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Abstract

The recently developed method TEA-seq and similar DOGMA-seq single cell trimodal
omics assays provide unprecedented opportunities for understanding cell biology,
but independent evaluation is lacking. We explore the utility of DOGMA-seq
compared to the bimodal CITE-seq assay in activated and stimulated human
peripheral blood T cells. We find that single cell trimodal omics measurements after
digitonin (DIG) permeabilization were generally better than after an alternative “low-
loss lysis” (LLL) permeabilization condition. Next, we find that DOGMA-seq with
optimized DIG permeabilization and its ATAC library provides more information,
although its mRNA and cell surface protein libraries have slightly inferior quality,
compared to CITE-seq.

Background
Massively parallel single cell omic measurements have advanced from single modal

measurement of transcriptomes alone; to bimodal, simultaneous transcriptome and cell

surface protein epitope measurements (CITE-seq [1] and REAP-seq [2]), transcriptome

and chromatin accessibility measurements (sci-CAR [3], SNARE-seq [4], SHARE-seq

[5]), and chromatin accessibility and cell surface protein epitope measurements

(ASAP-seq [6] and ICICLE-seq [7]); to trimodal, simultaneous transcriptome, cell sur-

face protein epitope, and chromatin accessibility measurements (DOGMA-seq [6] and

TEA-seq [7]). DOGMA-seq and its sibling technique TEA-seq provide unprecedented

opportunities to study complex cellular and molecular processes at single cell reso-

lution, but a comprehensive independent evaluation is needed to compare these new

trimodal assays to existing single modal and bimodal assays. In this study, we bench-

marked and compared DOGMA-seq under two permeabilization conditions, as well as

DOGMA-seq versus CITE-seq, using aliquots of the same ex vivo tissue culture acti-

vated and stimulated human peripheral blood T cell populations.
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Results and discussion
The DOGMA-seq and TEA-seq protocols require a cell permeabilization step following

hashtag oligonucleotide (HTO) [8] and cell surface protein epitope antibody-derived

tag (ADT) [1] labeling to enable preparation of its assay for transposase-accessible

chromatin (ATAC) library. Alternative cell permeabilization conditions using either

digitonin (DIG) or paraformaldehyde fixation with “low-loss lysis” (LLL) were intro-

duced with the development of the DOGMA-seq [6] and TEA-seq [7] assays. Theoret-

ically, DIG permeabilization is milder and will not lyse mitochondrial membranes,

because it interacts with cholesterol, and the plasma membrane has a higher cholesterol

content compared to the mitochondrial membrane [9]. We optimized the DIG condi-

tion used by TEA-seq developers [7], where cells were incubated with 0.01% DIG on

ice for 5 min (min), and identified an optimal incubation time and concentration of

DIG for permeabilization of peripheral blood mononuclear cells (PBMCs). We had pre-

viously determined that incubation with 0.01% DIG for 1 min was sufficient to

permeabilize all cells based on acridine orange and propidium iodide (AOPI) staining.

We then proceeded to test several dilutions of DIG (0.0025%, 0.005%, 0.0075%, and

0.01%) and found that incubation with 0.0075% DIG for 1 min was an optimal

permeabilization condition, since 99.5% of the cells treated with 0.0075% DIG showed

red fluorescence indicative of propidium iodide entry into cells with compromised

membranes, but lesser concentrations of DIG resulted in lower proportions of perme-

abilized cells.

Next, we evaluated single cell trimodal omics measurements after our optimized DIG

permeabilization condition compared to the alternative LLL condition (Fig. 1A). We col-

lected PBMC from a healthy donor, enriched untouched T cells, activated and stimulated

them under four different ex vivo tissue culture conditions, and then split each cell popu-

lation into DIG and LLL permeabilization groups. Quality control metric comparisons be-

tween the two permeabilization groups are shown in the figures (Fig. 1B–I). The number

of genes detected per cell and TSS enrichment scores are similar after DIG and LLL

permeabilization, while DIG resulted in higher protein tag complexity and fraction of

mtRNA but a lower fraction of mtDNA. These observations were consistent with those

reported by DOGMA-seq developers [6]. However, we observed higher ATAC complexity

but a lower fraction of unique molecular identifiers (UMIs) mapping to exons after DIG

permeabilization, in contrast with the reported observations [6].

We calculated the fraction of cells with UMIs > 0 for all 163 protein tags in the Total-

Seq™-A Human Universal Cocktail, V1.0 (BioLegend) to evaluate protein tag detection

rate. As expected, we found higher detection rates for all 163 protein tags after DIG

permeabilization (Fig. 1J), which is consistent with better preservation of the plasma

membrane and cell surface proteins after DIG permeabilization. However, the differ-

ences in cell surface protein detection between the two permeabilization conditions did

not attenuate differential protein tag signals upon differential stimulations at the

pseudo-bulk level. For example, when we compared two groups of T cells that were

both activated and cultured with IL-1β and IL-23, and one of the two groups was also

cultured with prostaglandin E2 (PGE2), we found high correlation of differential pro-

tein tag signals between the two permeabilization conditions (Fig. 1K).

To evaluate gene detection rates, we calculated the fraction of cells with UMIs > 0 for

all 36,601 genes in the reference genome and found slightly higher detection rates for
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Fig. 1 (See legend on next page.)
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some genes after LLL permeabilization (Fig. 1L). By default, the RNA sequencing reads

from DOGMA-seq libraries were aligned to both exons and introns by cellranger-arc

count. We also aligned RNA sequencing reads from both conditions to exons only or

introns only and found that LLL outperformed DIG in gene detection rates when RNA

sequencing reads were aligned to exons only (Additional file 1: Fig. S1D), but their per-

formances were similar when the reads were aligned to introns only (Additional file 1:

Fig. S1E). To further investigate the difference in gene detection rates, we calculated

the proportion of exonic UMIs for each gene and dichotomized genes into exon-

dominated genes (genes with proportion of exonic UMIs > 0.5) and intron-dominated

genes (genes with proportion of exonic UMIs ≤ 0.5), for DIG and LLL (Additional file

1: Fig. S1A-B). We found that genes defined as exon-dominated genes under both con-

ditions had the largest increases in gene detection rates for LLL compared to DIG,

whereas genes defined as intron-dominated genes under both conditions had the smal-

lest differences (Additional file 1: Fig. S1C), suggesting that the differences in gene de-

tection rates may be primarily due to differential detection of cytoplasmic genes. We

(See figure on previous page.)
Fig. 1 Comparison between DIG and LLL conditions. A Overview of study design for comparison between
DIG and LLL conditions. Each of four aliquots of T cells from a human donor were activated and stimulated
under a different stimulation condition (total of four stimulation conditions in four tissue culture wells) in a
12-h tissue culture. Each of two aliquots of cells from each of the four tissue culture wells were then
labeled with a unique hashtag (total of eight unique hashtags). Approximately equal numbers of the eight
uniquely hashtagged cell populations were then pooled and labeled with antibody cocktail. An aliquot of
the hashtag- and antibody cocktail-labeled pool of cells was permeabilized with DIG, and another aliquot of
the hashtag- and antibody cocktail-labeled pool of cells was permeabilized with LLL prior to the
subsequent DOGMA-seq library preparation steps. B–H Boxplot showing quality control metric comparisons
between DIG and LLL conditions. Median values are indicated with corresponding colors. B Protein tag
complexity per cell. Median ratio = 2.30. C ATAC fragment complexity per cell. Median ratio = 5.67. D
Percentage of ATAC fragments mapped to mtDNA per cell. Median ratio = 0.01. E Number of genes per
cell. Median ratio = 0.96. F Percentage of UMIs mapped to mtRNA per cell. Median ratio = 1.88. G
Percentage of UMIs mapped to exons per cell. Median ratio = 0.71. H Percentage of UMIs mapped to exons
per cell, excluding those mapped to mtRNA. Median ratio = 0.65. I TSS enrichment scores over distance
from TSS. Maximum values are indicated with corresponding colors. J Pairwise comparison of protein tag
detection frequencies under LLL (x-axis) and DIG (y-axis) conditions. Each point represents a single protein
tag. Blue points highlight isotype control protein tags. Grey points are all other protein tags. K Correlation
of protein tag fold change (log2) under DIG and LLL conditions in two groups of T cells that were both
activated and cultured with IL-1β and IL-23, and one of the two groups was also cultured with PGE2. Top
upregulated protein tags are highlighted in red; downregulated protein tags are highlighted in blue. L
Pairwise comparison of gene detection frequencies under LLL (x-axis) and DIG (y-axis) conditions. Each
point represents a single gene. Blue points highlight ribosomal protein genes (RPL/S); red points highlight
mitochondrial genes (MT-). Grey points are all other genes. M Correlation of gene fold change (log2) under
DIG and LLL conditions in two groups of T cells that were both activated and cultured with IL-1β and IL-23,
and one of the two groups was also cultured with PGE2. Top upregulated genes are highlighted in red;
downregulated genes are highlighted in blue. N (i) “Harmonized” 3WNN UMAP plot showing clusters
identified in 3WNN clustering of DOGMA-seq data under DIG condition. (ii) “Harmonized” 3WNN UMAP plot
showing cell types predicted after projection into the Azimuth PBMC reference. O (i) “Harmonized” 3WNN
UMAP plot showing clusters identified in 3WNN clustering of DOGMA-seq data under LLL condition. (ii)
“Harmonized” 3WNN UMAP plot showing cell types predicted after projection into the Azimuth PBMC
reference. P Line plots showing average ROGUE (purity of identified clusters) for clustering based on 3WNN,
RNA, ADT, and ATAC spaces, with resolution ranging from 0.02 to 0.3. Number of clusters identified in each
clustering was labeled. Q Bar plot show that proportions of predicted cell types in DOGMA-seq data under
DIG and LLL conditions are quite similar. R, S “Harmonized” 3WNN UMAP plots highlight canonical markers
for Th17 cells in DOGMA-seq data. ATAC marker is motif activity (the deviations in chromatin accessibility
across the set of regions related to the motif) calculated from ATAC-seq peaks. R Under DIG condition.
Cluster 1 in Fig. 1Ni is enriched for Th17 cells based on CCR4 ADT, CCR6 ADT, and RORC ATAC signals. S
Under LLL condition. Cluster 1 in Fig. 1Oi is enriched for Th17 cells based on CCR4 ADT, CCR6 ADT, and
RORC ATAC signals.
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also found that gene fold changes with the addition of PGE2 to the cultures were highly

correlated between the two permeabilization conditions at the pseudo-bulk level (Fig.

1M). Additionally, we estimated the ambient RNA contamination rate for each cell

under DIG and LLL cell permeabilization conditions using DecontX [10], and we found

that DIG had a lower contamination rate than LLL (Additional file 1: Fig. S1G), sug-

gesting that the plasma membrane was more intact after DIG. We also used the decon-

taminated RNA count matrices (generated by DecontX) to calculate gene detection

rates but found no difference (Additional file 1: Fig. S1H). We re-defined gene detec-

tion rates as the fraction of cells with UMIs > 1 to reduce the impact of genes with only

one copy, which is not common for synthesized RNA. The differences in gene detection

rates between DIG and LLL were smaller (Additional file 1: Fig. S1I) and decreased fur-

ther when they were based on decontaminated RNA count matrices (Additional file 1:

Fig. S1J), except for RPL/RPS genes. Based on these findings, we inferred that DIG and

LLL have little difference in true gene detection rates for the majority of biologically

meaningful genes, and that the higher observed gene detection rates in LLL were likely

due to RPL/RPS genes and ambient RNA leaked from cytoplasm.

We next assessed DIG and LLL qualitatively by cluster analysis with a series of reso-

lutions, ranging from 0.02 to 0.3. For both conditions, we performed clustering using

RNA, ADT, and ATAC data separately. We also performed trimodal weighted nearest-

neighbor [11] (3WNN) analysis to leverage all three types of data. The clusters identi-

fied in each cluster analysis with resolution = 0.2 are shown (Additional file 1: Fig.

S1Ki-iv, Li-iv). To assess their performance, we calculated an entropy-based statistic,

ROGUE [12], for each cluster analysis, which is a measurement of the purity of identi-

fied clusters. We found that DIG had higher average ROGUE (higher purity of identi-

fied clusters) than LLL, given similar resolution or number of clusters, when clustering

based on ADT and ATAC spaces. However, DIG and LLL had comparable average

ROGUE, given similar resolution or number of clusters, when clustering based on

3WNN and RNA spaces (Fig. 1P). These findings are consistent with our observation

that DIG had higher quality ADT and ATAC libraries than LLL. To better visualize

clusters identified in 3WNN analysis (resolution = 0.2) for DIG and LLL, we utilized all

three types of data to perform embedding correction using Harmony (Fig. 1Ni, Oi) [13]

and performed automatic cell annotation based on RNA data, using the Azimuth

PBMC reference (Fig. 1Nii, Oii )[11]. In a head-to-head comparison, the proportions of

predicted cell types were quite similar between DIG and LLL (Fig. 1Q, Additional file

1: Fig. S1F). Leveraging ATAC data, we can also locate clusters enriched for Th17 (Fig.

1R-S) and Th1 cells (Additional file 1: Fig. S1M-N) under both conditions, highlighting

the value that the ATAC library of DOGMA-seq adds to transcriptome and ADT li-

braries for the study of lineage-specific T helper cells. Considering all of these observa-

tions, we conclude that DIG is the preferred DOGMA-seq cell permeabilization

method.

To further investigate the information that DOGMA-seq provides, we performed a

head-to-head comparison of DOGMA-seq with our optimized DIG permeabilization

condition to CITE-seq (Fig. 2A). We collected PBMC from two healthy donors,

enriched untouched T cells, activated and stimulated them under four different ex vivo

tissue culture conditions. After the stimulation experiment, the cells were subjected to

CITE-seq and DOGMA-seq, respectively. Using either assay, we observed comparable
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Fig. 2 (See legend on next page.)
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quality control metrics for protein tag complexity, genes detected, and the fraction of

mtRNA (Fig. 2B–D). The observations remained unchanged even when the donor dif-

ference was considered (Additional file 1: Fig. S2A-C).

To evaluate protein tag detection rates, we calculated the fraction of cells with UMIs

> 0 for all 163 protein tags in the TotalSeq™-A Human Universal Cocktail, V1.0 and

performed a pairwise comparison. As expected, we found that the protein tag detection

rates of DOGMA-seq were lower in most cases (Fig. 2E), probably due to cell surface

protein and/or ADT damage during permeabilization. It is also interesting that the de-

tection rates of isotype control protein tags were higher in CITE-seq. Fortunately, the

apparent cell surface protein and/or ADT damage did not attenuate differential protein

tag signals upon differential stimulations at the pseudo-bulk level. When we compared

two groups of T cells that were both activated and cultured with IL-1β and IL-23, and

one of the two groups was also cultured with PGE2, significant upregulation and down-

regulation of a few markers were detectable in both assays and could be replicated in

samples from the other donor (Fig. 2Fi–ii).

We further compared transcript measurements by CITE-seq and DOGMA-seq. By

default, the RNA sequencing reads from the CITE-seq library were aligned to exons

(See figure on previous page.)
Fig. 2 Comparison between CITE-seq and DOGMA-seq. A Overview of study design for comparison
between CITE-seq and DOGMA-seq. Each of four aliquots of T cells from two human donors were activated
and stimulated under a different stimulation condition (total of four stimulation conditions in eight tissue
culture wells) in a 12-h tissue culture. The cells from each of the eight tissue culture wells were then
labeled with a unique hashtag (total of eight unique hashtags). Approximately equal numbers of the eight
uniquely hashtagged cell populations were then pooled and labeled with antibody cocktail. Different
aliquots of the hashtag- and antibody cocktail-labeled pool of cells then underwent either CITE-seq or
DOGMA-seq with DIG library preparation. B–D Boxplot showing quality control metric comparisons
between CITE-seq and DOGMA-seq. Median values are indicated with corresponding colors. B Protein tag
complexity per cell. Median ratio = 0.90. C Number of genes per cell. Median ratio = 1.11. D Percentage of
UMIs mapped to mtRNA per cell. Median ratio = 0.84. E Pairwise comparison of protein tag detection
frequencies in CITE-seq (x-axis) and DOGMA-seq (y-axis). Each point represents a single protein tag. Blue
points highlight isotype control protein tags. Grey points are all other protein tags. F (i) Correlation of
protein tag fold change (log2) as detected by CITE-seq and DOGMA-seq in two groups of T cells from
donor SB775372 that were both activated and cultured with IL-1β and IL-23, and one of the two groups
was also cultured with PGE2. Top upregulated protein tags are highlighted in red; downregulated protein
tags are highlighted in blue. (ii) in samples from donor SB775393, as (i). G Pairwise comparison of gene
detection frequencies in CITE-seq (x-axis) and DOGMA-seq (y-axis). Each point represents a single gene. Blue
points highlight exon-dominated genes; red points highlight intron-dominated genes. An exon-dominated
gene is defined as a gene with proportion of exonic UMIs (DOGMA-seq) > 0.5. An intron-dominated gene is
defined as a gene with proportion of exonic UMIs (DOGMA-seq) ≤ 0.5. NA means proportion of exonic
UMIs is not available. H (i) Correlation of gene fold change (log2) as detected by CITE-seq and DOGMA-seq
in two groups of T cells from donor SB775372 that were both activated and cultured with IL-1β and IL-23,
and one of the two groups was also cultured with PGE2. Selected intron-dominated genes are highlighted
in red; selected exon-dominated genes are highlighted in blue. (ii) in samples from donor SB775393, as (i). I
(i) “Harmonized” 2WNN UMAP plot showing clusters identified in 3WNN clustering of DOGMA-seq data. (ii)
“Harmonized” 2WNN UMAP plot showing cell types predicted after projection into the Azimuth PBMC
reference. J (i) “Harmonized” 2WNN UMAP plot showing clusters identified in 2WNN clustering of CITE-seq
data. (ii) “Harmonized” 2WNN UMAP plot showing cell types predicted after projection into the Azimuth
PBMC reference. K Line plots showing average ROGUE (purity of identified clusters) for clustering based on
3WNN/2WNN, RNA, and ADT spaces, with resolution ranging from 0.02 to 0.3. Number of clusters identified
in each clustering was labeled. L Bar plots show that proportions of predicted cell types in DOGMA-seq and
CITE-seq data are quite similar. M “Harmonized” 2WNN UMAP plots highlighting canonical markers for Th17
cells in DOGMA-seq data. ATAC marker is motif activity (the deviations in chromatin accessibility across the
set of regions related to the motif) calculated from ATAC-seq peaks. Cluster 5 in Fig. 2Ii is enriched for Th17
cells based on CCR4 ADT, CCR6 ADT, and RORC ATAC signals. N “Harmonized” 2WNN UMAP plots highlight
canonical markers for Th17 cells in CITE-seq data
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only by cellranger count, whereas those from the DOGMA-seq library were aligned to

both exons and introns by cellranger-arc count. This is reasonable since the leakage of

transcripts from permeabilized cells can be compensated in some way by additional

alignment to introns. We calculated the fraction of cells with UMIs > 0 for all 36,601

genes in the reference genome and found that each assay had its advantage in gene de-

tection rates (Additional file 1: Fig. S2G). We also confirmed that the detection rates of

ribosomal genes were lower in DOGMA-seq [7]. We additionally calculated the pro-

portion of exonic UMIs for each gene detected by DOGMA-seq (Additional file 1: Fig.

S2H) and dichotomized genes into exon-dominated genes and intron-dominated genes.

We observed that CITE-seq had higher detection rates for almost all exon-dominated

genes and some intron-dominated genes, whereas DOGMA-seq had higher detection

rates for most intron-dominated genes (Fig. 2G). Gene fold changes after the addition

of PGE2 to the cultures were still correlated at the pseudo-bulk level, but exon-

dominated genes and intron-dominated genes formed two lines with different slopes

(Fig. 2Hi). This finding was replicable in samples from an independent donor using the

same protocol (Fig. 2Hii). To perform fairer comparisons, we also aligned RNA sequen-

cing reads from both assays to both exons and introns, exons only, and introns only.

Generally, CITE-seq outperformed DOGMA-seq in gene detection rates when RNA se-

quencing reads were aligned to both exons and introns or exons only (Additional file 1:

Fig. S2D-E), but their performances were similar when aligned to introns only

(Additional file 1: Fig. S2F).

We next assessed CITE-seq and DOGMA-seq qualitatively by cluster analysis

with a series of resolutions, ranging from 0.02 to 0.3. For DOGMA-seq data, we

performed clustering using RNA, ADT, and ATAC data separately (Additional file

1: Fig. S3Aii–iv). We also performed 3WNN analysis to leverage all three types of

data (Additional file 1: Fig. S3Ai). For CITE-seq data, we performed clustering for

RNA and ADT data separately using the same parameters (including resolution) as

those used for DOGMA-seq data (Additional file 1: Fig. S3Bii-iii). Bi-modal WNN

(2WNN) analysis was also performed to leverage both RNA and ADT data (Add-

itional file 1: Fig. S3Bi). We calculated ROGUE for each cluster analysis and found

that CITE-seq had a higher average ROGUE than DOGMA-seq, given similar reso-

lution or number of clusters, when clustering based on 3WNN (DOGMA-seq)/

2WNN (CITE-seq), RNA, and ADT spaces (Fig. 2K). These findings are consistent

with our observation that CITE-seq had higher quality RNA and ADT libraries

than DOGMA-seq. We also realized that leveraging the ATAC library of DOGMA-

seq in cluster analysis cannot fully compensate DOGMA-seq’s inferior RNA and

ADT library quality but provides additional information in cell type annotation. To

better visualize clusters identified in 3WNN analysis of DOGMA-seq data and

2WNN analysis of CITE-seq data (resolution = 0.2), we utilized both RNA and

ADT data to perform embedding correction using Harmony (Fig. 2Ii, Ji) [13]. Cor-

roborated by Azimuth PBMC reference projection based on RNA data [11], the

same cell types appeared on matched locations of “Harmonized” 2WNN Uniform

Manifold Approximation and Projection (UMAP) [14] dimensionality reduction

plots (Fig. 2Iii, Jii) and had comparable proportions in both assays (Fig. 2 L, Add-

itional file 1: Fig. S2I), suggesting that Harmony performed well without over-

correction. The advantage of DOGMA-seq lies in its simultaneous measurement of
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chromatin accessibility, enabling the identification of subtypes of T helper cells.

Based on expression of canonical markers, cluster 5 in DOGMA-seq data was

enriched for Th17 cells (Fig. 2M), and cluster 3 was enriched for Th1 cells (Add-

itional file 1: Fig. S3C). These findings were further supported by peaks in genomic

regions around canonical markers (Additional file 1: Fig. S3Ei-iv). However, Th17

and Th1 cells were harder to identify in CITE-seq data (Fig. 2N, Additional file 1:

Fig. S3D). Again, these observations highlighted the value of DOGMA-seq to study

lineage-specific T helper cells.

In addition to our comparisons of transcript measurements described above where

CITE-seq RNA libraries were aligned to exons only and DOGMA-seq RNA libraries

were aligned to both exons and introns because those are the default parameters and

the common practice in the corresponding cellranger and cellranger-arc pipelines, we

also performed alternative comparisons where CITE-seq and DOGMA-seq RNA librar-

ies were aligned to both exons and introns. We found similar results regarding the cor-

relation of log2FC (Additional file 1: Fig. S4Di-ii). As expected, CITE-seq has more

detected genes (Additional file 1: Fig. S4A-C) but a considerably lower average ROGUE

(Additional file 1: Fig. S4E), implying more noisy RNA signals, possibly due to reduced

mapping accuracy.

Conclusions
In summary, our study optimized the DIG cell permeabilization condition, performed a

comprehensive comparison between the DIG and LLL cell permeabilization conditions,

and found higher quality ADT and ATAC libraries after DIG permeabilization. We also

noticed that LLL permeabilization causes higher contamination from ambient RNA,

which should be considered in future analysis. We next performed a comprehensive

transcriptome and ADT comparison between CITE-seq and DOGMA-seq. We found

that DOGMA-seq with optimized DIG permeabilization and its ATAC library provides

more information, even though its mRNA and cell surface protein libraries have slightly

inferior quality, compared to CITE-seq. We also recognized the additional value of

DOGMA-seq for studying lineage-specific T helper cells, with the potential to explore

transcriptomic and epigenetic interactions between various subtypes of T cells. Our

study provides a valuable and general guidance for technical and study design consider-

ations for single cell multimodal omics experiments. Our study also shows the feasibil-

ity of using hashtags in DOGMA-seq.

Methods
Enrichment of and stimulation of peripheral blood T cells

T cells were enriched from 30ml of whole blood from healthy human subjects, ages

18–35, following the MACSxpress® Whole Blood Pan T Cell Isolation Kit, human (Mil-

tenyi Biotec) protocol. Four aliquots of one million cells each per study subject were

stimulated overnight for 12 h in 1 ml X-VIVO™ 15 Serum-free Hematopoietic Cell

Medium (Lonza) with 10 μl ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

(STEMCELL Technologies), 50 ng/ml IL-1B (R&D Systems), and 50 ng/ml IL-23 (R&D

Systems), and either 1 μM Prostaglandin E2 (PGE2) (Sigma) or 3 ng/ml TGFB (R&D

Systems), or both, for a total of four stimulation conditions per subject. After the
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overnight incubation, the cells were collected into 15 ml conical tubes through a 30-um

strainer and washed with up to 14ml of PBS/0.2% BSA, centrifuged at 400 g for 5 min

at 4 °C, and resuspended in 50 μl Pharmingen Stain Buffer (BSA) (BD Biosciences). An

aliquot of each cell suspension was then stained with ViaStain™ AOPI Staining Solution

(Nexcelom Bioscience), and viability counts were obtained using a Cellometer Auto

2000 Cell Viability Counter (Nexcelom Bioscience).

Cell staining with barcoded antibodies

After the addition of 5 μl Human TruStain FcX™ (BioLegend), the cell suspension was

incubated for 10 min on ice, and then up to 500,000 cells from each condition were

stained with a unique TotalSeq™-A anti-human Hashtag antibody (BioLegend) [8] in 50

μl for 30 min at 4 °C on a Laminar Wash™ 16-well strip (Curiox Biosystems). The cells

were washed in the Laminar Wash Mini System (Curiox Biosystems) with 25 cycles at a

flow rate of 10 μl/s. Following collection of each well and a cell count, up to 1 million

cells from the different conditions were pooled, centrifuged at 400g for 5 min at 4 °C

and resuspended in 50 μl PBS/0.2% BSA. Fifty microliters of TotalSeq™-A Human Uni-

versal Cocktail, V1.0 (BioLegend), at a 0.5 dilution, was added to the cell suspension,

and then the total volume was split between 2 wells of a Laminar Wash™ 16-well

strip for a 30 min incubation at 4 °C. The cells were washed as previously described,

pooled in a 300 μl volume of PBS/0.2% BSA, filtered through a 40 μm Scienceware®

Flowmi™ Cell Strainer (SP Bel-Art) and counted.

Single cell preparation for CITE-seq

A total of 30,000 cells were loaded into each of two wells of a Chromium Next

GEM Chip G and run on the Chromium Controller (10x Genomics) for Gel Bead-

in-emulsion (GEM) generation. The samples were processed according to the

CG000204 Chromium Next GEM Single Cell 3′ v3.1 Rev. D protocol (10x Genom-

ics) for RNA library construction, while modifications for CITE-seq ADT and cell

hashing HTO library preparation were performed according to the TotalSeq™-A

Antibodies and Cell Hashing with 10x Single Cell 3' Reagent Kit v3 or v3.1 single

index protocol (BioLegend). The modifications include the addition of ADT and

HTO additive primers to a final concentration of 0.2 μM in the cDNA amplifica-

tion reaction (step 2.2) and using Illumina TruSeq™ Small RNA RPIx (with custom

indexes) and Illumina TruSeq™ D70X_short primers, respectively, together with the

SI-PCR primer, in ADT and HTO sample index PCRs. The ADT and HTO sample

index PCRs were performed on the purified fraction of the supernatant recovered

from cDNA amplification cleanup.

Single cell preparation for DOGMA-seq

The cells were processed according to the CG000338 Chromium Next GEM Multiome

ATAC + Gene Expression Rev. D protocol (10x Genomics) for Gene Expression and

ATAC library construction while modifications for DOGMA-seq were performed fol-

lowing the “Cell permeabilization with DIG” section of the DOGMA-seq protocol

(NYGC Innovation Lab).
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We first optimized the concentration of DIG that we would use for the DIG cell

permeabilization step. We tested 0.0025%, 0.005%, 0.0075%, and 0.01% DIG with

about 230,000 cells each, and a DIG concentration of 0.0075% was chosen (see

Results).

Approximately 600,000 cells were centrifuged at 400g for 5 min at 4 °C and perme-

abilized in 100 μl chilled DIG lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3

mM MgCl2, 0.0075% DIG and 2 U/μl Protector RNase inhibitor (Roche)) for 1 min on

ice, followed by the addition of 1 ml of chilled DIG wash buffer (20 mM Tris-HCl pH

7.4, 150 mM NaCl, 3 mM MgCl2 and 1 U/μl RNase inhibitor) and pipette mixing, be-

fore centrifugation at 500g for 5 min at 4 °C. The supernatant was discarded, the pellet

was resuspended in a very small volume of about 17 μl of diluted Nuclei Buffer (10x

Genomics), and 5 μl was used for cell counting.

In a separate experiment, we compared DOGMA-seq’s DIG and LLL protocols.

Approximately 600,000 cells were permeabilized with DIG as described above

and resuspended in 7.5 μl of Nuclei Buffer. Approximately 300,000 cells were

fixed with 0.1% formaldehyde for 5 min at room temperature. Glycine was added

as a quencher at 0.125 M. The cells were washed twice with PBS/1% BSA/RNase

inhibitor, centrifuged at 400g for 5 min at 4 °C, and permeabilized in 100 μl

chilled LLL lysis buffer (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2,

0.1% NP40, 1% BSA, 1 mM DTT and 2 U/μl RNase inhibitor) for 3 min on ice

followed by the addition of 1 ml of chilled LLL wash buffer (10 mM Tris-HCl

pH 7.5, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 1 mM DTT and 1 U/μl RNase in-

hibitor) and pipette mixing, before centrifugation at 500g for 5 min at 4 °C. The

cells were resuspended in 7.5 μl of Nuclei Buffer. DIG and LLL-treated cells

were also processed as described below. The cell recovery after DIG

permeabilization was approximately 25–30 %, while the cell recovery after LLL

permeabilization was approximately 50%.

Following the CG000338 Chromium Next GEM Multiome ATAC + Gene Expression

Rev. D protocol, 30,000 cells were processed for each of two transposition reactions,

which were then loaded into each of two wells of a Chromium Next GEM Chip J and

run on the Chromium Controller (10x Genomics) for GEM generation.

During sample pre-amplification (step 4.2), ADT and HTO additive primers were

added to a final concentration of 0.2 μM. After cleanup and elution in 100 μl, 30

μl was set aside for ADT and 10 μl was set aside for HTO sample index PCR

reactions, which were performed using Illumina TruSeq™ Small RNA RPIx (with

custom indexes) and Illumina TruSeq™ D70X_short primers, respectively, and the

SI-PCR primer.

When generating the RNA library in the Chromium Next GEM Multiome ATAC +

Gene Expression protocol, we chose to use the Single Index Plate T Set A instead of

the Dual Index Plate TT Set A.

ADT and HTO primers

ADT additive: CCTTGGCACCCGAGAATT*C*C

HTO additive: GTGACTGGAGTTCAGACGTGTGC*T*C

SI-PCR: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
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RPI_SI-GA-A1-1: CAAGCAGAAGACGGCATACGAGATAGTAAACCGTGACTGG

AGTTCCTTGGCACCCGAGAATTC*C*A

RPI_SI-GA-A1-2: CAAGCAGAAGACGGCATACGAGATCCGTTTAGGTGACTGG

AGTTCCTTGGCACCCGAGAATTC*C*A

RPI_SI-GA-A1-3: CAAGCAGAAGACGGCATACGAGATGACGCCGAGTGACTGG

AGTTCCTTGGCACCCGAGAATTC*C*A

RPI_SI-GA-A1-4: CAAGCAGAAGACGGCATACGAGATTTACGGTTGTGACTGG

AGTTCCTTGGCACCCGAGAATTC*C*A

D701_S: CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTT

CAGACGTGT*G*C

D702_S: CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTT

CAGACGTGT*G*C

D703_S: CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTT

CAGACGTGT*G*C

D704_S: CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTT

CAGACGTGT*G*C

Library quality control and quantitation

Initial cDNA and ATAC library sizes and estimated concentrations were determined in

2200 TapeStation System High Sensitivity D5000 assays (Agilent Technologies), and

initial RNA, ADT, and HTO library sizes and estimated concentrations were deter-

mined in 2200 TapeStation System High Sensitivity D1000 assays (Agilent Technolo-

gies). Qubit™ dsDNA HS assays (Invitrogen), together with average library sizes from

the TapeStation assays, was used to estimate molarity and to determine library dilu-

tions in the KAPA Library Quantification qPCR assay (Roche Diagnostics), which was

used to estimate molarity more accurately.

Library pooling for sequencing

Libraries from the DOGMA-seq experiment that compared DIG and LLL cell

permeabilization were pooled and sequenced with libraries from other projects.

The DOGMA-seq DIG and LLL RNA libraries were each represented at approxi-

mately 1.99 nM in a pool of libraries that was submitted to the UPMC Genome

Center and sequenced using a NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles) (Illu-

mina) on a NovaSeq 6000 sequencer (Illumina) with a configuration 28/8/0/102

(138 total cycles). DOGMA-seq DIG and LLL ADT libraries were each represented

at approximately 2.20 nM and HTO libraries each at approximately 0.27 nM in a

pool that was sequenced using a NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles)

with a configuration 28/8/0/15 (51 total cycles). DOGMA-seq DIG and LLL ATAC

libraries were each represented at approximately 2.5 nM in a pool that was se-

quenced using a NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles) with a configur-

ation 53/8/24/53 and (138 total cycles).

The CITE-seq and other DOGMA-seq DIG RNA libraries were each pooled at ap-

proximately 2.15 nM and sequenced using a NovaSeq 6000 S4 Reagent Kit v1.5 (200 cy-

cles) with a configuration 28/8/0/151 (187 total cycles). The CITE-seq and

other DOGMA-seq DIG ADT libraries were each pooled at approximately 1.05 nM and
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the CITE-seq and other DOGMA-seq DIG HTO libraries were each pooled at approxi-

mately 0.13 nM, and sequenced using a NovaSeq 6000 S4 Reagent Kit v1.5 (200 cycles)

with a configuration 28/8/0/151 (187 total cycles). Finally, the other DOGMA-seq

ATAC libraries were each pooled at approximately 5.0 nM and sequenced using a

NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles) with a configuration 53/8/24/53 (138

cycles).

Raw sequencing data processing

For CITE-seq, the sequenced RNA library was processed and aligned to GRCh38

human reference genome using Cell Ranger software (version 6.1.2) from 10x Gen-

omics, with UMI counts summarized for each barcode. To perform fairer compari-

sons, we additionally aligned the RNA library to exons only or both exons and

introns, without or with the parament --include-introns. To distinguish cells from

the background, cell calling was performed on the full raw UMI count matrix, with

the filtered UMI count matrix generated. ADT and HTO libraries were aligned

using the kallisto | bustools workflow (kallisto version 0.46.0, bustools version

0.40.0) [15], with the full raw UMI count matrices generated, which were subse-

quently filtered according to the barcodes in the filtered UMI count matrix for

RNA library. Cell demultiplexing was performed based on the filtered UMI count

matrix for the HTO library [8] using the function HTODemux() from the R pack-

age Seurat (version 4.0.4) [11]. The sizes of matrices consisting of singlets are

listed below:

RNA: 23,759 genes × 12,599 cells; ADT: 163 protein tags × 12,599 cells; merged from

8 samples (2 donors × 4 conditions)

For DOGMA-seq, the sequenced RNA and ATAC libraries were processed and

aligned to GRCh38 human reference genome using Cell Ranger ARC software (ver-

sion 2.0.0), with UMI counts, peak counts, and fragments summarized for each

barcode. To perform fairer comparisons, we additionally aligned the RNA library

to both exons and introns or exons only, without or with the parameter --gex-ex-

clude-introns. To distinguish cells from the background, joint cell calling was per-

formed based on RNA UMIs per barcode and ATAC transposition events in peaks

per barcode, with the filtered UMI count and peak count matrices generated. ADT

and HTO libraries were aligned using the kallisto | bustools workflow (kallisto ver-

sion 0.46.0, bustools version 0.40.0) [15], with the full raw UMI count matrices

generated, which were subsequently filtered according to the barcodes in the fil-

tered UMI count and peak count matrices for RNA and ATAC libraries. Cell

demultiplexing was performed based on the filtered UMI count matrix for the

HTO libraries [8] using the function HTODemux() from the R package Seurat

(version 4.0.4) [11]. The sizes of matrices consisting of singlets are listed below:

DOGMA-seq data under DIG condition:

RNA: 29,499 genes × 15,788 cells; ADT: 163 protein tags × 15,788 cells; ATAC:

153,958 peaks × 15,788 cells; merged from 4 samples (1 donors × 4 conditions)

DOGMA-seq data under LLL condition:

RNA: 28,297 genes × 11,943 cells; ADT: 163 protein tags × 11,943 cells; ATAC:

140,444 peaks × 11,943 cells; merged from 4 samples (1 donors × 4 conditions)
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DOGMA-seq data in comparison with CITE-seq:

RNA: 28,751 genes × 14,172 cells; ADT: 163 protein tags × 14,172 cells; ATAC:

159,165 peaks × 14,172 cells; merged from 8 samples (2 donors × 4 conditions)

Complexity analyses

Complexity analyses estimate number of distinct molecules for a cell, given number of

distinct molecules observed for the cell and number of total molecules observed for the

cell, according to Lander-Waterman equation. We adapted the custom code deposited

by DOGMA-seq developers (https://github.com/caleblareau/asap_reproducibility/blob/

master/global_functions/estimateLibraryComplexity.R) to perform complexity analysis.

The code is a translation of the subcommand MarkDuplicates from Picard Tools [16]

and takes the number of unique and duplicate fragments from the Cell Ranger ARC

(chromatin) and bustools (protein tag) outputs as inputs. For protein tag, we defined

unique and duplicate fragments as described by DOGMA-seq developers [6]. For chro-

matin, we used the sum of “atac_dup_reads” and “atac_fragments” columns and the

“atac_fragments” column from the per_barcode_metrics.csv file.

Estimation of ambient RNA contamination rate

We used DecontX, which accurately predicted contamination levels in a mouse-human

mixture dataset [10], to estimate ambient RNA contamination rate for each cell under

DIG and LLL cell permeabilization conditions. We filtered out all cells in filtered matri-

ces (including singlets used in the analysis and doublets detected based on HTO) from

raw matrices and used them to empirically estimate the distribution of ambient RNA.

Ambient RNA contamination rate was then separately estimated for each cell under

DIG and LLL conditions. Decontaminated RNA count matrices were also separately

generated for cells under DIG and LLL conditions.

Cluster analyses

After the matrices were imported into R, they consisted of singlets that were analyzed

using the R package Seurat (version 4.0.4) [11] and Signac (version 1.3.0) [17]. For the

RNA data of either assay, regularized negative binomial regression (SCTransform) [18]

was used to normalize UMI count data, with glmGamPoi [19] invoked to improve the

speed. Three thousand highly variable genes were identified and used in principal com-

ponent analysis. The first 50 principal components were used in UMAP [14] dimen-

sionality reduction and clustering using the original Louvain algorithm with a series of

resolution, ranging from 0.02 to 0.3.

For ADT data of either assay, centered log ratio (CLR) transformation was used to

normalized UMI count data. All 163 protein tags were set as variable features and used

in principal component analysis. The first 30 principal components were used in

UMAP dimensionality reduction and clustering using the original Louvain algorithm

with a series of resolution, ranging from 0.02 to 0.3.

For ATAC data of DOGMA-seq, Latent Semantic Indexing (LSI) [20] was used

to normalize and reduce the dimensionality of peak count data, with all the peaks

selected as variable features. The first 50 (excluding the first component due to

correlation with sequencing depth) LSI components were used in UMAP
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dimensionality reduction and clustering using the SLM algorithm with a series of

resolution, ranging from 0.02 to 0.3.

For CITE-seq and DOGMA-seq data, we also performed 2WNN (RNA and ADT)

and 3WNN (RNA, ADT, and ATAC) dimensionality reduction [11] using the same

numbers of components described above for each modality. Clustering was performed

using the SLM algorithm with a series of resolution, ranging from 0.02 to 0.3.

To better visualize clusters identified in different assays or under different condi-

tions, we performed embedding correction using Harmony [13]. For the compari-

son of CITE-seq and DOGMA-seq, we normalized the two data separately as

described above and identified variable features for each modality (top 3000 for

RNA and top 100 for ADT). We selected shared variable features between CITE-

seq and DOGMA-seq as the variable features used in Harmony. We performed lin-

ear dimension reduction and ran Harmony on the linear components for each re-

duction with assay type as the covariate. UMAP dimensionality reduction was

performed using “Harmonized” components for RNA and ADT data, with the

“Harmonized” 2WNN UMAP plots generated.

For the comparison of DIG and LLL, we merged the two data sets and normalized

them, due to smaller differences between the two data compared with the former com-

parison. Variable features were identified in the merged data for all three modalities

and used in Harmony. We performed linear dimension reduction and ran Harmony on

the linear components for each reduction with permeabilization method as the covari-

ate. UMAP dimensionality reduction was performed using “Harmonized” components

for RNA, ADT, and ATAC data, with the “Harmonized” 3WNN UMAP plots

generated.

We also annotated cells in different assays or under different conditions using

reference-mapping approach. We found anchors between our data and Azimuth

PBMC reference [11], with normalization.method = “SCT”, reference.reduction =

“spca”, dims = 1:50. Cell type labels were then transferred from the reference to

our data.
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