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Individuals with Attention Deficit Hyperactivity Disorder (ADHD) tend to perform cognitive
tasks with greater Response Time Variability (RTV). Greater RTV in ADHD may be
due to inefficient functional connectivity of the brain during information processing.
This study aimed to investigate the relationship between brain connectivity, RTV, and
levels of ADHD symptoms. Twenty-eight children aged 9–12 years and 49 adolescents
aged 15–18 years performed the Sustained Attention to Response Task (SART) while
EEG was recorded. The participants’ levels of ADHD symptoms were measured using
self- and parent-rated questionnaires. The ex-Gaussian analysis and The Fast Fourier
Transform were used to measure multiple aspects of RTV. Functional connectivity
between 64 electrodes was computed during task performance, and global efficiency
and modularity were calculated, reflecting integration and segregation of the brain,
respectively. There was a positive association between multiple RTV measures and the
level of ADHD symptoms, where participants with higher levels of ADHD symptoms
showed greater RTV, except for sigma from the ex-Gaussian analysis. More efficient
brain network activity, measured by global efficiency, was associated with reduced RTV.
Children showed greater RTV and less efficient brain network activity compared with the
adolescents. These findings support the view that stable responses are achieved with
more integrated (and efficient) brain connectivity.

Keywords: sustained attention, EEG, ADHD (attention deficit and hyperactivity disorder), response time variability,
graph theory

INTRODUCTION

ADHD is a neurodevelopmental disorder characterized by very high levels of inattention,
hyperactivity, and impulsivity (American Psychiatric Association, 2013). Higher variability in
responding to targets during cognitive tasks is a ubiquitous finding in ADHD studies (Leung
and Connolly, 1996; Oosterlaan and Sergeant, 1996; Scheres et al., 2001; Stevens et al., 2002).
Researchers have attempted to determine the underlying cognitive mechanisms associated with
this increased Response Time Variability (RTV), most often using methods focused on patterns
within the response time data itself (Karalunas et al., 2014). The standard deviation of response
time (SDRT) is the most common among a series of statistical models used to examine RTV
patterns and their links with cognition. While these RTV models are extremely useful, they do
not clarify the brain mechanisms underlying this increased RTV. An evaluation of brain activity
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patterns associated with increased RTV will help elucidate
the biological origins of RTV in people with high
symptoms of ADHD.

One widely-used RTV model is the ex-Gaussian distribution
model, which provides an excellent fit to RT data (Luce, 1986).
It expresses the RT distribution as the sum of both the normal
and exponential distributions. The advantage of using the ex-
Gaussian distribution model is that RT distributions are often
positively skewed and the exponential portion models this skew
very well (Luce, 1986). Three parameters are used to describe
the RT distribution: mu, sigma, and tau. Mu is calculated as
the mean, and sigma is calculated as the standard deviation of
the Gaussian distribution, while tau defines the mean of the
exponential distribution. Greater RTV, expressed as sigma and
tau in the model, has often been observed in ADHD populations
(Leth-Steensen et al., 2000; Hervey et al., 2006; Buzy et al., 2009;
Vaurio et al., 2009). Often the ADHD group’s RT distribution
is largely skewed compared with the control group indicating
that there are larger numbers of abnormally slow responses
(Castellanos et al., 2006). Leth-Steensen et al. (2000) suggested
that greater tau indicates a greater number of lapses in attention.
The authors implied that a greater number of lapses in attention
might explain why greater RTV is very common in people
with ADHD.

Another approach used to analyze RTV is the fast Fourier
transform (FFT), allowing for the capture of periodic fluctuations
in RT. The FFT measures the power of periodic changes in
RT at different temporal frequencies. This analysis of periodic
fluctuation has been applied to RT data from individuals
diagnosed with ADHD (Castellanos et al., 2005) as they have
performed the Change Task (Geurts et al., 2008), simple and
complex Go/No-go Tasks (Vaurio et al., 2009), and the Stopping
Task (Karalunas et al., 2013). These studies used the frequency
bands identified by Buzsaki and Draguhn (2004) that are based on
neuronal rhythms. The majority of studies found that people with
ADHD performed the tasks with significantly greater RTV in the
“slow 4” (0.027–0.074 Hz) frequency band. This frequency band
is closely related to resting state brain activity (Greicius et al.,
2003; Sonuga-Barke and Castellanos, 2007). Greater RTV in this
frequency band might imply that people with ADHD are failing
to suppress this resting state activity during tasks, leading to more
variable responses (Sonuga-Barke and Castellanos, 2007). There
are still inconsistencies, however, around which frequency bands
have been used to measure RTV and the interpretation of what
each band reflects (Karalunas et al., 2013).

An alternative way to define frequency bands of RTV is by
dividing frequency based on the experimental paradigm. This
was the approach taken by Johnson et al. (2007) with data from
the Sustained Attention to Response Task (SART) originally
developed by Robertson et al. (1997). In the fixed version of
the SART, the digits 1–9 are presented in sequence, 25 times,
and participants are asked to respond to all digits except 3.
Participants tend to slow their response to digit 1 in anticipation
of the upcoming No-Go digit 3. This slowing in response creates
a pattern in the RT sequence, resulting in a peak in the FFT
spectrum at 0.0772 Hz. This peak was used to divide the RT
into a slow and a fast band. The power in the slow frequency

band provides a measure of gradual changes in RTs over the
course of the task and is argued to reflect the participant’s
arousal level. The power in the fast frequency band provides a
measure of trial-to-trial variability and is argued to reflect the
participant’s moment-to-moment sustained attention (Johnson
et al., 2007). The experimental set-up of the fixed SART provides
a meaningful way to define the frequency bands for the FFT
analysis of RTs. Previous research has shown that individuals
with ADHD perform the SART with significantly greater RTV
in both the slow and fast bands, indicating deficits in maintaining
arousal and sustained attention respectively (Johnson et al., 2007;
Adamo et al., 2014).

The neural correlates of RTV have not been widely examined.
One explanation of RTV is that increased RTV may reflect
inefficient or inconsistent information flow through the brain
during performance of a cognitive task (Russell et al., 2006).
Stable responses might require information to flow more
efficiently and consistently for every trial – variable responses
might arise from inefficient or disruptive information processing
in the brain. The Cognitive Neuroenergetic model suggests
that greater RTV associated with ADHD might be caused by
inefficient information processing (Russell et al., 2006). The
efficiency of information processing can be measured using the
connectivity patterns of the brain.

One method with which to characterize patterns of brain
connectivity is to apply graph theoretical analysis. In graph
theoretical analysis, the brain is considered as a single network,
and this analysis describes the patterns of connections between
brain areas (Bullmore and Sporns, 2009; Stam and van
Straaten, 2012). The characteristics of the brain’s connectivity
and information flow are described in two ways – functional
integration and segregation (Bullmore and Sporns, 2009; Sporns,
2013). Functional integration measures the engagement of
the global network, where higher integration implies that
the whole system is working closely to process information.
Functional segregation measures locally segregated processes.
Higher segregation implies the presence of a number of different
communities within a whole network, with a greater level of
information that is processed locally. Previous studies have
shown that network reconfiguration of the brain occurs across the
lifespan (Cao et al., 2014; Zuo et al., 2017), and within the time
scale of milliseconds (Valencia et al., 2008; Cruzat et al., 2016).
Studies have shown that adult participants perform cognitive
tasks with increased integration and decreased segregation
of brain networks when compared with a baseline period,
indicating that brain networks reconfigure their connections
as appropriate for particular cognitive processes (Bola and
Sabel, 2015; Cruzat et al., 2016). We argue that RTV could be
explained by how the connections between different areas of the
brain are rearranged from the resting to the task active state.
Changes in network measures, obtained from graph theoretical
analysis during a cognitive task, might reveal whether there
are particular connectivity patterns and dynamic configurations
that are associated with RTV in people with high and low
symptoms of ADHD.

Abnormal brain connectivity in ADHD has been
demonstrated using both functional and structural connectivity
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analyses (Castellanos et al., 2008; Cubillo et al., 2010; Fair
et al., 2010; Konrad et al., 2010; Konrad and Eickhoff, 2010;
Sidlauskaite et al., 2016). Using graph theoretical analysis with
both EEG (Ahmadlou et al., 2012; Liu et al., 2015) and fMRI
(Wang et al., 2009; Cao et al., 2014; Beare et al., 2017), it has been
shown that individuals with ADHD show decreased functional
integration and increased strength of segregation of the brain,
as indicated by a disruption in long-range connections, lower
global efficiency, and greater modularity. Wang et al. (2015) has
also reported that individuals with ADHD exhibited increased
modularity and decreased global efficiency using resting state
fMRI. These finding suggest that individuals with ADHD might
have altered brain networks compared with matched controls.
Liu et al. (2015) suggested that adequate levels of integration
and segregation of the brain is not achieved for individuals with
higher levels of ADHD symptoms. Cao et al. (2014) have also
proposed that individuals with ADHD might have a disrupted
balance of integration and segregation of the brain, and this
might explain the behavioral symptoms of ADHD. In contrast,
some other studies using fMRI found no difference in the level
of integration measured by global efficiency between individuals
with and without ADHD during resting state (Cocchi et al.,
2012; Sato et al., 2013). As the majority of studies are based on
resting state data rather than task performance it is critical to
examine brain activity during a task and how levels of integration
and segregation relate to ADHD symptoms and behavioral
performance. It might be the case that decreased functional
integration and strengthened segregation of the brain may
explain increased RTV in ADHD.

When examining the relationship between RTV and ADHD
symptoms it is critical to examine how the relationship changes
from childhood to adolescence. During typical development RTV
decreases, on average, from childhood to young adulthood, and
young adulthood is associated with the most stable responses
during the lifespan (Williams et al., 2005; Dykiert et al., 2012).
With this decreasing trend of RTV, the association between RTV
and ADHD symptoms might also alter as children enter into
adolescence. McAuley et al. (2014) showed that the difference in
RTV between their ADHD and control groups was only present
in children and not in adolescents. This implies that increased
RTV in ADHD might be a phenomenon specific to children with
ADHD. According to the meta-analytic review by Kofler et al.
(2013), however, both children and adults with ADHD showed
increased RTV compared to age-matched groups, but the effect
size was smaller in adults compared with children. This suggests
that the relationship between ADHD symptoms and RTV may be
changing from childhood to adolescence, where the relationship
might be weakening over time.

The symptoms of ADHD are distributed continuously within
the population from extremely low to high levels of inattention,
hyperactivity, and impulsivity. Individuals with ADHD populate
the extreme high end of its continuum (Kuntsi et al., 2001, 2009).
Here we use the approach of measuring the level of ADHD
symptoms shown by each participant, rather than dichotomizing
participants into ADHD and control groups. This approach
of measuring ADHD symptom levels along the continuum
has been used previously in behavioral (Kuntsi et al., 2001;

Kollins et al., 2005; Diamantopoulou et al., 2007; Bidwell et al.,
2014) and EEG (Broyd et al., 2011) studies. Categorizing an
ADHD and a control group by choosing a cut-point at the
extreme end of the ADHD symptom distribution will result
in variation in levels of ADHD symptoms between individuals
within the same group. This group comparison may hinder
our understanding of how different levels of ADHD symptoms
impact behavior. Frazier et al. (2007), therefore, suggested that
more studies should examine ADHD symptoms as a continuous
variable in order to further understand the impairments in
cognitive processes underlying ADHD.

Individuals with ADHD often, but not always, show difficulty
in sustaining their attention. Sustained attention is the conscious
processing of non-arousing stimuli over a period of time
(Robertson et al., 1997). Behavioral measures that are often used
in sustained attention tasks include the number of omission
and commission errors made and the speed and consistency
of response (Huang-Pollock et al., 2012). A meta-analysis
by Huang-Pollock et al. (2012) reported more omission and
commission errors and greater RTV measured by SDRT were
found in performance of the Continuous Performance Test
(CPT) by participants with ADHD relative to those without
ADHD, across the ages of 6–12. Using the SART, greater numbers
of omission and commission errors, and greater SDRT were also
observed in children with ADHD compared with those without
ADHD (O’Connell et al., 2004). A meta-analysis by Wright et al.
(2014) including both CPT and SART, also reported more errors
of omission and commission made by children with ADHD.
These findings support the proposition that sustained attention
is impaired in individuals with ADHD.

This study aims to investigate the relationship between brain
connectivity, RTV, and levels of ADHD symptoms in children
and adolescents on two measures of sustained attention. It is
hypothesized that (1) Higher levels of ADHD symptoms will
be associated with increased RTV; (2) Children will perform
the sustained attention tasks with greater RTV than adolescents;
(3) Greater functional integration and decreased strength of
segregation of the brain will be associated with reduced RTV and
lower levels of ADHD symptoms; and (4) Adolescents will show
more integrated and more strongly segregated patterns of brain
connectivity than children.

MATERIALS AND METHODS

Participants
Twenty-eight children aged 9–12 years (M = 10.95 years,
SD = 1.06; 9 females) and 49 adolescents aged 15–18 years
(M = 17.57 years, SD = 0.76; 33 females) participated in this
study. One participant from the adolescent group was removed
from the sample before analysing the data due to excessive
movement during the EEG recording, resulting in a total of 49
adolescents from the initial number of 50 adolescents. Children
were recruited from local primary schools. Six adolescents were
recruited from local secondary schools and forty-three were
recruited from the university’s first year Psychology course.
Participants were not pre-selected based on symptoms of ADHD.
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Materials
The Sustained to Attention to Response Task (SART)
The experimental paradigm was created using Matlab
(Mathworks Inc.) and Psychtoolbox (Kleiner et al., 2007).
The experimental paradigm followed the same procedure as
a study by Johnson et al. (2007). Both the Fixed and Random
versions of the Sustained Attention to Response Task (SART)
were used. Participants were presented a series of digits (1–9)
on a computer screen. Each trial was set-up with this timing: a
single digit was presented for 313 ms, followed by a mask for
125 ms. A response cue was presented for 63 ms, and then a
second mask was presented for 375 ms. Finally, a fixation cross
was presented for 563 ms. The total inter-stimulus interval was
1439 ms. Participants were asked to respond to every digit except
“3.” In the Fixed version of the SART, the digits were presented
in the order from “1” to “9,” and this cycle was repeated 25 times.
In the Random version the order of the digit was randomized,
although the no-go digit “3” was never presented twice in a row.
The participants were asked to respond when the response cue
appeared on screen to limit impulsive response styles shown by
children and some people with high ADHD symptoms. Each
SART consisted of 225 trials, lasting approximately 5.5 min. The
order of presentation of the two SARTs was counterbalanced
across the participants.

Conners 3 ADHD Index
The Conners 3 questionnaire was used to measure levels
of ADHD symptoms. Two forms were used in this study:
The Conners 3 parent form was completed by parents of all
children and the 6 adolescents recruited through secondary
schools, while the self-report form was completed by the
university-based adolescents. There was no significant difference
between the adolescent (M = 51.00, SD = 12.90, range:
41–90) and child (M = 56.61, SD = 15.08, range: 43–90)
groups on the ADHD Index, t(49.11) = –1.65, p = 0.10.
The correlation between the parent and self-report forms is
0.57 for the ADHD Index (Conners, 2008). Eight children
(29%) and nine adolescents (18%) had ADHD Index scores
at 65 and above, which is indicative of elevated levels
of ADHD symptoms.

Wechsler Abbreviated Scale of Intelligence (WASI)
An estimate of intelligence quotient (IQ) was obtained using
the WASI (Wechsler, 2011) for participants recruited from the
primary and secondary schools to ensure they were capable
of understanding the task instructions. Participants were to be
excluded if their IQ was below 70: no participants were excluded.
Participants recruited from the university were assumed to have
a FSIQ above 70.

Procedure
Participants were asked to complete the SARTs while the
EEG was recorded using a 64 electrode Biosemi system. For
participants recruited from schools, the WASI was completed
before the SART. Parents were asked to complete the Conners
3 questionnaires while the participants were performing the

task. The undergraduate participants were asked to complete the
Conners 3 questionnaires form while the EEG was being set up.

Analysis
Behavioral Analysis
For each participant, for the Fixed and Random SARTs
separately, each dependent variable was computed following
these steps. A count of the two types of errors was computed.
Omission errors are the missed responses to the Go trials.
Commission errors are the responses to the No-Go trials.
Participants with more than 30 omission errors in either
Fixed or Random SART were to be removed from the
analysis: no participants were excluded. Trials containing
commission errors, response times shorter than 100 ms,
and No-Go trials were removed, and subsequently the
Mean of RT and Standard Deviation of RT (SDRT)
were computed. Three parameters, mu, sigma, tau were
extracted by applying the ex-Gaussian model based on the
approach by Lacouture and Cousineau (2008).

The analysis to compute fast and slow RTV followed the
procedure of Johnson et al. (2007) with some modifications
(see below). Removed trials were linearly interpolated. The RT
data were analyzed according to Welch’s averaged, modified
periodogram method. Trials were divided into 7 segments of 75
trials of the SART, with a 50 trial overlap. Each segment was
detrended, Hamming-windowed, and zero padded to 450 data
points. The FFT was then applied to each segment, and the
segments were averaged to provide a spectrum per participant.
Any segment of 75 data points where there were 5 or more
consecutive interpolated trials was excluded in the FFT. If more
than 3 segments were removed, the participant’s RT data was
excluded from the FFT analysis. The Random SART data of
one child were excluded for this reason, and were treated
as missing values.

The frequency range was divided into fast and slow frequency
bands using the peak at 0.0772 Hz. The frequency 0.0772 Hz
was chosen as it is the reciprocal of one cycle of the 1–9
digit presentation in the Fixed SART (a SART cycle). The Fast
Frequency Area Under the Spectra (FFAUS) encompassed all
sources of variability faster than once per SART cycle, the area
under the curve to the right of the peak at 0.0722 Hz. The Slow
Frequency Area Under the Spectra (SFAUS) encompassed all
sources of variability slower than once per SART cycle: the area
under the curve to the left of the peak at 0.0772 Hz.

EEG Analysis
The EEG was recorded using the 64 electrode BioSemi system
with a sampling rate of 512 Hz. In the BioSemi system,
a Common Mode Sense (CMS) active electrode placed on
the surface of the head was used as a reference electrode
during the recording. The recorded EEG with 64 electrodes
was imported and pre-processed in Matlab and Fieldtrip
(Oostenveld et al., 2011).

In the software, the EEG data were first referenced to an
average of the two ear electrodes. The data were band pass
filtered from 0.5 to 40 Hz, and then segmented into trials
from -200 to 1200 ms, where 0 was set at the presentation of
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the target digit of the SART. The data were visually inspected
and trials with artifacts such as extraordinary large amplitudes,
jumps, and flat signals were removed. Noisy electrodes were
manually identified and temporally separated from the data.
Independent Component Analysis (ICA) was then applied
to remove artifacts such as eye blinks, eye movements, and
heartbeats. After ICA, noisy electrodes temporally separated in
the previous step were interpolated using the spherical spline
method and noisy trials, with amplitudes above 100 and below
100 microvolts, were manually removed from further analysis.
The data were then referenced to a common average of the
electrodes and detrended. Trials removed for the behavioral
analysis were also removed in the EEG analysis, which included
incorrect responses, No-Go trials, and trials with less than
100 ms responses.

The analysis followed the event related networks approach
by Valencia et al. (2008) and Vourkas et al. (2011). The time
frequency analysis was applied from 1 to 40 Hz in steps of
1 Hz and from -200 to 1200 ms in steps of 10 ms using
the Complex Morlet Wavelet (Cohen, 2014). Phase information
was extracted for each step of frequency and time, which
were computed by the time frequency analysis. Functional
connectivity was computed using Phase Lag Index (PLI) and
connectivity matrices were produced (Stam et al., 2007). PLI
measures the asymmetry of how phase differences of two
signals are distributed, where greater asymmetry reflects stronger
functional connection between two signals. The values of PLI
range from 0 to 1, where a higher value represents stronger
connections. Computed connectivity matrices from PLI for
each step of time and frequency were treated as weighted and
undirected networks without thresholding. By setting a threshold,
only connections stronger than the threshold can be present
in the connectivity matrix, which helps to reduce noisy and
spurious connections. One potential concern of this approach
is that the single arbitrary threshold or a range of thresholds
need to be used, but there is no standard threshold and using
different thresholds can lead to different results (Stam and van
Straaten, 2012). Even though treating the connectivity matrix
as a weighted network can pose a several concerns that the
analysis involves noisy and weak connections, this approach
can avoid setting an arbitrary threshold. Using connectivity
matrices treated as weighted networks, global efficiency and
modularity were computed for each step of frequency and time
using Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
Global efficiency is the inverse of the average shortest path
length in the network and a measure of functional integration,
reflecting how closely each node is connected. Modularity is
measuring a strength of functional segregation and reflects how
well a network can be divided up into smaller sub-communities.
These two measures were averaged to three frequency ranges,
theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands
(Yu et al., 2016). In addition, two time periods were selected
a priori to measure global efficiency and modularity during
the baseline and task. The baseline period was from -200 to
0 ms and global efficiency and modularity were averaged over
this period to produce baseline values separately for the three
frequency bands. These two measures were baseline corrected

by subtracting the baseline values, and the maximum absolute
change from baseline was identified during the period between
30 and 600 ms after the digit presentation. This peak value
reflects how large the two network measures change from the
baseline: this could be either positive or negative depending on
the direction of change. The period from 300 to 600 ms was
selected for the task period. The brain is thought to be involved
in higher cognitive processes during this period (Polich, 2007;
Ramchurn et al., 2014; Bola and Sabel, 2015). This analysis
resulted in measures of global efficiency and modularity at the
three frequencies (theta, alpha, beta) during the task period
for the Fixed and Random SARTs separately. The statistical
results for the baseline period were summarized in a table in
Supplementary Materials.

Statistical Analysis
Statistical analysis was performed in R, using linear mixed effect
models (LMEM) with random intercepts. LMEM allows data to
have missing values. The behavioral measures of this study were
the number of omission and commission errors, mean RT, SDRT,
mu, sigma, tau, FFAUS, and SFAUS. The network measures were
global efficiency and modularity in three frequency bands (theta,
alpha, and beta) during the task. Additionally, there were three
other variables; SART Task (fixed and random), Age (adolescent
and child groups) and the ADHD Index scores.

To examine the relationships between behavioral measures,
ADHD Index, and network measures, three different types of
models were examined. Two categorical variables (Age and
SART Task) were inserted into all three types of models as
predictors. The first type of model aimed to examine the
association between the behavioral measures and the ADHD
Index. Each behavioral measure was treated as an outcome
variable, and the ADHD Index and the two categorical variables
were the predictors. A single model was fitted for each behavioral
measure. In addition to the association between the ADHD
Index and the behavioral measures, the effects and interactions
of the two categorical variables on behavioral performance were
also examined. In the second type of model, the association
between the behavioral measures and the network measures was
examined. Each behavioral measure was treated as an outcome
variable, and each single network measure was inserted as a
predictor, along with the two categorical variables. A single
model was fitted for each behavioral measure and network
measure. In addition to the association between the behavioral
measures and the network measures, interactions between the
network measures and the two categorical variables were also
examined. In the third type of model, the association between
the network measures and the ADHD Index was examined.
Each network measure was treated as an outcome variable,
and the ADHD Index was inserted as a predictor, along with
the two categorical variables. A single model was fitted for
each network measure. In addition to the association between
the network measures and the ADHD Index, the effects and
interactions of the two categorical variables on network measures
were also examined.

The predictor coefficients in the models were tested by 95%
bootstrap Confidence Interval (95% CI) with 2000 resamples. If
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the confidence interval did not contain 0, it was considered to be
a significant predictor. Pairwise comparisons were performed for
the significant interaction terms in the models using the lsmeans
package in R (Lenth, 2016). P-values were adjusted using the
False Discovery Rate (FDR) method (Benjamini and Hochberg,
1995). As this study has more of an exploratory rather than a
confirmatory purpose, increasing power was favored compared
to strongly controlling for the family wise error rate.

RESULTS

Behavioral Measures – ADHD Index, Age,
SART Task
In this first type of model, Generalized linear mixed effect models
(GLMEM) were used for omission and commission errors with
the Poisson distribution, given they are count data. LMEMs were
used for the other behavioral measures. Behavioral measures were
treated as outcome variables and three predictors were inserted

in the models – ADHD Index, Age, and SART Task. ADHD
Index was centered to reduce collinearity. Categorical variables,
Age, and SART Task were coded using the sum contrasts, where
children and the Random SART were coded as -1 and adolescents
and the Fixed SART were coded as 1. Statistical results were
summarized and reported in Table 1.

Main Effect of Age on Behavioral Measures
There were significant differences in task performance between
the children and adolescents. The adolescent group performed
the SARTs with faster mean RT smaller SDRT, faster mu,
β = −35.0, 95% CI = [−54.9, −15.2], smaller sigma, smaller
tau, smaller FFAUS, smaller SFAUS, and less omission, and
commission errors.

Main Effect of SART Task on Behavioral Measures
Participants made significantly more commission errors
during the Random than the Fixed SART. There were no
other significant differences in performance on the fixed
and random SARTs.

TABLE 1 | Analysis for behavioral measures.

Outcome
variables

Predictors β and CI Significant interactions β and CI Significant pairwise comparison

Mean RT ADHD β = −0.067, CI = [−1.35, 1.19]

Age β = −48.8, CI = [−66.9, −31.2]∗

SART β = 0.65, CI = [−10.6, 11.9]

SDRT ADHD β = 1.19, CI = [0.556, 1.80]∗

Age β = −26.0, CI = [−34.8, −17.2]∗

SART β = 2.34, CI = [−1.54, 6.22]

Mu ADHD β = −2.06, CI = [−3.45, −0.650]∗

Age β = −35.0, CI = [−55.0, −15.2]∗

SART β = −0.110, CI = [−15.4, 13.7]

Sigma ADHD β = −0.275, CI = [−0.828, 0.290]

Age β = −20.1, CI = [−28.3, −11.9]∗

SART β = 1.04, CI = [−4.19, 6.43]

Tau ADHD β = 1.99, CI = [1.27, 2.68]∗

Age β = −13.7, CI = [−23.6, −3.85]∗

SART β = 0.739, CI = [−6.10, 7.39]

FFAUS ADHD β = 3.18, CI = [0.933, 5.25]∗

Age β = −70.3, CI = [−102.6, −41.3]∗

SART β = 5.01, CI = [−6.79, 16.2]

SFAUS ADHD β = 13.3, CI = [3.59, 23.4] Age × Flanker (Figure 1) β = 46.5, CI = [6.23, 87.9] Child:Con − Child:Inc., p = 0.001∗

Age β = −356.9, CI = [−500.8, −216.9]∗ Adol:Con − Adol:Inc., p = 0.443

SART β = 1.77, CI = [−72.2, 70.4]

Omission errors ADHD β = 0.023, CI = [−0.002, 0.046]

Age β = −0.780, CI = [−1.13, −0.444]∗

SART β = 0.055, CI = [0.052, 0.163]

Commission
errors

ADHD β = 0.006, CI = [−0.004, 0.015]

Age β = −0.539, CI = [−0.676, −0.406]∗

SART β = −0.111, CI = [−0.200, −0.024]∗

ADHD represents the ADHD Index and it is continuous data. For Age, −1 = children or Child, 1 = adolescents or Adol. SART represents the SART Task, and −1 = Random,
1 = Fixed. For Flanker, −1 = Incongruent or Inc., 1 = Congruent or Con. β represents the coefficient of a predictor variable. CI represents 95% Confidence Interval.
∗p < 0.05 or CI does not contain 0. GE represents Global Efficiency, Mod represents Modularity, (theta) represents the theta band, (alpha) represents the alpha band,
(beta) represents the beta band.
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Main Effect of ADHD Index on Behavioral Measures
ADHD Index was positively associated with SDRT, tau, FFAUS,
SFAUS, and negatively associated with mu. Other measures were
not significantly associated with ADHD Index.

Interactions on Behavioral Measures
There were no significant interactions found.

Behavioral Measures With Network
Measures
In this second type of model, LMEMs were used to assess
the relationship between the RT and network measures. The
behavioral measures of mean RT, SDRT, mu, sigma, tau,
FFAUS, and SFAUS, were treated as outcome variables. As trials
with errors were excluded in order to be able to compute
the network measures, associations between omission and
commission errors with network measures were not examinable.
Network measures, Age, and SART Task were treated as
predictors in the models. Network measures were centered to
reduce collinearity. Age and SART Task were coded in the
same manner as described above. The network measures during
the baseline were not examined as they were assumed to be
task irrelevant. The network measures during the task and
their interactions with Age and SART Task were specifically
examined, where Age and SART Task were considered as control
variables. Statistical results were summarized and reported
in Table 2.

Global Efficiency on Behavioral Measures
Global efficiency in the theta band was negatively associated with
SDRT, tau, FFAUS, and SFAUS. Reduced RTV was associated
with a greater increase in global efficiency in the theta band
from the baseline to the task. No other significant associations
or interactions were found between global efficiency in the three
frequency bands and the behavioral measures.

Modularity on Behavioral Measures
Theta band
There was a significant three-way interaction between modularity
in the theta band, Age, and SART Task on SDRT (see Figure 1),
and on sigma. In adolescents performing the fixed version of the
SART, modularity in the theta band was positively associated with
SDRT, and sigma. The strength of the negative associations in
the fixed SART was greater for adolescents than for children in
SDRT, and sigma. The strength of the negative associations in
adolescents was also greater for the fixed than for the random
version in SDRT, and sigma. Greater modularity in the theta
band was associated with increased SDRT and sigma only for
adolescents during the fixed SART.

There were no other significant interactions or main effects.

Alpha band
There was a significant two-way interaction between modularity
in the alpha band and Age on SFAUS (see Figure 2). There
was a negative association between modularity in the alpha
band and SFAUS for the child group, and the strength of this
association was significantly greater for the child group than

for the adolescent group. Children showed a greater decrease of
SFAUS as an increase in modularity in the alpha band.

No other significant effects or interactions were found.

Beta band
There was a significant two-way interaction between modularity
in the beta band and Age for SDRT (see Figure 3). There was
a negative association between modularity in the beta band
and SDRT for the child group. The strength of this negative
association was significantly greater for children compared with
the adolescent group. Children showed a greater decrease of
SDRT as an increase in modularity in the beta band.

There was a significant three-way interaction between
modularity in the beta band, Age, and SART Task for SFAUS (see
Figure 4). There was a negative association between modularity
in the beta band and SFAUS for children on the Fixed SART. In
children, the strength of this negative association was greater in
the fixed version compared with the random version of SART.
In the fixed version, the strength of this negative association
was greater for children relative to adolescents. The other
comparisons did not differ significantly. Children in the fixed
version of SART showed a decrease in SFAUS as an increase in
modularity in the beta band.

There were no other significant associations or
interactions between modularity in the beta band and the
behavioral measures.

Network Measures – ADHD Index, Age,
and SART Task
In the third type of model, network measures were inserted as
outcome variables for the three frequency bands (theta, alpha,
beta) and two time periods (baseline, task). Three predictors
were inserted in the models: ADHD Index, Age, and SART
Task. ADHD Index was centered to reduce collinearity. Age and
SART Task were coded in the same manner as described above.
Statistical results were summarized and reported in Table 3.

Main Effect of Age on Network Measures
Relative to children, adolescents performed the tasks with greater
increases in global efficiency from the baseline to the task period
in the theta and the alpha bands. Compared with children,
adolescents showed a greater decline in modularity from the
baseline to the task period in the theta, and alpha bands.

There were no other significant effects of Age.

Main Effect of ADHD Index on Network Measures
ADHD Index was negatively associated with modularity in the
beta band during the task period.

There were no other significant effects of ADHD Index.

Interactions
There was a significant two-way interaction between ADHD
Index and Age on global efficiency in the theta band during
the task (see Figure 5). There was a negative association
between ADHD Index and global efficiency in the theta band for
adolescents. The strength of the negative association was greater
for adolescents than for children. In adolescents, lower ADHD
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TABLE 2 | Behavioral measures with network measures.

Outcome
variables

Predictors β and CI Significant
interactions

β and CI Significant pairwise comparison

Mean RT GE (theta) β = −423.6, CI = [−899.4, 23.7]

Mean RT GE (alpha) β = −315.1, CI = [−913.2, 297.8]

Mean RT GE (beta) β = 496.8, CI = [−730.8, 1678.8]

Mean RT Mod (theta) β = 745.0, CI = [−123.5, 1636.0]

Mean RT Mod (alpha) β = 389.8, CI = [−433.5, 1191.9]

Mean RT Mod (beta) β = 270.0, CI = [−1657.1, 2123.4]

SDRT GE (theta) β = −280.9, CI = [−491.1, −63.8]∗

SDRT GE (alpha) β = −96.4, CI = [−327.7, 143.9]

SDRT GE (beta) β = 0.101.1, CI = [−436.7, 584.5]

SDRT Mod (theta) β = 252.7 CI = [−66.0, 629.4] Mod (theta) × Age
× SART (Figure 1)

β = 403.0,
CI = [151.6, 663.1]

Mod:Adol:Fixed (slope of
Mod = 1206.1, CI = [610.4, 1801.9]∗) –
Mod:Child:Fixed (slope of
Mod = −405.1, CI = [−997.9, 187.9]),
p = 0.001∗ Mod:Adol:Fixed –
Mod:Adol:Random (slope of
Mod = 104.4, CI = [−468.3, 677.0]),
p = 0.004∗ Mod:Adol:Fixed –
Mod:Child:Random (slope of
Mod = 105.3, CI = [−621.9, 832.5]),
p = 0.044∗

SDRT Mod (alpha) β = −166.4, CI = [−482.7, 158.4]

SDRT Mod (beta) β = −799.8, CI = [−1567.5, 27.2] Mod (beta) × Age
(Figure 3)

β = 876.5,
CI = [95.6, 1675.4]

Mod:Child (slope of Mod = −1676.3,
CI = [−3026.7, −326.0]∗) – Mod:Adol
(slope of Mod = 76.7, CI = [−793.3,
946.6]), p = 0.033∗

Mu GE (theta) β = 129.7, CI = [−698.3, 417.8]

Mu GE (alpha) β = −133.9, CI = [−876.9, 578.4]

Mu GE (beta) β = 307.6, CI = [−1121.0, 1707.6]

Mu Mod (theta) β = 475.2, CI = [−579.2, 1602.1]

Mu Mod (alpha) β = 528.5, CI = [−460.0, 1494.8]

Mu Mod (beta) β = 869.4, CI = [−1416.1, 3234.9]

Sigma GE (theta) β = −94.4, CI = [−336.0, 132.4]

Sigma GE (alpha) β = −78.8, CI = [−353.1, 179.7]

Sigma GE (beta) β = −247.1, CI = [−794.0, 306.9]

Sigma Mod (theta) β = 18.6, CI = [−362.7, 447.2] Mod (theta) × Age
× SART

β = 510.6,
CI = [163.8, 828.9]

Mod:Adol:Fixed (slope of Mod = 905.5,
CI = [213.0, 1598.0]∗) –
Mod:Child:Fixed (slope of
Mod = −707.9, CI = [−1412.8,
−3.01]∗), p = 0.009∗ Mod:Adol:Fixed –
Mod:Adol:Random (slope of
Mod = −276.0, CI = [−941.6, 389.7]),
p = 0.020∗

Sigma Mod (alpha) β = −105.0, CI = [−481.9, 247.8]

Sigma Mod (beta) β = −773.3, CI = [−1637.2, 122.1]

Tau GE (theta) β = −310.9, CI = [−622.4, −23.2]∗

Tau GE (alpha) β = −129.7, CI = [−512.1, 236.1]

Tau GE (beta) β = 294.8, CI = [−513.1, 1002.5]

Tau Mod (theta) β = 254.3, CI = [−315.4, 818.9]

Tau Mod (alpha) β = −56.6, CI = [−555.9, 436.2]

Tau Mod (beta) β = −374.4, CI = [−1544.2, 754.9]

FFAUS GE (theta) β = −903.1, CI = [−1586.7, −211.8]∗

FFAUS GE (alpha) β = 166.8, CI = [−599.7, 895.8]

FFAUS GE (beta) β = 436.2, CI = [−1093.2, 1934.3]

FFAUS Mod (theta) β = 1029.0, CI = [−83.5, 2151.7]

FFAUS Mod (alpha) β = −510.4, CI = [−1486.7, 419.8]

FFAUS Mod (beta) β = −523.0, CI = [−2894.4, 1883.2]

SFAUS GE (theta) β = −4356.2, CI = [−7943.4, −473.3]∗

SFAUS GE (alpha) β = −2072.9, CI = [−6556.4, 2361.4]

SFAUS GE (beta) β = 5391.1, CI = [−3356.1 14423.1]

SFAUS Mod (theta) β = 865.5, CI = [−5500.0, 7345.1]

SFAUS Mod (alpha) β = −5613.3, CI = [−11091.6, 82.2] Mod (alpha) × Age
(Figure 2)

β = 6179.6,
CI = [947.1,
11368.4]

Mod:Child (slope of Mod = −11792.9,
CI = [−20490.4, −3095.4]∗) –
Mod:Adol (slope of Mod = 566.3,
CI = [−6193.9, 7326.6]), p = 0.028∗

(Continued)
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TABLE 2 | Continued

Outcome
variables

Predictors β and CI Significant
interactions

β and CI Significant pairwise comparison

SFAUS Mod (beta) β = −7653.7, CI = [−21731.2, 5397.7] Mod (beta) × Age
× SART (Figure 4)

β = 10723.1,
CI = [956.7,
20353.7]

Mod:Child:Fixed (slope of
Mod = −38294.6, CI = [−65478.8,
11110.3]∗) – Mod:Adol:Fixed (slope of
Mod = 3355.9, CI = [−16420.5,
23132.4]∗), p = 0.034∗

ADHD represents the ADHD Index and it is continuous data. For Age, −1 = children or Child, 1 = adolescents or Adol. SART represents the SART Task, and −1 = Random,
1 = Fixed. For Flanker, −1 = Incongruent or Inc., 1 = Congruent or Con. β represents the coefficient of a predictor variable. CI represents 95% Confidence Interval. ∗

p < 0.05 or CI does not contain 0. GE represents Global Efficiency, Mod represents Modularity, (theta) represents the theta band, (alpha) represents the alpha band,
(beta) represents the beta band.

Index was associated with a greater increase in global efficiency
from the baseline to the task in the theta band.

There was a significant two-way interaction between Age,
and SART Task on global efficiency in the alpha band during
the task (see Figure 6). Compared with children, adolescents
showed greater global efficiency in the alpha band during the
task. There was no significant difference in global efficiency in
the alpha band between adolescents and children in the random
version of the SART.

There were no other significant interactions.

DISCUSSION

Children aged from 9 to 12 years and adolescents aged from 15 to
18 years completed the Fixed and Random SARTs while EEG was
recorded. Higher ADHD Index was associated with greater RTV
in all the RTV measures except for sigma. The same associations
were found in both children and adolescents. As predicted,
individuals with higher levels of ADHD symptoms tended to
produce more variable responses. Adolescents showed a greater
increase in global efficiency and decrease in modularity in the
theta and alpha bands from the baseline to task periods, than
the children. This suggests that adolescents may be better able to
adjust their brain activity to perform the task smoothly relative
to children, modifying brain activity be more integrated and less
strongly segregated. A greater increase in global efficiency in the
theta band was associated with all the RTV measures except
for sigma. This indicates that having highly integrated brain
activity is beneficial in producing more stable responses, possibly
by combining information across the brain more efficiently. In
adolescents only, a higher ADHD Index score was associated with
a smaller increase from the baseline to the task period in global
efficiency in the theta band. This may suggest that there might be
a delay in maturation for adolescents with higher levels of ADHD
symptoms. Their brains might be less efficient in shifting from the
baseline to the task, which might lead to more variable responses.

RTV and Global Efficiency
For stable performance, it may be important for the brain to
be highly integrated. Global efficiency in the theta band during
the task was significantly associated with SDRT, tau, FFAUS, and
SFAUS, but it was not associated with mean RT, mu, or sigma.
A greater increase of global efficiency in the theta band may be

FIGURE 1 | Associations between SDRT and modularity in the theta band for
each age group and two versions of the SART. A similar association was also
found for sigma.

a key characteristic of the brain associated with RTV. The results
suggest that greater integration of the brain during the task was
associated with more stable performance. Greater integration of
the brain, as measured by graph theoretical analysis, is thought to
reflect efficiency of information processing (Micheloyannis et al.,
2006; van den Heuvel et al., 2008; Bullmore and Sporns, 2012).
The current results suggest that the more efficiently information
is processed and integrated, the less variable responses become.

The theta band may play a crucial role in the brain’s ability
to perform the task with stable responses, as global efficiency
only in the theta band was associated with RTV measures.
The importance of this theta band integration in cognitive task
performance has been reported in studies applying the event-
related networks approach to performance on the oddball task
(Martin-Santiago et al., 2016) and the memory maintenance task
(Toth et al., 2012). Sauseng et al. (2007) suggested that the theta
band long range connectivity might play a role in integrating
sensory information into executive control. The theta band long
range connections were also suggested to coordinate information
from various parts of the brain during the mental task to
produce an output (Mizuhara et al., 2004; Berthouze et al., 2010).
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FIGURE 2 | Associations between SFAUS from the FFT analysis and
modularity in the alpha band for children and adolescents. In this figure, data
from the fixed and random conditions of the SART have been aggregated for
each age group.

FIGURE 3 | Associations between SDRT and modularity in the beta band for
each age group. In this figure, data from the fixed and random conditions of
the SART have been aggregated for each age group.

Therefore, greater integration of the brain in the theta band
might be reflecting how efficiently the information across the
brain is integrated before the output of responses. Among the
RTV measures investigated in this study, only sigma was not
significantly associated with global efficiency in the theta band.
Considering that sigma is a measure of RTV without extremely
slow responses (Luce, 1986), greater integration of the brain in
the theta band during the task might be associated with those slow
responses that are also measured through SDRT, tau, FFAUS and
SFAUS. Reduced integration of the brain in the theta band might
lead to more occurrences of those extremely slow responses

FIGURE 4 | Associations between SFAUS and modularity in the beta band for
each age group. The panel was split by the fixed and random versions of the
SART.

as the information is not efficiently combined, resulting in a
delayed response.

Age Effects
From late childhood to late adolescence, the brain may be
developing the ability to efficiently adjust functional connectivity
for maximal task performance. Compared with children,
adolescents showed a greater increase in global efficiency and
decrease in modularity in the theta and alpha bands from
baseline to performing the fixed and random SARTs. The
results indicate that adolescents were adjusting their brains
to be more integrated and strength of segregation to be
decreased compared with children when performing the task.
Bola and Sabel (2015) suggested that the network structure
of the brain changes from the baseline to task active state
by increasing the connectivity between modules, resulting in
a more functionally integrated and less strongly segregated
state during the cognitive process compared with baseline. This
increase in integration and decrease in strength of segregation
during the cognitive process has been found previously in
adults (Toth et al., 2012; Cruzat et al., 2016; Martin-Santiago
et al., 2016). Typically developing children showed greater
global efficiency over the course of a naming task compared
with children with reading difficulties, suggesting more efficient
processing with greater integration (Vourkas et al., 2011).
The current results of increased integration and decreased
strength of segregation during the task in adolescents compared
with the children might be linked with cognitive maturation.
With cognitive maturation, individuals might be better able
to smoothly reconfigure their brain connections to increase
functional integration and decreased strength of segregation for
more efficient cognitive processing.

Adolescents with higher levels of ADHD symptoms might
have difficulty with the brain becoming more integrated when
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TABLE 3 | Outcomes of analysis for network measures during the task period.

Outcome variables Predictors β and CI Significant
interactions

β and CI Significant pairwise
comparison

GE (theta) ADHD β = −0.0004, CI = [−0.0011, 0.0002] ADHD × Age
(Figure 5)

β = −0.0007,
CI = [−0.0013, −0.0001]

ADHD:Adol (slope of
ADHD = −0.0011,
CI = [−0.0020,
−0.0002]∗) − ADHD:Child
(slope of ADHD = 0.0003,
CI = [−0.0007, 0.0013]),
p = 0.034∗

Age β = 0.0117, CI = [0.0024, 0.0211]∗

SART β = −0.0013, CI = [−0.0043, 0.0017]

GE (alpha) ADHD β = −0.0003, CI = [−0.0009, 0.0003] Age x SART (Figure 6) β = 0.0058, CI = [0.0020,
0.0096]

Adol:Fixed −Child:Fixed,
p = 0.007∗

Age β = 0.0101, CI = [0.0020, 0.0187]∗

SART β = −0.0010, CI = [−0.0048, 0.0027]

GE (beta) ADHD β = 0.0000, CI = [−0.0001, 0.0002]

Age β = −0.0011, CI = [−0.0036, 0.0016]

SART β = 0.0005, CI = [−0.0016, 0.0026]

Mod (theta) ADHD β = 0.0002, CI = [−0.0001, 0.0004]

Age β = −0.0060, CI = [−0.0093, −0.0027]∗

SART β = 0.0002, CI = [−0.0019, 0.0022]

Mod (alpha) ADHD β = −0.0000, CI = [−0.0002, 0.0002]

Age β = −0.0046, CI = [−0.0078, −0.0012]∗

SART β = −0.0001, CI = [−0.0027, 0.0024]

Mod (beta) ADHD β = −0.0001, CI = [−0.0003, −0.0000]∗

Age β = −0.0002, CI = [−0.0018, 0.0015]

SART β = −0.0005, CI = [−0.0016, 0.0005]

ADHD represents the ADHD Index and it is continuous data. For Age, −1 = children or Child, 1 = adolescents or Adol. SART represents the SART Task, and −1 = Random,
1 = Fixed. For Flanker, −1 = Incongruent or Inc., 1 = Congruent or Con. β represents the coefficient of a predictor variable. CI represents 95% Confidence Interval.
∗p < 0.05 or CI does not contain 0. GE represents Global Efficiency, Mod represents Modularity, (theta) represents the theta band, (alpha) represents the alpha band,
(beta) represents the beta band.

FIGURE 5 | Associations between global efficiency in the theta band during
the task and ADHD Index. In this figure, data from the fixed and random
conditions of the SART have been aggregated for each age group.

performing the task, which may possibly indicate a delay
in maturation of the brain. Adolescents with lower levels of
ADHD symptoms showed a greater increase of global efficiency
in the theta band from the baseline to the task compared

FIGURE 6 | Bar graph representing global efficiency in the alpha band for
each age group and the fixed and random versions of the SART. Error bars
indicate the standard error.

with adolescents with higher levels of ADHD symptoms.
Previous studies have suggested that individuals with ADHD
showed less brain integration, as measured by the characteristic
path length and global efficiency (Ahmadlou et al., 2012;
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Lin P. et al., 2014; Liu et al., 2015). The association between
ADHD Index and global efficiency in adolescents indicates
that the level of functional integration in the theta band
might explain the relationship between RTV and ADHD
symptoms. Individuals with higher levels of ADHD symptoms
might show lower levels of integration of the brain in the
theta band during the task, which might lead to greater RTV
especially with extremely slow responses. This association,
however, was only found in adolescents, not in children.
Considering that greater increase in global efficiency was
observed in adolescents during the task compared with
children, adolescents with higher levels of ADHD might show
delays in maturation resulting in greater RTV and decreased
global efficiency. This delay in maturation might become
more apparent in adolescents, resulting in an association
between ADHD Index and global efficiency in the theta band
only in adolescents.

RTV and ADHD Symptoms
As hypothesized, individuals with higher levels of ADHD
symptoms showed more variable responses. The ADHD Index
was positively associated with SDRT, tau, FFAUS, and SFAUS.
The results were consistent with previous research and our
prediction that higher levels of ADHD symptoms would be
associated with greater RTV. In the Ex-Gaussian analysis, any
extremely long responses, most likely representing lapses in
attention during the task are captured by tau (Leth-Steensen
et al., 2000). The strong association between tau and the
ADHD Index suggests that those with elevated levels of
ADHD symptoms might experience more lapses in attention
during the cognitive task, resulting in increased RTV. This
finding is similar to previous studies reporting that tau is
a significant predictor of ADHD (Leth-Steensen et al., 2000;
Buzy et al., 2009; Gmehlin et al., 2014; Karalunas et al.,
2014; Lin H. Y. et al., 2014). Our results also showed that
participants with elevated levels of ADHD symptoms performed
the tasks with significantly greater FFAUS and SFAUS. FFAUS
is thought to be a measure of sustained attention/cognitive
control of attention, while SFAUS is thought to be a measure
of arousal levels (Johnson et al., 2007, 2008). This greater
RTV, indicated by both RTV frequency bands, is consistent
with previous studies with participants with a formal clinical
diagnosis of ADHD (Johnson et al., 2007, 2008; Karalunas
et al., 2013; Adamo et al., 2014) and those with more severe
symptoms of ADHD (Gomez-Guerrero et al., 2011; Mairena
et al., 2012). As both FFAUS and SFAUS were associated
with ADHD symptoms, individuals with more acute levels of
ADHD might have difficulty in both sustaining attention and
maintaining arousal levels.

RTV and Modularity
The level of segregation might be related to RTV differently
depending on the age of the participant. Only in the child
group was modularity in the beta band negatively associated
with SDRT. Additionally, a negative association between
modularity in the beta band and SFAUS was found in
children only in the fixed version of the SART. Children

who showed less reduction of modularity during the task
relative to baseline produced more stable responses. Previous
research in adults has shown that less segregated brain activity
is associated with better cognitive performance (de Haan
et al., 2012; Douw et al., 2014). Our results, in contrast,
suggested that having greater strength of segregated brain
activity was associated with children producing more stable
performance. There might be a benefit of having greater
strength of segregated brain activity, which is only found
during childhood. It has been assumed that the small-world
network structure with a highly integrated and segregated
network is the structure for the most efficient information
processing (Tononi et al., 1998; Sporns et al., 2004). Stam
et al. (2006) used graph theoretical analysis using EEG and
examined Alzheimer’s disease. They showed that Alzheimer
patients showed longer characteristic path length, suggesting
the loss of small-world structure and implies the potential
link with cognitive dysfunction. In children, higher modularity
and greater segregation might be more beneficial in terms of
efficient information processing. Alternatively, Kitzbichler et al.
(2011) showed that modularity was reduced when the cognitive
load was higher in the N-back task. It might indicate that
those children with greater strength of segregated brain activity
were the ones that felt the task to be easier. Further studies
are needed to examine the dynamics of modular structures
during cognitive tasks in children and adolescents, possibly
using source localization techniques to capture more detailed
network structures.

Fixed and Random SART
An expectation for upcoming stimuli helped participants to
inhibit their responses to No/Go stimuli, but it might not
influence RTV. Participants made more commission errors in
the random version of the SART compared to the fixed version,
but no other behavioral measures differed between the two SART
tasks. A previous study by O’Connell et al. (2009) compared
the fixed and random version of the SART and showed no
differences in SDRT, which was consistent with our study
showing no difference in RTV, measured using SDRT, sigma,
and tau, between the two versions of the task. Being able
to predict the next stimulus did not help to produce stable
responses observed.

Even though the participants showed similar levels of RTV
between the fixed and random version of the SART, the
brain responded differently to the two conditions. O’Connell
et al. (2009) ERP study showed the slow potential in the
fixed version, which is thought to reflect an expectation of
the next stimuli. This study found that adolescents showed a
greater increase in global efficiency in the alpha band during
the task compared to children only in the fixed SART. The
alpha oscillation has been linked to tonic or intrinsic arousal
(Sadaghiani et al., 2010; Sadaghiani et al., 2012). The fixed
SART is cognitively less demanding because the target digit is
expected and this might lead to greater degrees of boredom
compared with the random SART. Greater global efficiency
in the alpha band in adolescents compared to children only
in the fixed SART might suggest that adolescents are more
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capable of maintaining arousal levels in the less cognitively
demanding task. In addition, this expectancy effect might explain
modularity in the theta band being associated with reduced SDRT
and sigma only in adolescents on the fixed version of SART.
Adolescents might be able to decrease functional segregation
of the brain in the fixed version of SART to produce less
variable responses.

LIMITATIONS

Participants in this study were not clinically diagnosed with
ADHD, and the analysis was performed using the levels of
ADHD symptoms as measured by the Conners 3 ADHD Index.
The results could be different with a clinically diagnosed group.
Another limitation of the study is the mixed use of the self-report
and parent forms of Conners 3 across individuals. The study
treated the ADHD Index from parents and self-report as the same
variable, as they are highly correlated (Conners, 2008), however
the findings related to the ADHD Index might vary if the same
type of administration was used for all participants.

Our analysis was performed using surface level EEG recording
with 64 electrodes. This allowed us to infer overall connectivity
patterns of the surface of the whole brain, but with limited
resolution in space. Further studies could consider using
source localization methods, fMRI, or simultaneous EEG/fMRI
recording to form more complex networks with a greater number
of nodes. This would allow for investigations into small local
networks existing within the large network and how the small
networks communicate each other, such as in the study of hubs
of networks (van den Heuvel and Sporns, 2013; Sporns and
Betzel, 2016). This source level analysis might be able to identify
more detailed patterns of brain connectivity associated with RTV
and ADHD symptoms.

Another limitation of this study was the choice in defining
the task period, which was 300–600 ms. It was assumed that this
task period is associated with cognitive processes of humans, but
this selection of the time window was set by choice rather than
determined by a data driven approach. This process of deciding
the time window might introduce subjective bias. Future studies
could consider adopting different time windows or use a mass
univariate approach (Groppe et al., 2011) to avoid defining a
particular time window.

CONCLUSION

This study found that a greater increase in global efficiency in the
theta band from the baseline to task active status was negatively
associated with RTV, where the more integrated the brain, the
more stable the performance. We suggest that greater integration
of the brain allows for smoother communication between
different parts of the brain and subsequently more efficient
information flow. As the level of integration was not associated
with speed of responses, stability and speed of responses were
influenced by different mechanisms in the brain. Adolescents

showed greater increase in global efficiency and greater decrease
in modularity in the theta and alpha bands during the task
compared with children. As children develop into adults, their
brains are more efficiently able to shift state as needed for the task
at hand, possibly reflecting cognitive maturation. As predicted,
individuals with higher levels of ADHD symptoms performed
the SARTs with greater RTV. Through the measurement of
different aspects of RTV, this research reveals that the general
stability of responses is not simply linked to ADHD symptoms.
Higher levels of ADHD symptoms might be associated with more
lapses in attention (tau), greater difficulty in sustaining attention
(FFAUS) and maintaining arousal levels (SFAUS), which may
contribute to increased RTV. SDRT, tau, FFAUS, and SFAUS were
associated with both ADHD symptoms and global efficiency in
the theta band but not with sigma. With these similar patterns
of associations, ADHD symptoms and global efficiency in the
theta band might explain similar aspects of RTV. From the
examination of associations between ADHD symptoms and
network measures, only in the adolescent group was global
efficiency in the theta band during the task associated with the
ADHD Index. This suggests that adolescents with greater levels
of ADHD might have a delay in maturation, thus exhibiting lower
levels of integration activity and increased RTV.
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