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Review Article

IntroductIon

Beta 2 microglobulin (β2M) is a small protein (11,800 
Dalton), presenting in nearly all nucleated cells and most 
biological fluids, including serum, urine, and synovial 
fluid.[1,2] No genetic variant of β2M is known in human.[3] 
The human β2M shows 70% amino acid sequence similarity 
to the murine protein and both of them locate on the syntenic 
chromosomes.[1,4] The secondary structure of β2M consists 
of seven β‑strands which are organized into two β‑sheets 
linked by a single disulfide bridge, presenting a classical 
β‑sandwich typical of the immunoglobulin (Ig) domain.[5‑7] 
β2M has no transmembrane region and contains a distinctive 
molecular structure called a constant‑1 Ig superfamily 
domain, sharing with other adaptive immune molecules 
including major histocompatibility complex (MHC) class I 
and class II.[8] Two evolutionary conserved tryptophan (Trp) 

residues are important for correct structural fold and function 
of β2M.[3,9] Trp60 is exposed to the solvent at the apex of a 
protein loop and is critical for promoting the association 
of β2M in MHC I. The mutation of Trp60 increases the 
stabilization of β2M, inhibits β2 amyloidogenic propensity, 
and weakens the interaction with the heavy chain of MHC I. 
Trp95 is buried in the β2M core, and the mutation of Trp95 
destabilizes the protein, yielding nonfibrillar β2M aggregates. 
Both Trp residues play differential and complementary roles 
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in the structure of β2M, distinctly affecting β2M toward 
self‑aggregation into amyloid fibrils. Once the aspartate 
residue is replaced by asparagine residue at position 76, 
β2M becomes thermodynamically unstable and remarkably 
fibrillogenic in vitro under physiological conditions.[10]

Normally, β2M is noncovalently linked with the other 
polypeptide chain (α chain) to form MHC I or like structures, 
including MHC I, neonatal Fc receptor (FcRn), a cluster of 
differentiation 1 (CD1), human hemochromatosis protein (HFE), 
Qa, and so on. β2M makes extensive contacts with all three 
domains of the α chain.[11] Thus, the conformation of α chain 
is highly dependent on the presence of β2M. Although α1 and 
α2 domains differ among molecules, α3 domain and β2M 
are relatively conserved, where the intermolecular interaction 
occurs.[12] A number of residues at the points of contact with β2M 
are shared among MHC I or like molecules.[13] Furthermore, 
interactions with α1 and α2 domains are important for the paired 
association of α3 domain and β2M in the presence of native 
antigens.[14] β2M could dissociate from such molecules and 
shed into the serum, where it is transported to the kidneys to be 
degraded and excreted. An 88‑kD protein (calnexin) associates 
rapidly and quantitatively with newly synthesized murine MHC 
I molecules within the endoplasmic reticulum.[15] Both β2M 
and peptide are required for efficient calnexin dissociation and 
subsequent MHC I transport.[16]

Not only β2M is to interact with and stabilize the tertiary 
structure of the MHC I or like molecules, but also it is 
extensively involved in the functional regulation of survival, 
proliferation, apoptosis, and even metastasis in cancer 
cells.[17] As well as a cancer prognostic marker, β2M is also 
a promising cancer therapeutic target. Although β2M acts 
as both a positive and negative growth factor in different 
cancer cells, the application of anti‑β2M antibodies induces 
cancer cell apoptosis and do not block the down‑regulation 
effect of β2M in myeloma cells.[18] Moreover, systemic β2M 
accumulation in aging blood promoted age‑related cognitive 
dysfunction and impairs neurogenesis, suggesting that β2M 
may be targeted therapeutically in old age.[19] Thus, targeting 
β2M will shed light on the modulatory activity in the immune 
system and provide new pathways on cancer or aging‑related 
therapeutics. This review will only focus on the characteristic 
and function of β2M under present knowledge. For MHC I 
or like molecules, they have been well reviewed previously 
and are not the scope of this study.

regulatIon and ModulatIon of Beta 2 
MIcrogloBulIn

β2M expresses at a constant level in many cells, however, 
the formation of β2M would be enhanced in the presence of 
IFN‑α.[17] β2M could induce the expression of interleukin 
6 (IL‑6), 8 and 10 in several cell types, regulate the 
expression of hormone/growth factor, and coordinate the 
interaction between cytokines and their receptors.[20‑22]

Like a prototypical oncogenic factor, β2M is able to 
stimulate growth and progression of various cancers.[23‑25] In 

cancer bone metastasis, β2M allows cancer cells to continue 
to synthesize and deposit bone‑like proteins. The growth and 
migration of mesenchymal stem cells would be promoted 
by exogenous overexpression of β2M through enhanced 
phosphorylation of cAMP response element‑binding 
protein and upregulation of IL‑6 and vascular endothelial 
growth factor.[26,27] β2M could support lethal bone and soft 
tissue metastasis via activating epithelial to mesenchymal 
transition.[28,29] β2M also acts as an apoptosis‑inducing 
factor in several leukemic, lymphoma, and myeloma cell 
lines.[18,30,31] Inhibition of β2M enhanced the radiation 
sensitivity by induction of iron overload in prostate cancer 
cells.[32]

In patients suffering from long‑term hemodialysis, a high 
concentration of serum β2M leads that β2M deposits in 
skeletal joints and forms amyloid plaques. Among the 
fibrils, full‑length β2M is the major component, although 
other derivatives of β2M are also present.[33] Furthermore, 
the H51A point mutation of β2M exhibits a 2‑fold increase 
in the lag‑time of fibril formation.[34]

β2M also induces a dose‑ and time‑dependent, cell‑mediated 
calcium efflux from neonatal mouse calvariae that involves 
osteoclast stimulation, which is mediated by IL‑1β partly.[35] 
The expression and covalent association of tapasin, assisting 
MHC I to load antigenic peptides, were enhanced by the 
presence of β2M.[36]

IndIcatIons froM the level of free Beta 2 
MIcrogloBulIn

The abnormal level of β2M in blood or urea is associated 
with multiple diseases, such as some acute and chronic 
inflammations, liver or renal dysfunctions, some viral 
infections, and several malignancies.[2,17] Furthermore, 
amyloidosis associated to hemodialysis is related with 
persistently high β2M serum levels.[37‑39] In rare cases, a 
cerebrospinal fluid β2M level is used to assess a disease 
involved with the central nervous system.[40,41]

Serum and plasma β2M values reflect the activation of 
the cellular immune system, as well as a tumor marker in 
certain hematologic malignancies.[42‑47] For the inflammatory 
bowel disease, β2M was suggested to be used as an activity 
parameter.[48] β2M levels also rise during infection with 
some viruses, including cytomegalovirus and human 
immunodeficiency virus (HIV).[49] Strong evidence showed 
cytomegalovirus could directly bind β2M via two envelope 
proteins.[50] Recently, soluble β2M was proposed as a possible 
serologic marker of neurologic disease during the infection 
of human T‑cell leukemia virus.[51] On the other hand, 
abnormality of urine β2M values indicates renal filtration 
or reabsorption disorders. The small size of β2M allows it 
pass through the glomerular membrane, however, it can be 
reabsorbed in the proximal tubules by specific receptors. 
The disorder of kidney’s glomeruli would cause increased 
β2M in blood and decreased β2M in urea, in contrast, the 
disorder of kidney’s tubules would cause increased β2M in 
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urea and decreased β2M in blood.[2] In lupus nephritis and 
neonates, the index of serum β2M/cystatin C is suggested 
to indicate the renal function.[52,53] Moreover, serum β2M 
levels at discharge would predict the long‑term mortality 
and graft loss in kidney transplantation recipients.[54] A 
large nationally representative cohort exhibited serum β2M 
concentration was associated with a significantly increased 
risk of cardiovascular and all‑cause mortality.[55] Recently, 
the concentration of β2M was also deemed as a marker of 
frailty in older people.[56] Thus, the β2M test could indicate 
how advanced the disease is and the likely prognosis for the 
patient at the time of diagnosis.

outcoMes due to Beta 2 MIcrogloBulIn 
defIcIency

β2M deficient mutant has been derived in different 
models and changes of cellular and humoral responses 
are evaluated in these β2M deficient animals.[57] The 
mechanism of MHC I presenting peptides to CD8+ T‑cell 
was shown in Figure 1. Due to the lack of β2M determined 
MHC I molecules, the number of CD8+ T‑cells significantly 
decreases in β2M deficient mice.[58‑62] Therefore, the 
deficient mice are susceptible to intracellular pathogens, 
including Listeria monocytogenes, Mycobacterium 
tuberculosis, influenza virus, and so on. However, β2M 
deficient mice could generate CD4+ MHC II‑restricted 
cytotoxic T‑cells (CTL) following infection with Sendai 
virus or lymphocytic choriomeningitis virus.[63,64] 
Furthermore, MHC I‑restricted CTL activity could be 
activated during infections by some specific pathogens 
even in β2M deficient mice.[65] In β2M deficient mice, 
natural killer cells are shown with increased sensitivity to 
MHC I heavy chain mediated inhibition.[66] Other cellular 

responses are relatively stable, including gamma delta+ 
T‑cells and CD4+ T‑cells.[67] Hemochromatosis is evident 
in β2M deficient mice, presenting iron overload.[62] The 
iron overload increases the sensitivity to the infection of 
M. tuberculosis.[61] The catabolism of IgG and albumin 
increased in β2M deficient mice due to low expression 
of FcRn.[68,69] However, the level of mucosal IgA was 
significantly increased during enteric infection of β2M 
deficient mice, indicating different roles of β2M in Ig 
catabolism. On the other hand, autoantibody‑mediated 
inflammations or immune diseases are prevented or 
relieved in β2M deficient mice.[70,71] The disruption of β2M 
significantly reduced the expression of MHC I in human 
embryonic stem cells, presenting hypoimmunogenic and 
favoring transplantation therapies.[72] Furthermore, the loss 
of β2M contributes the immune evasion in cancer cells.[73]

specIfIc roles of Beta 2 MIcrogloBulIn WIthIn 
heterodIMers

The main function of MHC I or MHC I‑like molecules 
is related with molecular presentations or uptakes, 
depending on the structural‑like grooves between α1 and 
α2 domains. Comparing with MHC I groove, the CD1 
groove is relatively narrow, deep, and highly hydrophobic 
forming two deep binding pockets.[74,75] This hydrophobic 
channel is specific for binding hydrocarbon alkyl chains. 
Unlike MHC I, CD1 molecules are targeted to distinct 
endocytic compartments by cytoplasmic tails. On the 
other hand, the FcRn groove is collapsed, demonstrating 
a relatively flat groove. Although these structures are 
highly similar, different functions are presented with 
these molecules relating to site mutagenesis on specific 
binding sites. The most striking difference of FcRn is 
the closing of the groove that binds peptides in classical 
MHC I proteins, due to a kink in the α2 helix introduced 
by proline (Pro)‑162.[13] Moreover, the pocket of FcRn is 
blocked by the positively charged side chain of arginine 
(Arg)‑164. β2M stabilizes the tertiary structure of such 
heterodimers and also participates in the selections of 
MHC I‑like restricted T‑cells. For instance, the selection 
of invariant Vα19‑Jα33+ cells is dependent on β2M.[76]

Major histocompatibility complex class I
MHC I molecules are found on nearly every nucleated 
cell of the body. Their function is to present short 
endogenous or exogenous peptides from within the cell 
to CTLs. β2M is crucial to stabilize cell surface MHC 
I, keep native structure of MHC I heavy chain, facilitate 
the binding of antigenic peptides, and generate additional 
high‑affinity peptide‑bindings.[77] However, some cells 
express a considerable number of surface MHC I heavy 
chain molecules not associated with β2M.[14,78,79] The 
superficial nonpeptide‑associated heavy chains can 
associate with exogenously provided β2M and synthetic 
peptide antigens.[80] Moreover, normal β2M‑sufficient cells 
grown in serum‑free media devoid of β2M also require an 
exogenous β2M to efficiently bind synthetic peptide. By 

Figure 1: Schematic representation of MHC I antigen presentation to 
CD8 T‑cell. MHC I consists of two polypeptide chains, α (α1, α2, 
α3) and β2M, which are noncovalently linked between α3 and β2M. 
The peptides (antigens) generated from cytosolic proteins bind the 
polymorphic groove between α1 and α2 and are displayed to CD8 T‑cell 
receptors. Meanwhile, the CD8 co‑receptor of CD8 T‑cell would interact 
with α3. β2M: Beta 2 microglobulin; MHC I: Major histocompatibility 
complex class I; CD8: Cluster of differentiation 8.
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using this characteristic, β2M was developed to vaccine 
adjuvant for CTL activation.[81] Using the immunization 
protocol with human β2M, CTL responses were strongly 
primed with peptides from OVA, S. virus, and vesicular 
stomatitis virus in mice. The versatility of β2M in 
different species confirms the conservative evolutionary 
lineage of this small protein. ESAT‑6, an abundantly 
secreted protein of M. tuberculosis, could directly interact 
with human β2M to inhibit the expression of MHC I, 
resulting in down‑regulation of class I‑mediated antigen 
presentation.[82]

Neonatal Fc receptor
FcRn is a heterodimer of a nonclassical MHC I alpha 
chain and β2M. It efficiently binds the two most abundant 
serum proteins, IgG, and albumin. Both proteins are 
protected by FcRn from lysosomal degradation and 
extend the catabolic half‑lives.[69] Beside the protection 
role with FcRn heterodimer, β2M seems to have another 
way to protect the degradation of IgG and albumin.[83] 
Furthermore, FcRn is critically involved in the transport 
of IgG across cells, thus helping antigen delivery via 
transcytosis.[84]

β2M is critical for surface expression of FcRn, facilitating 
FcRn to exit the endoplasmic reticulum.[85] Furthermore, 
β2M is important for efficient pH‑dependent binding of IgG 
by FcRn. Strong evidence show β2M could directly contact 
IgG ligand.[86] Not only overexpression of FcRn enhances 
the transcytosis of immune complexes and increases 
the number of antigen‑specific IgM or IgG‑producing 
B cells,[87] but also the expression of β2M increases the 
transcytosis of IgG between the basolateral and apical 
directions of epithelial cells.[88] Moreover, the application 
of β2M as adjuvant requires the temporal proximity with 
antigens, confirming that β2M facilitates the uptake of 
antigens.[81]

Cluster of differentiation 1
CD1 is a family of glycoproteins expressed on the surface of 
various antigen‑presenting cells, and CD1‑like genes have 
been found in many vertebrate genomes. They are closely 
related to the MHC I and are involved in the presentation 
of lipid antigens to restricted T‑cells. According to protein 
sequence homologies, the members of the CD1 family are 
mainly divided into two groups.[89] Group 1 CD1 includes 
CD1a, ‑b, and ‑c and human, mouse, rat, and rabbit CD1d 
form group II. Furthermore, CD1e is proposed to form a third 
group due to its intracellular chaperone function.[90,91] The 
size and shape of the antigen‑binding groove vary among 
different CD1 isoforms and decide the nature of the binding 
lipid molecules.

The excretion of different CD1 isoforms differs in the 
presence of β2M. For instance, heavy chains of CD1b are 
detained in the ER in β2M‑deficient cells,[92] however, a 
portion of CD1d heavy chains can exit the ER and reach 
the cell surface independent onβ2M.[93‑95] Interestingly, the 
non‑β2M formed CD1d only presents at the apical site of 

intestinal epithelial cells.[96] Like the adjuvant application of 
β2M on CTL, β2M seems like a potential adjuvant to prime 
CD1d specific immune responses.

Human hemochromatosis protein
As an MHC I‑like molecule, HFE is a ligand for the 
transferrin receptor, regulating the uptake of iron‑bound 
transferrin. Hepcidin regulated by HFE degrades the iron 
transporter ferroportin on the cytoplasmic membrane of 
enterocytes and macrophages, resulting in decreased iron 
uptake from food and iron release from recycled red blood 
cells. Therefore, mutations of HFE or absence of β2M result 
in iron excess and hemochromatosis.[59‑61] The mechanism 
of iron accumulation in the β2M deficient mouse may be 
more complex than only involving HFE.[62] In contrast to 
HFE α chain‑deficient mice, β2M‑deficient mice display 
increased levels of iron transporters and iron overload, 
suggesting that (an) additional β2M interacting protein(s) 
could be involved in controlling iron homeostasis. The 
interaction with β2M is crucial for surface expression of 
HFE.[97,98] Unlike other MHC I‑like molecules, HFE does 
not bind any antigen.[99]

other Major hIstocoMpatIBIlIty coMplex I‑lIke 
Molecules

Qa‑1 (HLA‑E, human functional counterpart) is designated 
as nonclassical histocompatibility Ags, eliciting strong 
CTL responses.[100] β2M is required for an initial folding 
of Qa‑1, however, transporter associated with antigen 
processing (TAP) is not necessary for processing of 
Qa‑1 molecules. Furthermore, the presence of CD8α/α 
TCRα/β cells in intestinal intraepithelial lymphocytes 
is highly restricted by Qa‑2 (HLA‑G, human functional 
counterpart).[101]

Histocompatibility 2, M region locus 3 (H2‑M3) 
associates with β2M to form MHC I‑like structure. 
The expression of H2‑M3 is confined to murid species, 
which are highly conserved. H2‑M3 mainly presents 
N‑formylated peptides, and its surficial expression is 
dependent on ligand binding. Once H2‑M3 binds peptides 
in the endoplasmic reticulum, they transit rapidly to the 
cell surface, where they stimulate CD8+ αβ T‑cells in a 
TAP‑dependent manner.[102,103]

Human MR1 encoded on chromosome 1 is highly 
conserved among mammals and is more closely related 
to classical class I molecules than are other nonclassical 
class I family members.[104,105] The MR1 is responsible for 
activation of mucosal‑associated invariant T‑cells expressing 
semi‑invariant T‑cell receptors in the presence of bacteria. 
Moreover, the MR1 messenger RNA is ubiquitously 
expressed in different tissues or cell lines[104], and the surficial 
expression of MR1 requires the presence of β2M.[106] The 
lack of β2M or MR1 increases the susceptibility to infection 
by Klebsiella pneumoniae.[107] MR1 is ideally suited to bind 
ligands originating from vitamin metabolites.[108]
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MILL (MHC class I‑like located near the leukocyte receptor 
complex) is a family of MHC I‑like molecules, which 
are glycophosphatidylinositol‑anchored glycoproteins 
associated with β2M. Surface expression of MILL does not 
require functional TAP molecules and is not related with the 
presentation of peptides.[109]

evolutIonary relatIonshIp aMong Major 
hIstocoMpatIBIlIty coMplex I or lIke Molecules

Given the structural similarities, it is believed that all these 
MHC I or MHC I‑like molecules have evolutionary lineage 
with a common ancestor.[13] The MHC locus has been found 
in all jawed vertebrates, however, the proto‑MHC could 
trace back to the cephalochordate (amphioxus) and jawless 
vertebrate lineages.[110‑112] MHC II genes were firstly derived 
from proto‑MHC by exon shuffling, combining an Ig‑like 
C domain with a peptide binding region.[113] Subsequently, 
another peptide binding region exon was added to MHC II 
β chain to form the MHC I heavy chain, which happened 
at approximately 500 million years ago. The emergence 
of CD1 occurred in the reptile form lineage after the 
amphibian–reptile split roughly between 365 and 385 million 
years ago. The MR1 is highly conserved and seems to be 
unique to mammals.[114] Contrasting to positive selection 
on the ligand‑binding site of MHC I, the conservative 
ligand‑binding site of MR1 evolved under strong negative 
selection. H2‑M3 is also highly conserved, and its expression 
is confined to murid species. The emergence of H2‑M3 
occurred 50–65 million years ago.[114] FcRn is supposed to 
share an ancestor with the MHCs that it does not with the 
CD1s.[13] Further evidence shows, FcRn diverged from the 
MHC near the most recent common ancestor of lizards and 
mammals.

β2M is believed to arise in a basal jawed vertebrate 
(gnathostome).[8] The close proximity of MHC I, MHC II, 
and β2M implies that they were derived from a common 

ancestor by tandem (cis) duplication.[8] β2M protein 
sequences are highly conserved among species, and overall 
structures are virtually identical. Ten residues are identical 
in all species, including the two characteristically spaced 
cysteine residues which form the disulfide bridge.[12]

conclusIon and perspectIves

The structure and function are highly conserved not only 
in β2M but also in its related molecules. It indicates that 
β2M is irreplaceable in animals, especially in vertebrate. 
β2M involves in the network of cytokines, modulating the 
development of several cell lines. Furthermore, hormone, 
growth factors, and cognate receptors are also regulated 
by β2M. As a prognostic marker of various diseases, the 
level of β2M reflects the progress of the disease and the 
likely prognosis for the patient. The special role of β2M in 
regulating the survival, proliferation, apoptosis, and even 
metastasis of cancer cells makes itself being targeted for 
cancer therapeutics [Table 1].

As a key component of MHC I or like molecules, β2M is 
critical for CTL response. The CTL immune response is 
obligatory for prevention against intracellular pathogens. By 
use of MHC I α chain, β2M has been successfully employed 
as an adjuvant for augmented CTL immune responses. 
Due to the surface expression of other MHC I‑like α 
chains (e.g., CD1d α chain), it can be deduced the application 
of β2M on additive immune responses. Since MHC I and 
CD1 could present different antigens from M. tuberculosis 
to CD8+ T‑cells; the adjuvant effect of β2M may have dual 
applications on prevention of tuberculosis.

Though several β2M‑related molecules have been identified, 
there are still some unknown β2M‑related molecules. 
Besides FcRn and HFE, other β2M‑related molecules 
involve in the catabolism of IgG and the homeostasis of iron. 
With the sequences of the whole genomes, more putative 
β2M‑related molecules would be revealed.[115]

Table 1: Examples of multifunction of β2M

Year Author Targeting Mechanism Application
2007 Yang et al.[22] IL‑6 and IGF‑I receptors and 

signaling pathways
Anti‑β2M mAbs redistribute or block IL‑6 and 

IGF‑I receptors or signaling pathways
Apoptosis of myeloma cells

1995 Rowley et al.[25] Antagonistic activity to 
transforming growth factor beta 1

Hormone/growth factor receptors Immune regulation and cell 
proliferation

2008 Zhu and Shi[27] Mesenchymal stem cells Growth stimulator Prognostic marker and 
therapeutic target of cancers

1992 Moe and Sprague[35] Osteoblast Mitogen Therapeutic target
2006 Huang et al.[23] Prostate cancer bone metastasis Signaling and growth promoting factor Therapeutic target
2006 Nomura et al.[24] Human renal cell carcinoma Growth stimulator via the β2M‑protein kinase 

A‑CREB‑VEGF signaling pathway
Therapeutic target

2002 Min et al.[18] Myeloma cells Negative growth regulator, induce cell apoptosis Therapeutic strategy
2001 Mori et al.[30] Leukemic cell‑bearing mice Apoptosis‑inducing activity via activation of 

caspase‑3 and nuclear factor‑kappa B
Therapy for leukemia

2003 Gordon et al.[31] Human lymphoblastic leukemia 
cell line

Induce apoptosis via increasing reactive oxygen 
species

Therapy for leukemia

1993 Rock et al.[81] MHC I reconstruction MHC I or like molecules stabilizer Vaccine adjuvant
MHC I: Major histocompatibility complex class I; IL: Interleukin; CREB: cAMP response element‑binding; VEGF: Vascular endothelial growth factor; 
β2M: Beta 2 microglobulin; IGF‑I: Insulin‑like growth factor‑I; cAMP: Cyclic adenosine monophosphate.
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