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Abstract
Background: The presence of MLL rearrangements in acute leukemia results in a complex number
of biological modifications that still remain largely unexplained. Armstrong et al. proposed MLL
rearrangement positive ALL as a distinct subgroup, separated from acute lymphoblastic (ALL) and
myeloblastic leukemia (AML), with a specific gene expression profile. Here we show that MLL, from
both ALL and AML origin, share a signature identified by a small set of genes suggesting a common
genetic disregulation that could be at the basis of mixed lineage leukemia in both phenotypes.

Methods: Using Affymetrix® HG-U133 Plus 2.0 platform, gene expression data from 140 (training
set) + 78 (test set) ALL and AML patients with (24+13) and without (116+65) MLL rearrangements
have been investigated performing class comparison (SAM) and class prediction (PAM) analyses.

Results: We identified a MLL translocation-specific (379 probes) signature and a phenotype-
specific (622 probes) signature which have been tested using unsupervised methods. A final subset
of 14 genes grants the characterization of acute leukemia patients with and without MLL
rearrangements.

Conclusion: Our study demonstrated that a small subset of genes identifies MLL-specific
rearrangements and clearly separates acute leukemia samples according to lineage origin. The
subset included well-known genes and newly discovered markers that identified ALL and AML
subgroups, with and without MLL rearrangements.

Background
The MLL gene located on chromosome 11 band q23 nor-
mally functions as a transcription regulator of the HOX
genes [1] and is essential for normal mammalian develop-
ment and hematopoiesis [2]. Chromosomal transloca-
tions involving MLL gene represent frequent cytogenetic
abnormalities found in hematologic malignancies, occur-
ring in 5–6% of patients with acute myeloid leukemia

(AML), 7–10% of acute lymphoblastic leukemia (ALL),
60–70% of all acute leukemias in infants, and in most
patients with t-AML/t-ALL secondary to therapy that is tar-
geting topoisomerase II [3]. The function of the various
MLL fusion genes [4,5] and proteins is poorly understood
but it appears that the fusion proteins disrupt the ability
of wild-type MLL to regulate HOX gene expression, lead-
ing to leukemogenesis [6]. Recent studies demonstrated
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that the presence of MLL rearrangements can be associ-
ated to specific antigen [7,8] and gene expression patterns.
Pediatric patients with ALL carrying MLL rearrangement
have been successfully distinguished from ALL and AML
patients without MLL translocation as a distinct subgroup
with a specific gene expression profile [9]. Different gene
expression signatures for ALL and AML samples, with and
without MLL translocation were also identified in adult
patients indicating a common method to comprehen-
sively characterize the MLL mutation [10]. However, the
involvement of MLL gene in the onset and progression of
leukemia event still remains unclear. The present study
encompasses the efforts to clarify the relations between
MLL translocation and acute leukemias in pediatric
patients: we identified common MLL-related markers that
are shared between leukemias with different phenotypes
(translocation-related signature) and investigated the role
of MLL aberration in acute leukemias with different line-
age origin (phenotype-related signature). To this end, two
independent cohorts of 140 (training set) and 78 (test set)
pediatric patients with ALL/MLL+, AML/MLL+, ALL/MLL-
and AML/MLL- have been inspected using gene expres-
sion profiling. Separated comparisons based on pheno-
type and translocation information have been applied to
find differentially expressed genes using both comparison
(SAM) and prediction (PAM) analyses. Each subgroup has
been clearly distinguished using a final subset of 15
probes which separated the training cohort samples into
phenotype-related and translocation-related signatures.
The strength of our predictor was successfully validated on
an independent test cohort. The identified markers have
been further examined to explain their biological correla-
tions using gene ontology inquiries. We assessed the key
role of previously unexplored genes to specifically charac-
terize MLL translocation as well as the impact of well-
known genes in separating acute leukemia samples
according to phenotype origin.

Methods
Patients and Samples
A total cohort of 140 pediatric patients was enrolled in the
training set. Bone marrow samples were collected at diag-
nosis from 106 and 34 patients with acute lymphoblastic
and myeloblastic leukemia, respectively. The presence of
MLL rearrangement was detected in 16/116 (13.8%) ALL
patients and in 8/34 (23.5%) AML cases (Table 1).
Detailed sample information are provided in Additional
File 1. A second cohort of 78 patients has been used as test
set to validate the results from supervised analyses per-
formed on the training set.

For all patients, ALL and AML diagnoses were performed
by morphology, cytochemistry, cytogenetics, immu-
nophenotype and molecular genetics.

Based on the laboratory diagnosis, patients were risk strat-
ified and enrolled in the following AIEOP protocols:
LAL2000 (ALL after 2000 year), LAM2002 (AML after
2002 year), LAL95 (ALL before 2000 year), LAM92 (AML
before 2002 year) and Interfant99 (ALL and AML less than
1 year old) [11-13]. This study was conducted after
obtaining the informed consent from all patients and fol-
lowing the tenets of the Declaration of Helsinki and was
approved by the ethics committees of the participating
institutions before the initiation.

Morphological classification
The morphological classification was performed by three
independent investigators and the conclusive diagnosis
for every case was reported according to the FAB criteria.
In cases where consensus was not obtained, the three
investigators re-analyzed the slides together in order to
obtain consensus as to final diagnosis.

Cytogenetic analyses
Samples were processed and cytogenetic studies were per-
formed using the Q-banding technique. About 15–20
metaphases for each sample were acquired (with CASTI
System) and analyzed in order to avoid clone loss. Chro-
mosomes were identified and assigned according to the
International System for Human Cytogenetic Nomencla-
ture. FISH analysis was performed on interphase nuclei
and where possible on metaphases, using an MLL probe
(Vysis).

Biomolecular analyses
The AIEOP MLL protocol, which screens for the fusion
gene transcripts MLL-AF4 for t(4;11) translocation, MLL-
AF10 for t(10;11), MLL-AF9 for t(9;11) and MLL-ENL for
t(11;19), was performed as stated in the previously
reported method; briefly, total RNA was isolated using the
RNAzol-B reagent (Duotech srl Milan, Italy) following
manufacturer's instructions. One microgram of total RNA
from each specimen was reverse transcribed using the
Superscript reverse transcriptase (Life Technologies Milan,

Table 1: Patient cohort

N° patients Gender Median Age

Training cohort 140 70 M/70 F 6.2 y (0.1 – 17)

ALL/MLL- 90 48 M/42 F 6.51 y (0.88 – 16.5)

AML/MLL- 26 12 M/14 F 8.42 y (0.45 – 17)

ALL/MLL+ 16 8 M/8 F 2.14 y (0.1 – 14.5)

AML/MLL+ 8 2 M/6 F 3.59 y (0.16 – 13.6)

Patient distribution of the training cohort according to phenotype and 
MLL translocation.
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Italy) and random hexamers. PCR amplification was per-
formed using AmpliTaq polymerase (Applied Biosystems)
according to the BIOMED-1 protocols. An independent
PCR reaction was performed with shift primers for confir-
mation of each positive result. The ABL housekeeping
gene expression was assessed to determine the presence of
amplifiable RNA and the efficacy of reverse transcriptions.
After electrophoresis, the PCR reaction products were
stained with ethidium bromide.

RNA isolation for microarray analysis
Microarray analysis was performed on each sample using
Affymetrix Human Genome U133 Plus 2.0 GeneChip.
Total RNA was extracted from stored frozen cells of leu-
kaemia specimens using TRIzol (Invitrogen) followed by
a purification step (RNeasy Mini Kit, Qiagen). RNA qual-
ity was assessed on the Agilent Bioanalyzer 2100 using the
Agilent RNA 6000 Nano Assay kit (Agilent Technologies,
Waldbronn, Germany). RNA concentration was deter-
mined using the NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Inc., Wilmington, DE USA).
The overall total RNA quality was assessed by A260/A280
ratio.

Study aim and design
We performed comparisons between subgroups carrying
the same lineage (Figure 1, ALL/MLL- vs ALL/MLL+
named "L1"; AML/MLL- vs AML/MLL+ named "L3") or
the same translocation information (ALL/MLL- vs AML/
MLL- named "L2"; ALL/MLL+ vs AML/MLL+ named "L4")

using SAM and PAM algorithms. Combining the results
from separated lineage-related comparisons (L1 and L3),
we identified a specific MLL signature that is shared
between ALL and AML subtypes. Matching the gene lists
from translocation-specific comparisons (L2 and L4), we
described a common lineage signature for samples with
and without MLL translocation.

The results from SAM and PAM analyses have been tested
on an independent cohort to separate samples according
to their gene expression profiles.

Gene Expression Profiling
Microarrays analyses were performed using Human
Genome U133 Plus 2.0 GeneChip Array (Affymetrix,
Santa Clara, CA, USA) and specific RNA isolation method
as previously described. Microarray data (CEL files) can be
found online at GEO repository (Accession Number:
GSE14062).

Statistical analyses were performed using open-source
BioConductor package [http://www.bioconductor.org,
ver.2.1] for R System software [The R Project for Statistical
Computing, ver.2.7.0, http://www.r-project.org].

The training and test sets were inspected using the same
analysis procedures. Microarray CEL files were analyzed to
evaluate potential errors on the arrays using quality con-
trol algorithms on PS intensity signals. To allow gene
expression comparison, the robust multiple-array average
(RMA) normalization has been performed among all
arrays. Genes with low expression variation across all sam-
ples have been discarded using interquartile range
(IQR>1.15) as filtering criteria; the following analyses
have been performed starting from 5130 filtered probes.

Significance analysis of microarray (SAM) package has
been used in the training set to find differentially
expressed genes among ALL/MLL-, AML/MLL-, ALL/MLL+
and AML/MLL+ groups. Less than one false positive-rated
gene was found using false discovery rate (FDR) <1% and
q-value = 0 cutoffs.

Obviously genes identified by SAM analysis are not neces-
sarily involved in class prediction [14]. Shrunken centroid
algorithm was performed on the training set using Tib-
shirani's prediction analysis of microarrays (PAM) pack-
age. All probes but one (204069_at, one of the two MEIS1
probes included in the prediction list) identified by PAM
analysis matched the SAM results. The results from super-
vised analyses were further validated on an independent
test set. SAM gene lists were used to perform gene ontol-
ogy studies using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) web-based tool
http://david.abcc.ncifcrf.gov/. The phenotype-related sig-

Study aim and designFigure 1
Study aim and design. Study aim and design for supervised 
analyses. MLL signature was obtained by comparing samples 
with the same phenotype (red arrows) while lineage signa-
ture by comparing samples with and without MLL transloca-
tion (green arrows).
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nature was analyzed through the use of Ingenuity Pathway
Analysis (Ingenuity® System, http://www.ingenuity.com).

Results
SAM results – Training Set
The training cohort of 140 samples was analyzed using
Affymetrix HG-U133 Plus 2.0 gene expression chips. As
previously described in the study design, four separated
comparisons (labeled L1 to L4) were performed using
SAM and PAM methods to identify differentially
expressed probes for translocation-specific and lineage-
specific groups. Table 2 summarizes the results retrieved
by SAM analysis using a false discovery rate (FDR) < 1%
and q-value = 0 as statistical cut-off values.

To identify a MLL translocation-specific signature com-
monly shared by different lineage subtypes, we compared
ALL and AML samples separately. For each comparison,
upregulated probes in one group are consequently down-
regulated in the other, and vice versa. The results from
ALL/MLL- vs ALL/MLL+ (L1 comparison: 1013 upregu-
lated probes in the former group, 740 upregulated in the
latter) and AML/MLL- vs AML/MLL+ (L3 comparison: 155
overexpressed in the first group, 555 overexpressed in the
second) were subsequently matched to generate a unique
MLL-specific subset. A total of 379 common transloca-
tion-specific probe sets were found from L1 and L3 com-
parison combining 1753 and 710 probes, respectively [see
Additional File 2].

The phenotype-associated signature was identified by
comparing samples with and without MLL-mutations sep-

arately. We matched the results from ALL/MLL- vs AML/
MLL- (L2 comparison: 1378 upregulated probes in the
former group, 754 upregulated in the latter) and ALL/
MLL+ vs AML/MLL+ (L4 comparison: 379 overexpressed
in the first group, 601 overexpressed in the second),
obtaining 622 shared phenotype-specific probe sets from
2132 (L2) and 980 (L4) differentially expressed markers
[see Additional File 2].

SAM results were tested on 140 samples using an unsuper-
vised hierarchical clustering method: patients were clearly
distinguished in two groups according to translocation-
(379 probes, Figure 2A) and phenotype-related (622
probes, Figure 2B) signatures.

PAM results – Training Set
SAM comparisons were reproduced in the training cohort
using a prediction algorithm (PAM). We identified a total
of 15 probe sets, corresponding to 14 genes, with predic-
tive value in separating ALL and AML with and without
MLL rearrangement (Table 3). Fourteen out of 15 probes
extracted by PAM matched SAM analyses results [see Addi-
tional File 2].

To test prediction performances, we applied unsupervised
hierarchical clustering on 140 samples using PAM results.
In Figure 3, the upper dendrogram clearly separated our
samples into 2 branches according to ALL (106 samples)
and AML (34 samples) phenotypes. Each branch further
divided into MLL positive and MLL negative subgroups
showing distinct gene expression profiles. Additionally,
the probe sets retrieved by PAM analysis were associated

Table 2: SAM results

Constant part Phenotype Phenotype Translocation Translocation

Variable part Translocation Translocation Phenotype Phenotype

Comparison ID L1 L3 L2 L4

SAM comparisons ALL/MLL(-) vs ALL/MLL(+) AML/MLL(-) vs AML/MLL(+) ALL/MLL(-) vs AML/MLL(-) ALL/MLL(+) vs AML/MLL(+)

up/down ALL/MLL(-) 1013/740 1378/754

up/down AML/MLL(-) 155/555 754/1378

up/down ALL/MLL(+) 740/1013 379/601

up/down AML/MLL(+) 555/155 601/379

Total 1753 710 2132 980

(Common) Signature 379 Translocation specific 622 Phenotype specific

SAM results for comparisons between considered subgroups. Translocation-specific signature was obtained by matching deregulated probe sets 
from L1 and L3 comparisons, phenotype-specific signature from L2 and L4 comparisons.
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into 2 major clusters as shown in the dendrogram on the
left. A translocation-related signature was characterized by
overexpression of ZEB2, SRGAP2P1, TMEM30A, AK2,
TMED2, HIPK3, FAM62B and MEIS1 genes in MLL posi-
tive samples both ALL and AML, while a common upreg-
ulation of PAX5, CD72, CSRP2, LOC100130458, TCL1A
and EBF1 genes correlated with ALL patients in a pheno-
type-related signature.

Validation on Test Set
The predictor (15 probe sets) obtained by SAM and PAM
results has been used for validation on a separated cohort

of 78 samples. Patients were distributed as follows: ALL/
MLL- n = 54, AML/MLL- n = 11, ALL/MLL+ n = 8, AML/
MLL+ n = 5. The dendrogram in Additional File 3 validates
the strength of our predictor in discriminating ALL and
AML with and without MLL rearrangements. Only one
sample (PD529) has been misclassified in the independ-
ent cohort, probably due to the small sample size of AML/
MLL+ subgroup.

MLL Translocation-related signature
ALL patients with and without MLL translocation have
been compared (L1). Two probes for MEIS1 gene

MLL-specific and Phenotype-specific signaturesFigure 2
MLL-specific and Phenotype-specific signatures. Unsupervised hierarchical clustering performed on 140 samples using 
(A) translocation-specific (379 probe sets) and (B) phenotype-specific (622 probe sets) signatures. Cluster A clearly separates 
patients with MLL (orange and blue labels) from patients without MLL translocation (green and red labels). Cluster B distin-
guishes samples with AML (orange and green labels) from samples with ALL (blue and red labels).

Table 3: PAM results

PAM comparisons ALL/MLL- vs ALL/MLL+ ALL/MLL- vs AML/MLL- AML/MLL- vs AML/MLL+ ALL/MLL+ vs AML/MLL+

Prediction ID L1 L2 L3 L4

Class Error Rate 0% 0% 0% 0%

Probes identified 2 2 7 4

Gene symbol MEIS1, MEIS1 TCL1A, EBF1 ZEB2, SRGAP2P1, AK2, TMEM30A, 
FAM62B, TMED2, HIPK3

PAX5, CD72, LOC100130458, 
CSRP2

Class prediction analyses (PAM) performed on the training cohort of 140 samples using 5130 filtered probes.
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(204969_at, 15559477_s_at), which encodes a cofactor
for HOX proteins that can accelerate Hoxa9-dependent
leukemia, were shown to be strongly expressed in MLL
positive samples, as previously reported [15]. MEIS1
quantitatively regulates the differentiation arrest, cycling
activity, in vivo progression, and self-renewal of MLL
leukemia cells, thereby functioning as a critical and rate-
limiting determinant of leukemia stem cell potential [16].

ZEB2 (SIP1) gene, coding a zinc finger E-box binding
homeobox 2 protein, was already reported as cancer acti-
vating factor. In synergy with another transcription factor
(Snail), ZEB2 represses transcription of the E-cad gene by
binding E-box on E-cad promoter. Loss of E-cadherin (E-
cad) triggers invasion, metastasis, and dedifferentiation in
various epithelial carcinomas [17].

Interestingly AK2 and HIPK3 genes, here upregulated in
MLL rearrangements, share the same target in Fas-medi-
ated apoptosis pathway, an adaptor molecule (FADD)
that interacts with various cell surface receptors and medi-
ates cell apoptotic signals. Adenylate kinase 2 (AK2) regu-
lates mitochondrial apoptosis through the formation of
an AK2-FADD-caspase-10 (AFAC10) complex. Acting in
concert with FADD and caspase-10, AK2 mediates a novel
intrinsic apoptotic pathway that may be involved in tum-
origenesis [18]. Another Fas/FADD-interacting kinase,
HIPK3 (PKY), was first identified as a putative multidrug-
resistant protein from studies of cancer cells. Common
death receptor target of AK2 and HIPK3 suggests that a
principle role of this kinase family is in regulating various
aspects of death receptor signaling [19,20]. The upregula-
tion of AK2, MEIS1 and TMEM30A (transmembrane pro-
tein 30A) genes in MLL-rearranged acute leukemias has

Hierarchical clustering for PAM resultsFigure 3
Hierarchical clustering for PAM results. Unsupervised hierarchical clustering using the 15 probe sets identified by PAM 
analyses on the training set. Each column identifies a patient, each row a probe set. The upper dendrogram separates AML (red 
and blue labels) from ALL (green and orange) samples. Each group further divides into MLL-positive and MLL-negative samples. 
The dendrogram on the left groups probe sets according to phenotype- and MLL translocation-related signatures.
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also been demonstrated by Faber et al. [21] using gene
expression profiling.

The genes SRGAP2P1 (SLIT-ROBO Rho GTPase activating
protein 2 pseudogene 1), TMED2 (transmembrane
emp24 domain trafficking protein 2) and FAM62B (fam-
ily with sequence similarity 62 (C2 domain containing)
member B) shared similar upregulation in both ALL and
AML with MLL translocation but their role in leukemo-
genesis remains to be explored.

Expression of HOX and NG2 genes
HOX gene expression was evaluated in our patient cohort:
HOXA10, HOXA9, HOXA7, HOXA5 and HOXA3 were
found to be generally upregulated in samples carrying
MLL translocation, both in ALL and AML, while HOXA11
and HOXA6 showed common overexpression in AML/
MLL+ cases [16]. NG2 gene, an integral membrane chon-
droitin sulfate proteoglycan expressed by human malig-
nant melanoma [22] and leukemic [7,23] cells, exhibited
higher expression in both ALL and AML with MLL rear-
rangement similar to HOX genes (data not shown).

Phenotype-related signature
A total of 6 probe sets with predictive value were isolated
using PAM analysis to separate ALL from AML samples
with and without the presence of MLL aberration. All
probes showed a marked downregulation in AML samples
as well as a common involvement in enhancing the B-cell
signaling pathway.

PAX5 plays a key role in regulating a number of genes
identified by PAM and SAM analyses distinguishing ALL
from AML phenotypes. PAX5 gene codes for BSAP, a tran-
scription factor expressed in the developing central nerv-
ous system, testis and cells of B lymphocyte lineage except
terminally differentiated plasma cells [24,25]. BSAP-bind-
ing sites have been identified in several genes, included in
SAM list, encoding VpreB1 [26], BLK [27,28], CD79a [29],
CD19 [30], EBF [31], CD72 [32], BLNK [33,34] and LEF1
[35]. CD72 antigen is a transmembrane glycoprotein that
plays a fundamental role in B-cell activation and prolifer-
ation. It has been recently shown its function also in pre-
venting the differentiation of naïve B-cells into plasma
cells [36]. CD19 antigen is routinely monitored in immu-
nophenotyping diagnosis as the main surface marker for
B cell identification. The CD19 tyrosine phosphorylation
is induced by CD72 ligation: the activation of B lym-
phocytes via CD72 resulted in recruitment and activation
of PI 3-K, which was mediated by CD19. Moreover, CD19
enhances membrane IgM signaling like CD79a even
known as Igα [37]. BLNK is a B-cell linker protein which
is fundamental in addressing pro-B cell to pre-B cell tran-
sition [38]. Kabak et al. [39] demonstrated the direct
recruitment of BLNK to Igα (CD79a) in signaling path-

ways and Imai et al. [40] showed that BLNK expression is
a common leukogenic event in childhood B-lineage ALL
similarly to the B lineage-specific polymerase encoded by
DNTT gene.

To assess our findings, we compared PAM and SAM results
to a minimal self-sustained gene regulatory module for
pro-B cell differentiation and proliferation proposed by
Medina K. et al. [41]. All module genes (FLT3, PU.1, E2A,
BCL11A, IL-7R, EBF, PAX5) except PU.1 were included in
SAM lists showing significant over-expression in MLL+/
ALL group (Figure 4).

CSRP2 is a member of the CSRP (cysteine and glycine-rich
protein) family of genes, encoding a group of LIM domain
proteins, which may be involved in regulatory processes
important for development and cellular differentiation
but also in oncogenesis [42].

During lymphocyte differentiation, the expression of T-
cell leukemia/lymphoma 1A gene (TCL1A) begins in pre-
B cells, is downregulated in germinal centre B cells, and is
silenced in memory B and plasma cells [43-45]. Perform-
ing comparative Gene-Set Enrichment Analysis (GSEA),
Aggarwal et al. [46] demonstrated that the increased
expression of TCL1A was significantly associated (P <
0.05) with some of the most important pathways control-
ling B-cell lymphoma pathogenesis and heterogeneity,
including B-cell receptor pathway.

Gene Ontology results
We further inspected the SAM gene lists using a web-based
gene ontology (GO) tool (DAVID) to understand the bio-
logical meaning behind large list of genes. Additional File
4 summarizes the GO results (Biological Processes) for
both SAM signatures ordered by FDR, defined as the
median number of false positive genes divided by the
number of significant genes.

The analysis of lineage-specific signature (distinguishing
ALL from AML) clearly shows the involvement of hemat-
opoietic and immune response-related genes in the
progress of disease, in particular leukocyte activation and
hematopoietic organ development. MLL-related signa-
ture, distinguishing samples with and without MLL trans-
location, mainly includes regulatory genes involved in
developmental process, biological process, apoptosis and
programmed cell death.

AML subgroup without MLL translocation and MEIS1 
upregulated
In the present study we showed MEIS1 gene to be upregu-
lated both in ALL and AML with MLL translocation. As
depicted in Figure 3, a subgroup of AML without MLL
mutation displayed clear overexpression for both MEIS1
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Genes involved in pro-B cell differentiation and proliferationFigure 4
Genes involved in pro-B cell differentiation and proliferation. Regulatory role of PAX5 in B cell differentiation and pro-
liferation. Up-regulated and down-regulated genes in ALL/MLL+ from supervised analyses are depicted red and green, respec-
tively. The minimal self-sustaining gene regulatory module was obtained by Medina K. et al. [36] and expanded according to our 
results. The graph was generated using Ingenuity Pathways Analysis (IPA) software (Ingenuity® System, http://www.ingenu-
ity.com).

http://www.ingenuity.com
http://www.ingenuity.com


BMC Medical Genomics 2009, 2:36 http://www.biomedcentral.com/1755-8794/2/36
probes (as well as HOXA9 and HOXA5 genes, see Addi-
tional File 5), confirmed by supervised analysis on the 26
patients with AML/MLL-. Patient distribution is described
in Table 4: interestingly, all patients with
t(8;21)(q22;q22) and t(15;17)(q22;q21) correlated with
down-regulation of MEIS1, while 3 out of 4 patients with
inv(16)(p13q22) highly expressed MEIS1 gene. Our
results confirm the observations by Grubach et al. [47]
who determined RQ-PCR expression levels of a series of
PcG genes (including MEIS1) and PcG-regulated genes in
126 AML patients and 20 healthy donors.

Discussion
The presence of MLL rearrangements in acute leukemias
results in a complex number of biological modifications
that still remain largely unexplained. Armstrong et al. [9]
proposed MLL rearrangement positive ALL as a distinct
subgroup with a specific gene expression profile. How-
ever, this signature was related only to MLL with ALL phe-
notype. Here we show that MLL, from ALL and AML
origin, shares a signature identified by a small set of genes
suggesting a common genetic disregulation that could be
at the base of the mixed lineage leukemia in both pheno-
types.

Most MLL aberrations have been successfully character-
ized by cytogenetics, immunophenotyping, molecular
biology and, recently, gene expression profiling.

In the present study, a total cohort of 218 patients was
analyzed by microarray approach to identify common
deregulated MLL targets shared by different leukemia phe-
notypes and to inspect MLL involvement in acute leuke-
mias with different lineage origin.

We analyzed gene expression data of 140 (training set)
and 78 (test set) pediatric samples carrying ALL (N =
106+62) and AML (N = 34+16), with (N = 24+13) and
without (N = 116+65) MLL translocations. Supervised
analyses on the training set identified two specific signa-
tures according to lineage origin and MLL presence; the

results have been subsequently validated on the test set.
The genes MEIS1, ZEB2, SRGAP2P1, TMEM30A, AK2,
TMED2, HIPK3 and FAM62B showed marked up-regula-
tion in patients with MLL mutation, both in ALL and
AML. GO analysis revealed a general regulatory role of
these genes in developmental process, biological process,
apoptosis and programmed cell death. Our results con-
firm the primary function of MEIS1 gene in regulating
fundamental MLL leukemia-related and HOX genes proc-
esses. MEIS1 up-regulation was also observed in a sub-
group of AML patients showing inv(16)-like signature in
the absence of MLL mutations.

We further identified a phenotype-related signature that
distinguishes lymphoblastic and myeloblastic acute
leukemias. A set of 6 probes allowed for separation of ALL
and AML with and without MLL mutation, including
PAX5, CD72, CSRP2, LOC100130458, EBF1 and TCL1A
genes. We corroborate the main role of PAX5 gene in
orchestrating basic biological processes such as leukocyte
and hematopoietic development [10,48-50]. Mullighan et
al. [51] showed that the genes regulating B-cell develop-
ment and differentiation are mutated in 40% of pediatric
ALL and that PAX5 was the most frequent target of
somatic mutation being altered in 31.7% of cases. Simi-
larly, we showed that PAX5, EBF1, CD72 and TCL1A are
tightly correlated in the capacity to distinguish lymphob-
lastic and myeloblastic characteristics also in the presence
of MLL mutations illustrating the importance of B-cell
receptor signaling pathway in this subset of leukemias. We
stressed the role of PAX5 in repressing PU.1 (NF-kappaβ)
regulated reporter gene as supported by their opposite
expression in B lineage cells with MLL rearrangements
[52].

Deregulation events of CSRP2, TCL1A, CD72 and EBF
genes in acute pediatric leukaemia have been previously
reported using gene expression profiling [43].

The role of CSRP2 gene in leukemogenesis still has to be
investigated. Bach et al. [53] demonstrated that proteins

Table 4: AML without MLL and MEIS1 upregulated

AML without MLL MEIS1-upregulated group MEIS1-downregulated group

Normal 8 5

inv(16)(p13q22) 3 1

t(8;21)(q22;q22) 0 5

t(15;17)(q22;q21) 0 4

Total 11 15

Distribution of AML patients without MLL rearrangements with MEIS1 deregulated according to karyotype information.
Page 9 of 12
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like CSRP2 with LIM domains play important roles in
embryo development and hematopoiesis. Moreover,
Bégay-Muller et al. [54] showed that the LIM domain pro-
tein Lmo2 binds to AF6, a translocation partner of the
MLL oncogene. CRP2 protein, encoded by CSPR2 gene,
was shown to transactivate the proximal promoter region
of IL-6 [55] whose receptors are expressed in pediatric ALL
with the t(4;11)/AF4 translocation [56]. The overexpres-
sion of CSRP2 in MLL mutated samples distinguishing
ALL and AML supports a novel role for CSRP2 gene in
leukemia development.

Conclusion
Our study demonstrates that a small subset of genes iden-
tifies leukemias with MLL-specific rearrangements and
clearly separates acute leukemia samples according to lin-
eage origin. The subset includes well-known genes and
newly discovered markers that allow for characterization
of ALL and AML subgroups, with and without MLL rear-
rangements.
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