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Emerging targets for anticancer vaccination: PD-1
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Among the mechanisms by which tumor cells escape the immune surveillance, one is the interaction between
programmed cell death protein 1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1). Inhibition of the PD-1/
PD-L1 pathway with monoclonal antibodies as immune checkpoint inhibitors targeting PD-1 or its ligand, PD-L1,
represents a milestone in cancer therapy. The application of these antibodies, however, suffers from drawbacks
including failure to show a response or benefit in a majority of patients following monotherapy or combination
therapy, their frequent administration, and cost intensiveness. Small peptides capable of interfering with PD-1/PD-L1
interaction represent interesting alternatives to antibody-based immune checkpoint inhibitors. Moreover, peptides
representing PD-1 or PD-L1 sequences can be used in active immunization approaches to induce antibodies that
enhance antitumor immunity by effectively preventing PD-1-mediated inhibition in the host. Importantly, such
peptides can readily be combined with peptides derived from cancer antigens to effectively induce an antitumor
immune response. In this review, we have summarized the recent developments in the use of small molecules and
peptides either to directly block PD-1/PD-L1 interaction, or in vaccination approaches to induce antibody responses
stimulating anticancer immunity by blocking PD-1-mediated T-cell inhibition.
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INTRODUCTION

Activation of T cells is achieved by the interaction between
the T-cell receptor and the antigen in the context of major
histocompatibility complex, and the interaction between
costimulatory receptors like CD28 with B7 family members
CD80 (B7-1) or CD86 (B7-2).1 These stimulatory signals are,
however, counterbalanced by the interaction between co-
inhibitory receptors on T cells, like programmed cell death
protein 1 (PD-1) which binds to its ligands programmed
death-ligand 1 (PD-L1) and PD-L2, or cytotoxic T lymphocyte
antigen 4 (CTLA-4) which binds to CD80 or CD86,2,3 func-
tioning as a protective mechanism for the host.4 While
CTLA-4 stops potentially autoreactive T cells at the initial
stages of immune response and naive T-cell activation,
typically in lymph nodes, the PD-1 pathway is involved at
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the later stages of the immune response and regulates T-cell
responses, primarily in peripheral tissues.5

Multiple lines of preclinical and clinical evidence have
shown that tumors can evade the immune system, by
expressing surface ligands that engage inhibitory receptors
on tumor-specific T cells, resulting in immune tolerance.6,7

PD-L1 is expressed by a multitude of immune cells, and
also on some cancer cells, and the interaction between PD-
1 and PD-L1 results in activation of PD-1 and in turn
attenuation of T-cell activity.8 Accordingly, PD-L1 over-
expression on tumor cells has been linked to a poor prog-
nosis for several types of tumors in various cancers.9-13

The engineering and development of therapeutic anti-
bodies, like immune checkpoint inhibitors (ICIs), is a mile-
stone in immunotherapy.14-17 Among these, the blockade of
PD-1/PD-L1 interaction by various monoclonal antibodies
(mAbs) targeting PD-1 (e.g. nivolumab, pembrolizumab),
PD-L1 (e.g. atezolizumab, avelumab, durvalumab), or ipili-
mumab targeting CTLA-4,16,18 holds a tremendous promise
for the treatment of diverse solid tumor types, including
melanoma, non-small-cell lung cancer (NSCLC) and renal
cell carcinoma.8,19,20 Although with high therapeutic effi-
cacy,20 the administration of mAbs suffers from several
drawbacks including (i) the cost intensiveness of their pro-
duction and administration which may not only result in a
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burden on the health system but also in limiting the access
to these treatments, (ii) the unavailability for oral admin-
istration, (iii) the low permeability and diffusion into large
tumors due to their high molecular weight, (iv) the strong
binding to the periphery of the tumors, due to their high
affinity, and consequently low capacity to reach tumor
cores, and (v) the need for frequent and prolonged intra-
venous administration.21,22 Furthermore, immune-related
adverse events (irAEs) are frequently observed in the pa-
tients treated with ICIs.23-25 In addition, the ambiguous in-
teractions between Fcgc and antibodies are a matter of
concern in ICI therapy and require careful selection of an-
tibodies with suitable isotypes.26,27 Moreover, continuous
target inhibition as a result of the therapeutic mAbs’ long
half-lives may also contribute to irAEs.
BIOLOGICAL BACKGROUND

Due to their role in the reversal of tumor immunity inhi-
bition, administration of ICIs leads to activation of the im-
mune system by mechanisms including e.g. the reactivation
of T cells after inhibition of PD-1/PD-L1 interaction, and
reversion of the intrinsic PD-L1 signaling to tumor cells
promoting an anti-apoptotic effect and cells growth.20,28

The direct exploitation of small molecules as PD-1
blockers, or the application of peptides in a formulated
vaccine, are two distinct approaches that can be regarded
as promising alternative strategies to counteract PD-1 in-
hibition. Compared with antibody-based ICIs, they would
have several advantages such as low cost and potential for
oral bioavailability.29

The rational design of small molecules is based on the
immune checkpoints’ structure and physical modelling.30-32

As small compounds,33,34 the direct application of such
molecules is aimed to block the PD-1-mediated inhibition.
The faster half-life of small compounds will necessitate a
more frequent administration, but it may also result in
fewer side-effects such as irAEs associated with ICIs.29 The
half-life of the small molecule NP-12 was shown to be
approximately 90 minutes in mouse liver microsomes,30 in
contrast to the half-life of ICIs which is >15-20 days in
humans.35 Since the length of the exposure to the drug is
correlated with irAEs, the short half-life of the small mole-
cules, compared with the ICIs, would require a more
frequent application. This could in turn, however, poten-
tially result in a reduced level of the developed irAEs.36

The application of peptide libraries, displayed on the
surface of bacteria or bacteriophages, is an alternative
strategy to identify and select the epitopes of ICIs or other
therapeutic mAbs.37-39 Based on this strategy, the use of
mimotopes, i.e. peptides mimicking or representing
immunodominant epitopes on the target protein or the
binding epitopes of the therapeutic mAb, has become a
promising strategy both for infectious diseases40-43 and for
cancer therapy.41 Opposed to the direct mode of action by
small molecules, peptides representing mimotopes of PD-1
can be used in vaccination strategies to induce the
generation of blocking PD-1 antibodies in the host. Such
2 https://doi.org/10.1016/j.esmoop.2021.100278
endogenously produced immunostimulatory antibodies
(ICIs) have the potential to promote antitumor responses
for prolonged periods of time, i.e. immunological mem-
ory,44 without the need for repeated administration of ICIs
or other PD-1 blocking agents. More recently, we and
others have exploited this approach by using mimotopes/
peptides derived from PD-1 in immunization regimens.39,45

Importantly, both studies have demonstrated that com-
bined immunization with PD-1 B-cell epitopes and peptides
representing cancer antigens has significant antitumor ac-
tivity. The significant antitumor effect observed in our study
was associated with a marginal induction of PD-1-specific
antibodies.39 This suggests that vaccination with PD1-
derived mimotopes/peptides might potentially be associ-
ated with a reduced degree of irAEs, in comparison to the
ICIs which are administered at doses to ensure their im-
mediate bioavailability and potency in targeting the
respective immune checkpoints.36

The development of molecules or peptides targeting PD-
L1, which can be used as blocking compounds or in vacci-
nation approaches, is a viable alternative strategy to block
the PD-1 pathway. In addition to PD-1 and PD-L1, peptides
that block other immune checkpoints such as B- and T-
lymphocyte attenuator (BTLA) might also have potential in
immunotherapeutic approaches.46

PD-1/PD-L1 INHIBITORS UNDER DEVELOPMENT

The abovementioned drawbacks associated with the
administration of ICIs may be circumvented by the use of
small compounds or peptides, to directly inhibit the PD-1/
PD-L1 interaction, or by application of mimotopes/pep-
tides to induce the production of the corresponding ICIs by
the patient’s own immune system following immunization/
vaccination. Based on these two approaches, as depicted in
Figure 1, different types of potentially applicable inhibitors
have been discovered and characterized, as shown in
Table 1.
Direct blockade of PD-1 with small molecules or
compounds

Phage display with random amino acids has been applied to
identify a cyclic peptide, C8.47 This peptide demonstrated a
high affinity to human PD-1 (hPD-1), as well as mouse PD-1
(mPD-1), and could effectively interfere with the PD-1/PD-
L1 interaction. C8 suppressed the growth of CT26 and
B16-OVA tumors and also showed an effect in an anti-PD-1
antibody-resistant B16 mouse model. The authors demon-
strated that the antitumor effect was mediated by the
activation of CD8þ T cells.

Phage display was also applied in another study, resulting
in the identification of four peptides that bound to distinct
sites on PD-1.48 The combination of the four peptides was
examined in vivo in the B16 F10 syngeneic mouse mela-
noma model and was shown to induce antitumor activity
comparable to that of a PD-1 antibody. The peptides were
found to improve overall survival with enhanced bacterial
clearance and increased macrophage function in a sepsis
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Figure 1. A diagram depicting strategies to inhibit the interaction between PD-1 and PD-L1, to consequently result in increased T-cell response and tumor cell
death.
(A) Normal condition involving no blockade of PD-1 and PD-L1 interaction. With the blockade of the interaction by (B) small molecules, (C) ICIs, or (D) antibodies
generated following vaccination with a mimotope/peptide.
ICIs, immune checkpoint inhibitors; mAb, monoclonal antibody; MHC-I, major histocompatibility complex I; PD-1, programmed cell death protein 1; PD-L1, programmed
death-ligand 1; TCR, T-cell receptor.
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model. Further, the peptides were shown to act as an
adjuvant in combination with a prophylactic malaria vaccine
in increasing T-cell immunogenicity and the vaccine’s pro-
tective efficacy.48

Sasikumar et al.30,49 have developed the first rationally
designed peptide antagonist (NP-12) of the PD-1 signaling
pathway, using computational tools for the prediction of the
naturally folded structure of proteins. The peptide NP-12 is
a decoy PD-1 receptor comprising a branched peptide
containing 29 amino acids with structural elements derived
from the PD-1 protein.30 Although it has a shorter phar-
macokinetic exposure than an examined anti-PD1 antibody,
the peptide was found to result in a comparable antitumor
effect in various syngeneic in vivo tumor models, also
indicating that a sustained pharmacokinetic exposure is not
needed to achieve efficacy.30,49 Bristol-Myers Squibb (BMS)
have characterized macrocyclic peptides displaying nano-
molar activities in dissociating the PD-1/PD-L1 interaction
by the homogeneous time-resolved fluorescence (HTRF)
assay.49-52

Peptides targeting PD-L1, and consequently inhibiting the
interaction between PD-1 and PD-L1, have also been iden-
tified and characterized (Table 1). A peptide, PL120131,
which like PD-L1 binds to the shallow binding pocket of PD-
1, was rationally designed and developed.49,53 As a PD-L1
peptide mimetic, PL120131 was shown to inhibit PD-1-
mediated apoptotic signaling and induced antitumor activ-
ity in vitro.53

The PD-L1-targeting peptide (TPP-1),54 with high affinity
to human PD-L1 (hPD-L1), was also identified and shown to
inhibit tumor growth in a xenograft mouse model using the
Volume 6 - Issue 5 - 2021
human lung cancer cell line H460.54 Ahmed et al.55

described PDLong1, a 19-mer peptide harboring an HLA-
A2-restricted and PD-L1-derived CD8þ T-cell epitope.55 In-
cubation of PDLong1 with peripheral blood mononuclear
cells from patients with malignant melanoma who had
received a dendritic cell-based vaccine was shown to result
in a significantly higher number of T cells that reacted to a
dendritic cell-based vaccine. By a computational de novo
peptide design method, the peptide Ar5Y_4 was identified
and shown to have a strong affinity to hPD1, comparable to
hPD-L1. By a surface plasmon resonance (SPR) competitive
binding assay, the peptide was shown to inhibit the inter-
action of hPD-1 and hPD-L1, and restore the function of
Jurkat T cells which had been suppressed by the human
colon carcinoma cell line HCT116.56 A novel biopanning
strategy to discover anti-PD-L1 inhibitors led to the dis-
covery of peptide CLP002 exhibiting high binding to human
PD-L1 protein as well as PD-L1-positive human cancer cells
MDA-MB-231 and DU-145. CLP002 was demonstrated to
bind to the residues involved in the interaction between
PD-L1 and PD-1.57 The small molecules BMS-1001 and BMS-
1166, with a capacity of inhibiting the interaction between
hPD-1 and hPD-L1, by binding to the latter, were developed
by BMS.58 The molecules were shown to antagonize T-cell
inhibition by interfering with the PD-1/PD-L1 interaction, to
block the binding of soluble PD-L1 T cells, and to induce PD-
L1 dimerization in solution.58

Although the mode of action and the CA-170-binding
epitope need further verification,59 this rationally
designed molecule, which was reported to function as an
antagonist of the immune checkpoints PD-L1, PD-L2, and
https://doi.org/10.1016/j.esmoop.2021.100278 3
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Table 1. Targeted agents under development.

Compound (designation) Source/identification method Mechanism of action Reference

Cyclic peptide (C8) Phage display Binding to hPD-1 and mPD-1, and inhibiting the
interaction between PD-1 and PD-L1

47

Combi vaccine, containing 4 peptides
(QP-20, HD-20, BQ-20, WQ-20)

Phage display Binding to hPD-1 and mPD-1.
Combi vaccine
With in vivo antitumor effect, comparable to
the effect of an anti-PD1 antibody, in B16 F10
syngeneic mouse melanoma model

48

NP-12 Native sequences of protein interacting
interfaces, decoy PD-1 receptor containing 29
amino acids with the structural elements
derived from PD-1 protein

Peptide antagonist (NP-12) of the PD-1
signaling pathway

30,49

Macrocyclic peptides Multiple hydrophobic amino acids, N-methyl
and unnatural amino acids

Inhibiting the interaction between PD-1 and
PD-L1

49-52

PL120131 Rationally designed peptide, as a PD-L1 peptide
mimetic

Binds to the shallow binding pocket of PD-1 53

Targeting PD-L1 peptide (TPP) Bacterial phage display With a high binding affinity to hPD-L1 54

PDLong1 Amino acids ‘FMTYWHLLNAFTVTVPKDL’,
containing a hPDL-1-derived CD8þ T-cell
epitope

Containing an HLA-A2-restricted, PD-L1-derived
CD8þ T-cell epitope (PDL115e23, LLNAFTVTV)

55

Ar5Y_4 Computational de novo peptide design Strongly inhibiting the interaction of hPD-1 and
hPD-L1, and restoring the function of Jurkat T
cells which had been suppressed by HCT116
cells

56

CLP002 Biopanning strategy High binding to hPD-L1 protein as well as PD-
L1-positive human cancer cells MDA-MB-231
and DU-145
Binding to PD-L1 at the residues where PD-L1
interacts with PD-1

57

BMS-1001 and BMS-1166 Chemical structures along all modifications of
distal, flexible moieties exposed to the solvent

Binding to PD-L1NMR-based AIDA was carried
out

58

CA-170 Rationally designed molecule Targets the PD-L1, PD-L2, and the V-domain Ig
suppressor of T-cell activation (VISTA) immune
checkpoints, and results in activation of T-cell
proliferation and cytokine production.

59

JT-N1 Amino acids ‘PGWFLDSPDRPWNPP’ of hPD-1,
using overlapping bio-peptides

Reverts the inhibitory capacity of nivolumab, in
both ELISA and T cell-based cellular assay

39

JT-mPD-1 Amino acids ‘ISLHPKAKIEESPGA’ of mPD-1,
using overlapping bio-peptides

Reverts the inhibitory capacity of the anti-
mouse functional mAb clone 29F.1A12, in both
ELISA and T cell-based cellular assay; induces
antibodies reducing tumor growth, and
enhances the antitumor effect of the Her-2/
neu vaccine HerVaxx, in a syngeneic BALB/c
model with mammary carcinoma cells
expressing human Her-2/neu

39

PD-1-Vaxx Amino acids ‘GAISLAPKAQIKESLRAEL’ of hPD-1 Induces antibodies reducing tumor growth in a
syngeneic BALB/c model with CT26 colon
carcinoma cells

45,61

ELISA, enzyme-linked immunosorbent assay; hPD-1, human programmed cell death protein 1; hPD-L1, human programmed death-ligand 1; Ig, immunoglobulin; mAb, monoclonal
antibody; mPD-1, mouse programmed cell death protein 1; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.
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V-domain Ig suppressor of T cell activation (VISTA), has
been shown to enhance T-cell proliferation and interferon-g
production. Further, the molecule was shown to be orally
bioavailable and safe in preclinical studies, and to have an
antitumor effect, in vivo, similar to anti-PD-1 or anti-VISTA
antibodies.60

Blockade of PD-1 following vaccination with mimotopes/
peptides

With the aim for use as peptide-based vaccines, the pep-
tides/mimotopes JT-mPD1, JT-N1, from mPD-1 and hPD-1,
respectively, and PD-1-Vaxx were identified based on the
sequence of PD-1, and were shown to induce an antitumor
effect in vivo39,61 (Table 1). The antitumor effect by mim-
otope JT-mPD1 was shown to be associated with a signifi-
cant reduction of proliferation and increased apoptotic
4 https://doi.org/10.1016/j.esmoop.2021.100278
rates in the tumors in the employed Her-2/neu-expressing
syngeneic tumor mouse model. Further, the antitumor ef-
fect of our Her-2/neu vaccine (HerVaxx)62,63 was shown to
be potentiated when combined with JT-mPD1.39 Our
ongoing investigations have further indicated that active
immunization has not led to increased inflammatory re-
sponses. Furthermore, using an influenza infection mouse
model, no indication of enhanced inflammatory responses
or cytokine storm were observed, indicating the potential
safety of such a vaccination approach (submitted
manuscript).

CURRENT ONGOING CLINICAL TRIALS

We have recently shown, for the first time, the concept of
vaccination with mimotopes (B-cell epitope) of anti-PD-1
mAbs.39 Active immunization with a mimotope, as
Volume 6 - Issue 5 - 2021
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Table 2. Current ongoing clinical trials

Drug Identifier number Tumor types Setting Phase Status Reference

BMS-986189 NCT02739373 Healthy individuals To measure the drug’s amount in the blood
and urine, and to evaluate its safety

I Completed 52

CA-170 NCT02812875 Patients with advanced
tumors and lymphomas

Open-label, dose-escalation and dose- expansion I Completed 64

IMU-201
(PD-1-Vaxx)

NCT04432207 Non-small-cell lung cancer Multiple arms, monotherapy (dose-escalation) I Recruiting 45,61

J. Tobias et al. ESMO Open
monotherapy or as a combination therapy together with
our anti-Her-2/neu vaccine (HerVaxx),62,63 was shown to
induce a strong antitumor effect39 in vivo, similar to the
corresponding mAb (Table 1). Along these lines, a peptide
(PD-1-Vaxx) residing at the position 92-101 of hPD-1 was
identified and shown to have a strong antitumor effect
in vivo (Table 1).61 This peptide is currently being evaluated
in a phase I clinical trial (Table 2), as an open-label, multi-
center, non-randomized, dose-escalation and expansion
study, to evaluate its safety, tolerability, and immunoge-
nicity as monotherapy in patients with PD-L1-expressing
NSCLC.45

A multicenter, open-label, phase I trial involving the
evaluation of the orally administered PD-L1/PD-L2/VISTA
antagonist CA-170 (Table 2) was recently completed. The
compound was evaluated in adult patients with advanced
solid tumors or lymphomas which had progressed, or pa-
tients non-responsive to available therapies, or when no
standard therapies were available.64 At the time of this
review’s preparation, the results of the trial are pending
publication. In addition to the small molecule CA-170, the
macrocyclic peptide BMS-986189, inhibiting the interaction
between PD-1 and PD-L1, has also proceeded to a clinical
trial. This completed trial, also with results pending publi-
cation, was a randomized, double-blinded, placebo-
controlled, single ascending dose study to evaluate the
pharmacokinetics, safety, tolerability, and pharmacody-
namics of the drug in healthy subjects.

CONCLUSION

Although there is a boom in the development of thera-
peutic antibodies functioning as ICIs, alternative therapeu-
tics targeting PD-1 or PD-L1 are still needed.15 While the
PD-1 and PD-L1 immune checkpoint pathways reduce T cell
activation, to maintain peripheral tolerance, they can be
exploited by tumors to induce an immunosuppressive state
allowing the tumors’ growth and immune escape. The dis-
covery of the therapeutics based on small-molecule in-
hibitors of the PD-1/PD-L1 interaction, or immunogenic
peptides inducing antibodies inhibiting the interaction,
represents a promising immunotherapeutic approach,
which could potentially overcome some of the disadvan-
tages associated with the administration of ICIs. Although
vaccination with peptides and the consequent immuno-
logical memory may result in the continuous inhibition of
the PD-1/PD-L1 interaction and irAEs, also affected by the
isotype of the generated peptide-specific Abs, the use of
Volume 6 - Issue 5 - 2021
proper vaccine adjuvants such as Alum in conjunction with
the peptide may potentially skew the immune system to-
wards the production of the peptide-specific antibodies
with an isotype with low capacity for engaging with Fcgc,
i.e. IgG4.27,65 As mentioned previously, we have reported
that active immunization of mice with the mimotope from
mouse PD1 results in an increased antitumor effect. This
effect, however, was shown to be associated with a mar-
ginal level of the induced mimotope/PD-1-specific anti-
bodies which was clearly lower than the level of the
passively transferred respective antibody.39 This suggests
that active immunization induces broader immunological
and cellular effects, which have resulted in the observed
antitumor effect in the employed mouse model. However,
in-depth analyses including long-term experiments and
eventually evaluating the safety of active immunization with
the mimotope in clinical trials are essential. Such studies
should also address how re- or co-treatment with chemo-
therapeutic agents impact the generation of PD-1 blocking
antibodies. Importantly, the immunogenicity, safety, and
tolerability of active immunization with a PD1 peptide (PD-
1-Vaxx) are already being evaluated in a clinical trial
(NCT04432207; Table 2). The various small molecules and
peptides reviewed here, including a number of them being
evaluated in clinical trials, have the potential to be used as
inhibitors to disrupt the interaction between PD-1 and PD-
L1 and result in the activation of T cells. The opportunity of
using such inhibitors, possibly adapted to the stage and
progression phase of the disease and tumor in addition to
the existing ICIs, may potentially pave the way for treat-
ments overcoming the disadvantages of the use of ICIs in
non-responsive settings or patients receiving the currently
conventional ICI treatments. Furthermore, as an especially
promising strategy, such inhibitory small molecules or
peptides may also serve as ‘adjuvants’, when vaccinating
with tumor-associated or tumor-specific antigens, to induce
potent anticancer responses.
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