.e., T), no significant as-
sociations with memory [24] or executive function [25] per-
formance have been reported. This prompted us to test the
minor allele (C) as a risk factor for cognitive decrements
in nondemented aging. Independently, these genes present
relatively low penetrance and consequently low effect sizes,
but together they may account for substantial AD risk
[13,14,26,27], especially within the context of other risk
factors [28,29]. A joint or multilocus approach in the form
of a genetic risk score (GRS) may be informative in
representing combined AD genetic risk [26,28,30].
Although identification of multiple genetic risk factors via
genome-wide association studies is very important, the in-
depth examination of selected individual risk variants,
both separately and in combination, provides novel under-
standing of the pathways leading to cognitive decline and
AD [28,31]. Specifically for the present study, we examine
APOE (rs429358, rs7412), CLU (rs11136000), CR1
(rs6656401), and PICALM (rs541458).

Neurocognitive speed is considered a basic cognitive
ability influencing decline on multiple complex cognitive
processes with aging [32,33]. Speed may be an early
indicator of normal or preclinical cognitive decline,
possibly shaping the change profiles of more complex
processes such as episodic memory or executive function.
Speed has been reported to predict individual differences
in global cognition and episodic memory [32,33], mild
cognitive impairment [34,35], and risk of AD [36]. Impor-
tant for the present study, T2D has been associated with
typical speed deficits in older adults [7]. The present study
uses a combinatorial candidate gene approach to identify
an AD-related GRS. T2D status, APOE, and a GRS (i.e.,
APOE, CLU, CR1, PICALM) were analyzed independently
and interactively (i.e., GRS ! T2D status) using speed,
modeled as a latent variable, as the outcome.

After first determining the best latent growth model repre-
senting the functional form of speed performance and change,
weexamined two researchgoals.Researchgoal 1was to deter-
mine if T2D status, APOE, or GRS independently predicted
latent speed level or 9-year longitudinal change. We hypothe-
sized thatbothT2DstatusandGRS,butnotAPOE,would inde-
pendently predict speed level and change.Research goal 2was
todetermine ifT2Dstatus andAPOEorGRS interactively pre-
dicted level of speed performance at age 75 (intercept) and 9-
year slowing (slope).Wehypothesizedan intensificationeffect
in that higher-risk GRS would magnify the negative associa-
tions of T2D with speed level and change above that of other
risk combinations (including APOE independently). For vali-
dation,wechecked the effects ofT2D-associated factors as co-
variates and an alternate GRS (i.e., without APOE).
2. Methods

2.1. Participants

Participants were community-dwelling volunteer adults
(initially aged 53–91 years) from the Victoria longitudinal
study (VLS). The VLS is a longitudinal sequential study
examining neurocognitive aging and impairment in relation
to biomedical, genetic, health, lifestyle, and other aspects
[37]. The VLS and all present data collection procedures
are in full and certified compliance with prevailing human
research ethics guidelines and boards. Informed written con-
sent was provided by all participants. Using standard proce-
dures (e.g., [38,39]), we assembled longitudinal data
consisting of three VLS samples, each with three available
waves collected in the 2002–2012 period. The longitudinal
period was 8.9 years, and the band of aging represented
was about 40 years (53–95).

The eligible source sample consisted of 683 participants
with genetic data (collected in 2009–2011). Several exclu-
sionary criteria were then applied to this source sample as
follows: (1) a diagnosis of AD or any other dementia, (2)
a mini-mental status examination [40] score of less than
24, (3) a self-report of “severe” for potential comorbid con-
ditions (e.g., epilepsy, head injury, depression), (4) a self-
report of “severe” or “moderate” for potential comorbid dis-
eases such as neurologic conditions (e.g., stroke, Parkin-
son’s disease), and (5) insufficient cognitive data. From
the remaining participants, we applied the standard and
strict VLS multilevel diagnostic regimen for classifying
T2D [7,9]. Specifically, inclusion into the T2D group
required the following conditions during any of the three
data collection waves: (1) self-report of T2D diagnosis,
(2) specified method of treatment (i.e., oral medication, in-
sulin, diet and exercise, no control), (3) objective evidence
of reported T2D medication, and (4) validation of T2D sta-
tus (repeating the three previous steps) from the subsequent
wave.

The final baseline sample for this study consisted of
628 nondemented adults; 422 were women and 206 were
men (mean [M] age 5 69.0 years, standard deviation
[SD] 5 7.57, range 53.2–91.0). See Table 1 for all back-
ground characteristics. The standard T2D diagnostic proce-
dure resulted in 54 adults (8.6%) with T2D (at W1 M
age5 70.0, SD5 7.57, range5 55.4–88.2 years; 29 women
[53.7%]). Therefore, the W1 non-T2D group included 574
adults (M age5 68.9, SD5 7.57, range5 53.2–91.0 years;
393 women [68.5%]).
2.2. Neurocognitive speed measures

Three multitrial computer-based reaction time measures
were used to assess neurocognitive speed: (1) choice reac-
tion time, (2) lexical decision, and (3) sentence verification
(see Supplementary Material for description of tasks). All
tasks were presented on a computer that controlled the pre-
sentation rate of the stimulus [35]. Correction procedures



Table 1

Participant characteristics categorized by time point

Characteristics W1 W2 W3

n 628 551 469

Age (y) 69.0 (7.57) 73.5 (7.54) 77.4 (7.19)

Range 53–91 57–95 62–95

Gender (% women) 67.2 67.2 66.3

Years between waves — 4.40 (0.50) 4.50 (0.58)

Retention rate 89% (W1–W2) 85% (W2–W3)

75% (W1–W3)

Education (y) 15.2 (3.01) 15.3 (3.00) 15.2 (3.14)

Health to perfect* 1.76 (0.72) 1.85 (0.74) 1.89 (0.79)

Health to peersy 1.58 (0.69) 1.61 (0.67) 1.68 (0.73)

Pulse pressure (mm Hg) 51.7 (10.0) 54.5 (12.4) 56.9 (12.5)

Range 31.1–95.2 26.2–120.9 29.0–102.6

BMI (kg/m2) 26.9 (4.49) 26.7 (4.28) 26.6 (4.34)

Range 15.0-55.9 16.0-48.6 10.0-40.2

Smoking status (%)

Present 5.3 3.5 2.0

Previous 53.2 55.4 55.5

Never 41.4 41.2 42.5

Alcohol use (%)

Presently 87.1 90.5 88.1

Previous 5.7 5.1 9.5

Never 7.3 4.4 2.4

T2D status (% T2D)z 53 (8.5) 45 (8.2) 40 (8.5)

Characteristics T2D Control T2D Control T2D Control

Age 70.0 (7.57) 68.9 (7.57) 74.2 (7.26) 73.4 (7.57) 78.2 (64.2) 77.4 (7.23)

Range 55–88 53–91 60–91 57–95 64–91 62–95

Gender (% women) 54.7 68.2 57.8 68.0 52.5 67.6

Abbreviations: W1, wave 1; W2, wave 2; W3, wave 3; BMI, body mass index; T2D, type 2 diabetes.

NOTE. Results presented as mean (standard deviation) unless otherwise stated. Smoking and drinking status are reported in percentages of participants who

responded to the question (W1 n 5 618; W2 n 5 549; W3 n 5 463).

*Self-reported health relative to perfect.
ySelf-reported health relative to peers. Self-report measures are based on 1 “very good” to 5 “very poor.”
zReported at W1, W2, or W3.
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validated by the VLS were used to trim extreme outliers
from raw latency scores for each of the reaction time mea-
sures (Supplementary Material).
2.3. DNA extraction, genotyping, and GRS development

Saliva was collected according to standard procedures
from Oragene-DNA Genotek and stored at room tempera-
ture in the Oragene disks until DNA extraction. DNA was
manually extracted from the saliva sample mix using the
manufacturer’s protocol, and genotyping was carried out us-
ing a PCR-RFLP strategy as described in the Supplementary
Material. For all analyses including APOE, the genotype
ε2/ε4 (n 5 32) was removed. Genetic analyses included ge-
notype categorization based on three degrees of risk. For dis-
tribution of risk by gene, see Table 2. The AD GRS was a
simple count of allelic risk for APOE, CLU, CR1, and PIC-
ALM, according to a standard formula (i.e., no risk 5 0 [no
risk alleles], moderate risk 5 1 [one risk allele], and most
risk5 2 [two risk alleles; [41]]). The GRS was then grouped
into low and high risk using a median split (median 5 3.0;
Table 2).
2.4. Statistical analyses
2.4.1. Approach
Analyses pertaining to our research goals included

confirmatory factor analysis and latent growth modeling.
Statistical model fit for all analyses was determined using
standard indexes (Supplementary Material). Using Mplus
7 [42], we identified a one-factor neurocognitive speed
latent variable reflecting contributions from the three
manifest indicators. We conducted invariance tests across
three waves (for model goodness-of-fit indexes, see
Supplementary Table 1). Using the best fitting speed model,
we calculated factor scores and used these in all subsequent
analyses. We analyzed the basic latent variable speed data
to confirm expected sensitivity to differences in level and
change. Age was a continuous variable centered at 75 years
(the frequently used center point of the 40-year band of data
[43]). Chronological age was used as the metric of change
for these analyses. Higher scores indicated poorer perfor-
mance. The results of the model showed that individuals
(1) varied in speed performance at age 75 (b 5 1.08,



Table 2

Allelic risk across genotypes and Alzheimer’s disease-related genetic risk

score

Gene No risk Moderate risk Full risk

APOE ε2/ε2, ε2/ε3, ε3/ε3 ( 342) ε4/ε3 ( 341) ε4/ε4 ( 341)

n 449 134 13

CLU TT (C2) TC (C1) CC (C1)

n 99 314 215

CR1 GG (A2) GA (A1) AA (A1)

n 213 335 80

PICALM TT (C2) TC (C1) CC (C1)

n 244 231 153

Gene Low risk High risk

APOE, CLU, CR1, PICALM* (0–3) (4–8)

n 385 211

CLU, CR1, PICALMy (0–3) (4–6)

n 452 176

Abbreviations: T2D, type 2 diabetes; GRS, genetic risk score.

*Bivariate correlation between T2D and GRS 5 20.011.
yBivariate correlation between T2D and GRS 5 0.001.
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Fig. 1. Predicted growth curve model of neurocognitive speed with T2D

health status as predictor. Age used as a continuous variable centered at

75 years was themetric of change. Higher scores represent slower speed per-

formance. Regression of intercept (level at age 75) b5 0.483 (SE5 0.174),

P 5 .005. Regression of slope (9-year change) b 5 0.019 (SE 5 0.014),

P 5 .179. Abbreviations: T2D, type 2 diabetes; SE, standard error.
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P , .001), (2) exhibited significant 9-year slowing
(increased slopeM5 0.021, P, .001), (3) showed variable
patterns of decline (b5 0.006, P, .001), and (4) with bet-
ter (lower) speed performance level at age 75 exhibited less
9-year slowing (r 5 0.043, P , .001).

2.4.2. Analyses for research goal 1

2.4.2.1. Determine the independent effects of T2D status,
APOE, and GRS

To determine the independent effect of each of our risk
factors, T2D status, APOE, and GRS, we used the best un-
conditional growth model identified for speed and added
each risk factor as an independent predictor of speed. The
intercept (level of speed performance at age 75) and slope
(9-year slowing) were regressed separately on these factors.

2.4.3. Analyses for research goal 2

2.4.3.1. Determine the interactive effects of T2D status,
APOE, or GR

We computed a conditional growth model for speed with
T2D status as a predictor using the APOE or GRS groupings
(low-risk, high-risk). See Table 2 for distribution of the low-
and high-risk groups.

2.4.4. Follow-up covariate analyses
For further clarification, we conducted two follow-up

analyses. First, we tested covariates with possible associa-
tions to T2D (i.e., pulse pressure, body mass index, smok-
ing, drinking, two measures of self-reported health,
education, sex) in the model testing GRS ! T2D interac-
tions. Second, to further elucidate the role of APOE in pre-
dicting speed performance and change, we tested a model
for which APOE was omitted from the GRS (i.e., CLU,
CR1, PICALM).
3. Results

3.1. Research goal 1: Determine the independent effects of
T2D status, APOE, and GRS

First, T2D status significantly predicted level of speed
at age 75 (P 5 .005) but not 9-year change (P 5 .179;
Fig. 1). Specifically, adults without T2D classification
(M 5 20.102) performed better on speed tasks at age
75 than adults classified with T2D (M 5 .380). Second,
APOE showed no independent effect on speed level
(P 5 .429) or 9-year change (P 5 .918). Third, no indepen-
dent effect on speed level or 9-year change was observed for
CLU (P 5 .304; P 5 .324), CR1 (P 5 .781; P 5 .962), or
PICALM (P 5 .976; P 5 .149). Fourth, GRS did not confer
an independent risk for speed performance at age 75
(P 5 .362) or 9-year decline (P 5 .898).
3.2. Research goal 2: Determine the interactive effects of
T2D status, APOE, or GRS
3.2.1. APOE
No significant interaction effect of T2D status on speed

level and slowing was observed by APOE risk group
(Supplementary Table 2).

3.2.2. GRS (APOE, CLU, CR1, and PICALM)
Significant interaction effects were observed for 9-year

slowing (P 5 .029). The high-risk GRS group exhibited sig-
nificant T2D health status differences in 9-year slowing
(b 5 0.048, P 5 .004; Fig. 2). Adults with high GRS risk
and T2D (M 5 0.065) exhibited more slowing than adults
with high GRS risk and no T2D (M 5 .017). Adults in the
low-risk GRS group exhibited no significant T2D status dif-
ferences in slowing and were similar to adults in the high-
risk GRS group with no T2D (i.e., low GRS risk, no T2D
M5 0.019; low GRS risk, T2D M5 0.018).



Table 3

Genetic risk score ! type 2 diabetes covariate models

Type 2 diabetes plus

covariates

Low genetic risk High genetic risk

Level b Change b Level b Change b

Genetic risk score all covariate model

Type 2 diabetes 0.435 20.003 0.239 0.039*

Gender 0.060 0.006 0.184 0.004

Pulse pressure 0.001 0.002** 0.005 0.001

Body mass index 20.011 0.000 0.004 0.000

Smoking 20.015 0.001 20.023 20.011

Drinking 0.089 0.002 20.017 20.002

Education 20.053** 20.002 20.056* 20.002

Health relative to

perfect

0.194 0.000 0.182 0.028

Health relative to

peers

20.070 20.012 0.078 20.027

Genetic risk score pulse pressure, body mass index, smoking covariate

model

Type 2 diabetes 0.535 20.006 0.397 0.040*

Pulse pressure 0.002 0.002** 0.010 0.002**

Body mass index 20.010 20.001 0.002 0.000

Smoking 0.001 0.001 20.021 20.009

Genetic risk score without APOE all covariate model

Type 2 diabetes 0.491 0.009 0.321 0.013

Gender 0.089 0.006 0.118 0.008

Pulse pressure 0.003 0.002 0.006 0.002**

Body mass index 20.011 0.001 20.002 20.001

Smoking 0.028 0.002 20.021 20.006

Drinking 0.146 0.000 20.064 0.003

Education 20.054* 20.002 20.061** 20.002

Health relative to

perfect

0.189 0.005 0.180 0.013

Health relative to

peers

20.143 20.015 20.011 20.022

Genetic risk scorewithoutAPOE, pulse pressure, bodymass index, smoking

covariate model

Type 2 diabetes 0.575* 0.007 0.402 0.012

Pulse pressure 0.004 0.002* 0.009 0.002***

Body mass index 20.009 0.001 20.002 20.002

Smoking 0.033 0.001 20.038 20.006

NOTE. *P , .05, **P , .01, and ***P , .001.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

55 65 75 85 95

N
eu

ro
co

gn
i

ve
 S

pe
ed

 F
ac

to
r S

co
re

Age in Years

No T2D, Low GRS

No T2D, High GRS

T2D, Low GRS

T2D, High GRS

Fig. 2. Predicted growth curve model of neurocognitive speed using T2D

status as predictor grouped by GRS (APOE, CLU, CR1, and PICALM)

low and high risk. Higher scores represent slower speed performance.

Low risk: Regression of intercept (level at age 75) b 5 0.508

(SE 5 0.270), P 5 .059. Regression of slope (9-year change) b 5 20.001
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75) b5 0.441 (SE5 0.252), P5 .080. Regression of slope (9-year change)

b 5 0.048 (SE 5 0.017), P 5 .005. Abbreviations: T2D, type 2 diabetes;

GRS, genetic risk score; SE, standard error.
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3.2.3. Follow-up analyses
First, of the T2D-related covariates tested, only pulse pres-

sure and education exhibited significant effects on speed
(Table 3). Specifically, higher education was associated with
better speed performance at age 75 (in both genetic risk
groups), and poorer (higher) levels of pulse pressure were
associated with more slowing in the low-risk genetic group.
However, no change in the main results was observed: The
GRS was still sensitive to T2D differences in the presence
of these covariates. Second, although there were no indepen-
dent effects observed for either GRS or APOE, the GRS
(which included APOE) modified the T2D prediction of
speeded performance. The follow-up analyses excluding
APOE from the GRS revealed a similar basic pattern to that
observedwith the full GRS. Specifically, the high-risk genetic
groupwithT2Dexhibited themost 9-year slowing (b5 0.045,
P5 .023; Fig. 3). However, interaction analyses were not sig-
nificant (P 5 .063). In addition, when pulse pressure was
added as a covariate, the intensification interaction with the
GRS (without APOE) was no longer significant, confirming
the importance of the full GRS.Wevalidated the simple count
GRS by comparing it with an odds ratio GRS [28,44]. We
observed similar GRS ! T2D effects on level of speed
performance at age 75 and change for both versions of the
GRS (Supplementary Table 3, Supplementary Figs. 1 and 2).
4. Discussion

Our objective was to examine potential AD-related gene
! health intensification of risk for longitudinal cognitive
decline in nondemented older adults representing a 40-
year band of aging. Specifically, we found that the interac-
tion of an AD GRS with T2D status was associated with
steeper longitudinal decline in neurocognitive speed. The
key sequence of findings leading to the interpretation of
risk intensification is as follows.
First, we confirmed the robustness of the neurocognitive
speed latent growth model showing expected decremental
change (slowing) over time. Second, we observed that adults
with T2D performed slower (than adults without classified
T2D) at the centering age of 75, but the groups did not differ
in the rate of decline. These findings support research that sug-
gests T2D may have a demarcated onset for cognitive
dysfunction but not an ongoing acceleration of decline
[5,6]. Reduced insulin sensitivity and macrovascular disease
associated with T2D may occur early in disease pathology,
leading to cognitive deficits that predispose adults with
diabetes for other downstream effects associated with
dementia risk [5,6,45–48]. Third, APOE was not
independently associated with either speed performance (at
the centering age) or decline. Some contrasting results have
appeared regarding APOE-cognition associations in
nondemented aging [20]. Unlike most studies, our results
reflect statistical modeling and a latent speed variable, reflect-
ing contributions of three manifest speed measures. Fourth,
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like APOE, the GRS had no independent effect on speed per-
formance or change. The modest penetrance of especially
three of the four genes comprising the GRS was not cumula-
tively sufficient to produce detectable effects on speed. Argu-
ably, speed is not specific to AD [21,28,36] so the absence of
an independent effect for both APOE and GRS (including
APOE) is not surprising.

Fifth, our major result is that GRS intensified the delete-
rious effects of T2D on neurocognitive speed. Specifically,
adults with high-risk GRS and T2D exhibited the steepest
9-year decline in neurocognitive speed. Notably,APOE alone
did not exacerbate the effects of T2D on speed performance
or change. Our findings suggest that the use of a cumulative
AD-related GRS in combination with an AD-related health
risk factor (T2D) can provide more information than single
(candidate) genetic or health risk factors alone. We note
that a GRS without APOE was also informative (suggesting
the potential value of testing other genetic combinations) but
was not as robust as the full GRS. The GRS is an efficient
way of representing broader and deeper AD-related genetic
risk, but its influence on cognitive (specifically, speed)
change in nondemented adults is observed in synergistic
combination with another AD-related risk factor [43,49].
Overall, such an approach may also be valuable for
predicting conversion to mild cognitive impairment and AD.

The pathways underlying the interactive effect of T2D!
GRS on neurocognitive speed require detailed mechanistic
studies. T2D effects may contribute risk upstream from the
AD-pathology associated with AD genetic risk factors
(e.g., increased Ab, tau load) via vascular brain pathology
in the form of increased cerebral infarcts or neuroinflamma-
tion [45], whole brain atrophy [46], white matter connectivity
abnormalities [47], or acute hyperglycemic or insulin resis-
tance effects for which genes associated with lipid control
(i.e., APOE, CLU) may play a role [5]. Neurocognitive speed
is known to decline systematically throughout adulthood and
to be quite sensitive to subtle changes in brain health
[32,33,35]. When well measured (e.g., at the latent variable
level), it may prove to be an early behavioral indicator of
accumulating biological changes associated with
accelerated cognitive decline and preclinical impairment.

There are several limitations to note. T2D status was as-
sessed using a strict and standard multistep process but did
not include continuously distributed and relevant biomarkers
(i.e., glycated hemoglobin). However, the VLS protocol for
classifying T2D status is well developed and has been used
successfully in previous studies [7–9]. In addition, although
our T2D sample is consistent with national prevalence rates,
the number of T2D participants in the sample limited the
utilization of extreme genetic risk groupings. We therefore
used dichotomized categorization of the GRS. Second, our
sample was derived from a relatively healthy group of
community-dwelling older adults with access to national
health care. Although the sample may not be representative
of all older adults, our findings represent a conservative esti-
mation of the cumulative and interactive effects of genetic
and health biomarkers for a growing segment of nonde-
mented older adults. Third, the VLS data set does not include
a full complement of AD-related genes. Although the AD-
related GRS exhibited interesting results, future studies
will include other genome-wide association study-identified
AD-related genes examined individually and in synergistic
combination.

There are also several strengths associated with this study.
First, we used contemporary statistical approaches to analyze
a set of research goals that systematically built the case for
the final interaction analyses. Second, we examined the effect
of continuously measured age in an accelerated longitudinal
design that allowed us to determine the effects of T2D and the
combined effects of four genes associated with AD risk
across three data collection points spanning about 9 years.
Third, our sample was relatively large (i.e., W1 n 5 628)
and well characterized. That this group comprised a band
of about 40 years (55–91) is important to note.

In conclusion, consistentwith a risk-intensification interpre-
tation, adults with both high-risk genetic and T2D status risk
declined differentially faster (than other risk combinations) in
neurocognitive speed over three time points. Neither APOE
alone nor GRS exhibited independent effects on speed perfor-
mance and change. The observed association of T2D was
limited to group difference in the level of performance and
not 9-year slowing. Planned follow-up analyses clarified the
role of APOE. In the absence of APOE, the three-gene GRS
produced similar effects on speed, suggesting a cumulative ge-
netic influence outside that contributed by APOE. Neverthe-
less, the three-gene GRS interaction effects were attenuated
by vascular health, indicating that APOE played a risk-
strengthening role in the context of the AD GRS. Predictions
of cognitive change in nondemented aging, and perhaps transi-
tions to cognitive impairment and AD, may benefit from
consideration of specific multilocus genetic risk patterns.
Moreover, the role of such risk scores may be substantial and
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detectablewhen they are examined in interactionwith selected
cross-domain biomarkers (i.e., health or lifestyle risk factors).
Identification of specific subpopulations based on unique risk
factors will be helpful for future clinical interventions.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature using
online databases (e.g., Medline) and available sour-
ces. We consulted an emerging literature linking ge-
netic and health risk factors for Alzheimer’s disease
(AD) and nondemented neurocognitive aging. We
also used relevant citations from longitudinal design
and analyses literature.

2. Interpretation: Examining interactions among
biomarker indices and health markers can substantially
advance our understanding of trajectories and transi-
tions leading to cognitive decline, impairment, and
AD. An AD genetic risk score provided an empirically
useful representation of genetic risk. Higher genetic risk
intensified the deleterious effects of type 2 diabetes on
neurocognitive slowing. The genetic risk score contrib-
uted predictive power beyond that of APOE alone.

3. Future directions: Future research includes
continued examination of independent and interac-
tive predictions of AD risk from (1) genetic, (2)
vascular health, and (3) lifestyle domains. We will
use both candidate biomarkers and novel risk indices
in longitudinal studies.
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