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SUMMARY
Genomic and transcriptomic analysis has furthered our understanding of many tumors. Yet, thyroid cancer
management is largely guided by staging and histology, with few molecular prognostic and treatment bio-
markers. Here, we utilize a large cohort of 251 patients with 312 samples from two tertiary medical centers
and perform DNA/RNA sequencing, spatial transcriptomics, and multiplex immunofluorescence to identify
biomarkers of aggressive thyroid malignancy. We identify high-risk mutations and discover a unique molec-
ular signature of aggressive disease, the Molecular Aggression and Prediction (MAP) score, which provides
improved prognostication over high-risk mutations alone. The MAP score is enriched for genes involved in
epithelial de-differentiation, cellular division, and the tumor microenvironment. TheMAP score also identifies
aggressive tumors with lymphocyte-rich stroma that may benefit from immunotherapy. Future clinical
profiling of the stromal microenvironment of thyroid cancer could improve prognostication, inform immuno-
therapy, and support development of novel therapeutics for thyroid cancer and other stroma-rich tumors.
INTRODUCTION

Thyroid cancer is common, with both incidence and mortality

rates increasing.1,2 Most malignant thyroid lesions are indolent,

well-differentiated tumors such as papillary or follicular thyroid

carcinomas (PTC and FTC, respectively). These tumors can be

successfully treated with surgical resection of the thyroid fol-

lowed by radioactive iodine.3,4 However, many thyroid cancers

recur or progress after such standard-of-care treatment. Rarely,

recurrence can even occur decades after initial therapy and may
C
This is an open access article under the CC BY-N
involve distant metastasis or transformation to poorly differenti-

ated (PDTC) or anaplastic thyroid cancer (ATC).5 ATC is one of

the most lethal cancers in existence. The median survival of pa-

tients with ATC is just 3–5months—indicating a dire need to bet-

ter understand drivers of thyroid cancer progression.6

DNA and RNA sequencing have revolutionized our under-

standing of many tumors, providing insight into underlying

biology and drivers of aggressive disease. However, the genomic

understanding of thyroid cancer has lagged behind other tumors.

Until recently, thyroid cancer molecular testing was used almost
ell Genomics 3, 100409, October 11, 2023 ª 2023 The Author(s). 1
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Figure 1. Mutations associated with aggressive thyroid cancer

(A) Cohort summary quantifying number of samples within each diagnosis. Abbreviations: MNG, multinodular goiter; HT, Hashimoto thyroiditis; FA, follicular

adenoma; OA, oncocytic adenoma; NIFTP, noninvasive follicular thyroid neoplasm with papillary-like nuclear features; EFVPTC, encapsulated follicular variant

papillary thyroid carcinoma, OTC, oncocytic thyroid carcinoma; FTC, follicular thyroid carcinoma; PTC, papillary thyroid carcinoma; IFVPTC, infiltrative follicular

variant papillary thyroid carcinoma, PDTC, poorly differentiated thyroid carcinoma; ATC, anaplastic thyroid carcinoma.

(B) Schematic representation showing patient disease categorization as well as pipeline used for sequencing data collection. 312 formalin-fixed, paraffin-

embedded (FFPE) resection samples underwent high-throughput sequencing.

(legend continued on next page)
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exclusively for diagnostic purposes at the time of initial biopsy.3,7

Genomic studies have identified common driver mutations

in well-differentiated thyroid cancers, allowing commercial

genomic classifiers to distinguish malignant from benign lesions

with high sensitivity, specificity, and accuracy.8–13 BRAF V600E

and RAS mutations are mutually exclusive and represent the

mostcommondriver alterations inwell-differentiated thyroidcan-

cers. The frequency of these alterations has led to the molecular

classification of thyroid cancers as either BRAF-like or RAS-like,

based on the gene expression patterns ofBRAFV600E andRAS-

mutant PTCs.14 Other alterations detected by diagnostic molec-

ular tests include gene fusions such as NTRK1/3, PAX8/PPARG,

andRET; copy number alterations; microRNAdysregulation; and

gene expression abnormalities.15–17

Despite theseadvances inmolecular diagnostics, thyroidcancer

prognostication and post-surgical treatment are still largely guided

by clinical and histopathologic features. This cancer management

is in stark contrast to the biomarker-driven personalized manage-

ment of many other cancers, such as non-small cell lung can-

cer.18,19 The lack of molecular biomarker testing for thyroid cancer

is due to our limited understanding of the drivers of advanced dis-

ease.WhilepatientswithBRAF-like tumorshaveslightlyworseout-

comes (5% mortality in BRAF-mutant PTC versus 1% in RAS-

mutant PTC),20 the majority of BRAF-like thyroid cancers have an

excellent prognosis. Recent large sequencing studies have impli-

cated TP53, PIK3CA, and TERT promoter (TERTp) mutations in

aggressive thyroid cancer, particularly in combination with BRAF

V600E.21–26 This work has led to the development of the first com-

mercial molecular-based test for high-risk disease.27 Despite this

tremendous advance, there are still patients with recurrent, meta-

static, and de-differentiated thyroid cancer that lack high-risk mu-

tations. Additional biomarkers are needed to further enhance the

risk-stratification and management of patients.

The role of the tumor microenvironment in cancer progression

is an active area of investigation and has led tomany advances in

prognostication and therapy.28 However, there has been limited

research in the microenvironment of thyroid cancer. To this end,

recent work identified a subgroup of BRAF-like lesions enriched

in cancer-associated fibroblasts (CAFs) that may have more

aggressive behavior.29 Another study showed that in thyroid tu-

mors driven byBRAF V600Emutation and PTEN loss, fibroblasts

may promote progression by remodeling collagen in the tumor

microenvironment.30 Other research has suggested roles of infil-

trating immune cells such as macrophages in supporting

aggressive thyroid cancer behaviors.31,32 As such, clinical trials

are ongoing to evaluate the efficacy of checkpoint inhibitor ther-

apy for anaplastic thyroid carcinoma.33–38 However, our knowl-

edge of the stromal microenvironment across thyroid tumors re-

mains limited.

In this study, we utilize a large patient cohort, enriched for

aggressive thyroid tumors, from two tertiary medical centers

and perform DNA/RNA sequencing, spatial transcriptomics,
(C) Oncoplot showing mutational landscape of malignant thyroid lesions. The 20

above show diagnosis, tissue location of the lesion sequenced, sex of the patien

thyroid cancer fusions are also shown.

(D–F) Progression-free survival (PFS) plots for patients with malignant thyroid le

PIK3CA mutation (F). p values were calculated with log rank test.
and multiplex immunofluorescence in order to identify and visu-

alize biomarkers of aggressive thyroid malignancy. In doing so,

we identify high-risk mutations as well as key stromal elements

including CAFs and macrophages that are strongly associated

with aggressive tumors and can be detected at the initial thyroid

surgery. We generate a molecular signature, the Molecular

Aggression and Prediction (MAP) score, which identifies tumor,

stromal, and immune microenvironmental factors associated

with aggressive disease. We demonstrate the successful use

of this score, in combination with mutational profiling, to identify

patients at risk for future aggressive thyroid cancer. Finally, we

show the utility of this score in subdividing aggressive tumors

that may respond to immunotherapy. Future clinical evaluation

of the stromal microenvironment could potentially inform patient

management and ultimately reduce thyroid cancer-related

mortality.

RESULTS

Mutational landscape of aggressive thyroid cancer
To identify gene mutations and fusions associated with aggres-

sive thyroid cancer, we performed whole-exome and bulk RNA

sequencing on 312 formalin-fixed paraffin-embedded (FFPE)

resection samples from 251 patients with thyroid nodules,

including non-neoplastic, neoplastic, and malignant lesions

(Figures 1A and 1B) from two tertiary care centers. The cohort

was enriched for aggressive lesions to includewell-differentiated

tumors with distant metastases and transformed thyroid cancers

(ATCs and PDTCs). Samples from age-matched patients with

well-differentiated cancers without distant metastases and pa-

tients with benign thyroid lesions were collected between the

same date range (Figure 1A, Table S1). We next categorized pa-

tients as having either ‘‘indolent’’ or ‘‘aggressive’’ disease (Fig-

ure 1B, detailed definitions in STAR Methods). Sequencing ana-

lyses identified common driver thyroid cancer alterations at

frequencies comparable to those previously reported (Figure 1C,

Table S2).10–13,27

We assessed the frequency of TERTp, TP53, and PIK3CAmu-

tations in our cohort, as they are known to be associated with

distant metastasis27 and transformed thyroid cancers such as

PDTC and ATC.39–41 Benign lesions were negative for these

high-risk mutations, as expected (Table S2). TP53 mutations

were most common in ATC tumors (27%). TERTp mutations

were identified in patients categorized with ‘‘aggressive’’ dis-

ease across histologic subtypes: PDTC (33%), ATC (31%),

FTC (20%), infiltrative follicular variant papillary thyroid carci-

noma (IFVPTC, 14%), and PTC (40%). PIK3CA mutations were

seen in PTC (9%), PDTC (19%), and ATC (12%, Table S2).

Kaplan-Meier curves confirmed that TERTp, TP53, and PIK3CA

mutations were all significantly correlated with shorter progres-

sion-free survival (PFS) and overall survival (Figures 1D–1F and

S1A–S1C). Notably, �42% of well-differentiated tumor samples
most frequently mutated genes after filtering are displayed. Annotation bars

t, age of the patient at surgery, and patient disease categorization. Detected

sions with and without TERT promoter mutation (D), TP53 mutation (E), and
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from patients with aggressive disease lacked mutations in

TERTp, TP53, or PIK3CA. Taken together, our mutational ana-

lyses indicate that while TERTp, TP53, and PIK3CA are signifi-

cantly associated with aggressive disease, there is still a signifi-

cant proportion of clinically aggressive thyroid cancers that lack

these common high-risk mutations.

Molecular Aggression and Prediction (MAP) score
We next explored previously identified gene expression signa-

tures to assess their association with aggressive disease (Fig-

ures 2, S2, and S3). Since BRAFmutational status is associated

with slightly worse outcomes in some studies,20 we began by

calculating the BRAF-RAS score (BRS) for each tumor, per The

Cancer Genome Atlas (TCGA) classification (Figures 2A, 2B,

and S2A). Approximately half of our aggressive disease samples

were BRAF-like (53%). However, for well-differentiated cancer

samples,BRAF-like status alonewas not significantly associated

with worse PFS (Figure S2B). When transformed tumors (PDTC

and ATC) were included, BRAF-like status was associated with

shorter PFS, consistent with highly lethal ATCs being predomi-

nantly BRAF-like (Figure S2C). MAPK and PI3K signaling path-

ways, known to be upregulated in BRAF-like and RAS-like tu-

mors with aggressive disease, were upregulated in transformed

tumors. Thyroid differentiation genes were downregulated in

transformed tumors and correlated with BRAF-like status, as ex-

pected (Figure S3). While these signatures correlated with worse

survival of transformed tumors, they did not significantly predict

aggressive disease in well-differentiated tumors.

To discover novel gene signatures associated with outcome,

we performed differential gene expression analysis on tumors

from patients categorized with either indolent or aggressive dis-

ease (Figure 2C). As well-differentiated tumors with BRAF-like

gene expression have slightly worse prognosis, we also per-

formed differential gene expression analysis on BRAF-like or

RAS-like tumors. When comparing upregulates genes in BRAF-

like and aggressive disease samples, we observed a greater

gene overlap in aggressive and BRAF-like samples than with

RAS-like samples (549 genes versus 8 genes, Figure 2D;
Figure 2. Molecular Aggression and Prediction (MAP) score

(A) Diagram outliningBRAF-RAS score (BRS) classificationmethod. Positive BRS

as BRAF-like.

(B) Boxplots showing BRS from local disease samples. Color indicates clinical beh

collection). Abbreviations: FA, follicular adenoma; OA, oncocytic adenoma; FT

encapsulated follicular variant papillary thyroid carcinoma, NIFTP, noninvasive

thyroid carcinoma; IFVPTC, infiltrative follicular variant papillary thyroid carcino

carcinoma.

(C) Diagram outlining method for identifying genes enriched in samples from pat

(D) Venn diagrams showing the overlap of genes that are upregulated in BRAF-li

Thresholds for upregulation was an adjusted p value <0.05 and fold change ofR4

upregulated, RAS-like upregulated, and aggressive disease upregulated for RAS

(E) Boxplots of MAP score calculated from the 549 genes that overlap between B

oncocytic thyroid carcinoma; EFVPTC, encapsulated follicular variant papillary th

like nuclear features; PTC, papillary thyroid carcinoma; IFVPTC, infiltrative folli

carcinoma; ATC, anaplastic thyroid carcinoma). Pink dots indicate lesions from p

(F) Boxplots of MAP score in TCGA samples plotted by histology, extrathyroida

improved visualization of plots. p values calculated with Kruskal-Wallis test with

(G) Gene ontology results for the 549 genes comprising MAP score, showing enri

processes. Statistical analysis of fold enrichment was performed with Fisher’s e

(H) Summary diagram of MAP score components predicted to be enriched in ge
Table S3). To further discriminate genes associated with both

BRAF-like tumors and aggressive disease, we created a gene

expression signature using the 549 genes upregulated in both

aggressive and BRAF-like samples, termed the Molecular

Aggression and Prediction (MAP) score.We compared this score

across tumors from different histologic subtypes in our cohort.

Positive MAP scores (>0) were seen for all ATCs, the majority of

PDTCs, and a portion of well-differentiated thyroid cancers, pre-

dominantly frompatientswith aggressive disease (Figure 2E).We

further validated theMAPscore on a large external cohort of well-

differentiated PTCs within TCGA. Positive MAP score correlated

with aggressive PTC histologic variants, such as tall cell and

diffuse sclerosing, as well as adverse pathologic features such

as extrathyroidal extension and advanced disease stage

(Figure 2F).

Gene ontology analysis of theMAP score geneswas then used

to better understand the biologic processes unique to these

aggressiveMAP-positive tumors.MAP-positive cancers showed

enrichment of biological processes including extracellular ma-

trix, immune-related processes, epithelial differentiation, and

cell cycle processes (Figures 2G and 2H) in contrast to enrich-

ment of thyroid metabolic processes seen only in RAS-like tu-

mors (Figure S3H). Epithelial de-differentiation and increased

mitotic activity are known features associated with thyroid can-

cer progression and part of the current diagnostic criteria for

many aggressive thyroid tumors, providing further support for

the gene ontology analysis.42–44 Altogether, the MAP score

correlated with aggressive thyroid cancer subtypes and repre-

sentedmultiple biologic processes notably including remodeling

of the tumor microenvironment.

MAP score identifies CAF-rich microenvironments
Based on the presence of extracellular matrix and immune-

related genes in ourMAP score, aswell as the reported functional

roles of CAFs in disease progression,45 we further explored the

stromal infiltrate of tumors with positive MAP score. Differential

gene expression comparing positive and negative MAP score

samples in our cohort showed enrichment of inflammatory genes
lesions were categorized asRAS-like, and negative BRS lesionswere classified

avior (pink, aggressive; black, indolent; gray, no clinical follow-up after sample

C, follicular thyroid carcinoma; OTC, oncocytic thyroid carcinoma; EFVPTC,

follicular thyroid neoplasm with papillary-like nuclear features; PTC, papillary

ma, PDTC, poorly differentiated thyroid carcinoma; ATC, anaplastic thyroid

ients with aggressive vs. indolent disease.

ke lesions (red), RAS-like lesions (blue), and aggressive disease lesions (gray).

(aggressive disease upregulated forBRAF-like Venn diagram) orR2 (BRAF-like

-like Venn diagram).

RAF-like and aggressive lesions in (C) (FTC, follicular thyroid carcinoma; OTC,

yroid carcinoma, NIFTP, noninvasive follicular thyroid neoplasm with papillary-

cular variant papillary thyroid carcinoma, PDTC, poorly differentiated thyroid

atients with aggressive disease.

l extension, and disease stage. Three outliers for MAP score were omitted for

pairwise Wilcoxon rank-sum test and Bonferroni’s correction.

chment of extracellular matrix, immune, cell cycle, and epithelial differentiation

xact with false discovery rate correction.

ne ontology analysis.
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in MAP-positive samples (Figure 3A), including markers of spe-

cific immune cell infiltrates such as CAFs, M2 macrophages,

and neutrophils (Figure 3B). To confirm the stromal infiltrate in

our cohort, we predicted infiltrating cell populations from bulk

RNA sequencing using the immune deconvolution tools TIMER,

CIBERSORT, EPIC, and MCPCOUNTER. Again, we observed

strong enrichment of CAFs, M2 macrophages, and neutrophils

in MAP-positive tumors (Figures 3C and S4). To further validate

the association of the MAP score with this unique stromal infil-

trate, we utilized a large external cohort of well-differentiated

PTC samples in the TCGA (Figures 3D and S5). We found enrich-

ment of CAFs, neutrophils, and M2-macrophages in MAP-posi-

tivePTC tumors,with enrichmentofCD8+Tcells inMAP-negative

tumors (Figure S5).

AsMAPscores are highest in ATCs,we next assessedwhether

ATCs had higher CAF infiltrates compared to other thyroid can-

cers. Comparison of these infiltrates acrossmajor thyroid cancer

subtypes revealed that ATCs had the highest predicted CAF, M2

macrophage, and neutrophil infiltrates. RAS-like well-differenti-

ated cancers andPDTCs had the lowest predicted levels of these

stromal cells (Figure 3E). To spatially confirm this infiltrate identi-

fied in ATCs from bulk sequencing data, we next performed

spatial transcriptomics on eight ATC samples from our cohort.

Clustering showed robust, distinct populations of tumor cells

andCAFs in all ATC samples (Figure 3F) but did not clearly detect

separate populations of other immune cell subsets. As spatial

transcriptomics is not single-cell resolution, clustering was un-

able to detect smaller populations of intermixed immune cell sub-

sets. Toovercome this limitation,weusedaspatial deconvolution

algorithm, SpaCET, to deconvolute the immune cell populations

present within individual spatial capture areas. Exploration of im-

mune cell populations with SpaCET confirmed robust CAF and

macrophage infiltrate in all eight ATC specimens (Figure 3G). As

the gold-standard method of confirmation of neutrophil, CAF,

and M2 macrophage infiltrates, we performed blinded patholo-

gist review and scoring of H&E and immunofluorescence staining

for fibroblast activation protein (FAP) (CAF marker) and MRC1

(M2 macrophage marker) in all ATCs of our cohort (Figure 3H).

While all ATCs had positiveMAP scores, sampleswith high levels
Figure 3. MAP score is associated with CAF, neutrophil, and M2 macr

(A) Volcano plot showing differentially expressed genes (fold change >2, adjusted

and negative (blue) MAP score. Samples with Hashimoto thyroiditis were excluded

immune cell populations are labeled.

(B and C) Boxplots of all malignant thyroid lesions, excluding samples with Hashi

macrophage polarization markersMRC1 and CD163, and neutrophil markers ELA

CAF score, CIBERSORT absolute valueM2macrophage score, and TIMER neutro

positive MAP score (dark pink). p values were calculated with Wilcoxon rank-sum

(D) Heatmap of select deconvolution results from TCGA, an external well-differe

notations displayed on the top of the heatmap, followed by TIMER scores, CIB

Samples are sorted by increasing MAP score from left to right.

(E) Boxplots of EPIC CAF score, CIBERSORT absolute value M2 macrophage s

thyroid lesion subtype groups: RAS-like (FTC, OTC, EFVPTC, and NIFTP), BRAF-

were calculated with Kruskal-Wallis test with pairwise Wilcoxon rank-sum test a

(F) Clustering of transcriptomic data from a representative ATC spatial transcriptom

differential gene expression heatmap showing the top 10 markers for each of the

immune cells based on marker genes in the heatmap.

(G) SpaCET spatial deconvolution showing estimated spatial capture area cell fr

(H) Boxplots of MAP scores in ATCs, split into groups with either low or high his

phages. Representative histology of specific cell types is shown to the left of qu
ofCAFs, neutrophils, andM2macrophages had higherMAPpos-

itivity. Overall, these findings suggest a strong association be-

tweenMAP score andCAF,M2macrophage, and neutrophil infil-

trates across thyroid cancer subtypes.

MAP score highlights ATCs that may respond to
immunotherapy
Given the recent clinical trials of immunotherapy for transformed

tumors (PDTCs and ATCs), we further investigated immune cell

subsets within these thyroid cancer subtypes. Immune deconvo-

lution of bulk RNA sequencing from transformed tumors revealed

three striking patterns of immune cell infiltrate: immune dessert,

lymphocyte rich, and CAF rich (Figure 4A). Regardless of MAP

positivity, PDTCs showed low scores for immune infiltration, sug-

gesting ‘‘immune desert’’ microenvironments. This finding is

similar to prior reports of immune-cold PDTCs.21,46 In contrast,

ATCs were rich in stomal and immune cells, displaying either a

lymphocyte/M1 macrophage-rich or CAF/M2 macrophage-rich

infiltrate. While both metastatic and thyroid-localized ATCs

demonstrated lymphocyte-rich microenvironments, CAF-rich

microenvironments were more commonly seen in ATC samples

from the thyroid and surrounding soft tissues. The lymphocyte-

rich stroma in ATC strongly correlatedwithmoderateMAP score.

Using a 50th percentile MAP score cutoff, we categorized ATCs

as either having a moderate MAP score or a high MAP score

and found a significant association with lymphocyte-rich versus

CAF-rich microenvironments, respectively (Figures 4B and S6).

To further explore the spatial association of CAFs and M2

macrophages in ATC, we performed multiplex immunofluores-

cence for the CAF marker FAP and the M2 macrophage marker

MRC1 across all ATCs in our cohort. We found a strong correla-

tion between the abundance of MRC1-positive (MRC1+) macro-

phages and FAP-positive (FAP+) CAFs in ATCs. While the FAP+

CAFs abutted tumor cells, the MRC1+ macrophages were pre-

dominantly localized within the tumor stroma adjacent to fibro-

blasts (Figure 4C). To quantitatively analyze co-localization of

CAFs and M2 macrophages, we evaluated the correlation be-

tween predicted CAF andM2macrophage frequency for individ-

ual capture areas within our spatial transcriptomics data. ATC
ophage infiltrate in thyroid tumors

p value <0.05) between malignant localized thyroid lesions with positive (pink)

. Select markers of extracellular matrix, cancer-associated fibroblasts, and key

moto thyroiditis, showing log-transformed CAF markers FAP and LRRC15, M2

NE and FCGR3B from bulk RNA sequencing data (B) or log-transformed EPIC

phils score (C). Samples are categorized as negativeMAP score (light blue) and

test.

ntiated thyroid cancer cohort. BRS, MAP score category, and MAP score an-

ERSORT absolute value M1/M2 macrophage scores, and EPIC CAF scores.

core, and TIMER neutrophil score, with samples organized into the following

like (PTC and IFVPTC), PDTC, and ATC. All scores are on a log2 scale. p values

nd Bonferroni’s correction.

ics sample with spatial mapping of clusters (upper left), UMAP (lower left), and

clusters (right). Clusters are labeled as CAF, ATC tumor cells, and intermixed

actions for CAF and macrophage for eight ATC samples.

tologic quantification of CAFs, FAP+ CAFs, neutrophils, and MRC1+ macro-

antification. p values were calculated with Wilcoxon rank-sum test.
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samples had significant spatial correlation between CAFs and

M2 macrophages. However, the magnitude of the correlation

was more pronounced in tumors with higher MAP scores, sug-

gesting greater CAF/M2 macrophage co-localization within

high MAP tumors (Figures 4D and S7A).

We next verified the abundance of infiltrating lymphocytes in

moderate-MAP ATCs using spatial transcriptomics and immu-

nohistochemical staining. Using our ATC spatial transcriptomic

samples, we identified increased abundance of lymphoid popu-

lations in samples with moderate versus high MAP scores

(Figures 4E, S7B, and S7C). We also performed immunohisto-

chemical staining and blinded scoring of CD3 stains from whole

tumor sections of all ATCs in our cohort. We found two patterns

of T cell infiltrate with CD3 staining: CD3 inclusion and CD3

exclusion (Figure 4F). This histologic assessment strongly corre-

lated with the T cell exclusion prediction algorithm, tumor im-

mune dysfunction exclusion (TIDE), performed on the same

ATC samples. TIDE is an immune deconvolution tool that uses

bulk RNA sequencing data to provide estimates of T cell exclu-

sion, dysfunction, and predicted response to immune check-

point blockade (ICB) therapy.47 Our TIDE exclusion results and

CD3 staining strongly supported the association of moderate

MAP score with T cell inclusion and high MAP score with T cell

exclusion (Figures 4F and 4G). Finally, we utilized TIDE to predict

potential response to ICB immunotherapy. As anticipated, ATCs

with moderate MAP score and T cell inclusion were predicted to

respond to immunotherapy, whereas ATCs with high MAP score

and T cell exclusion were predicted to be non-responders (Fig-

ure 4H). The data suggest that MAP scoring predicts ATC stro-

mal infiltrate and potential response to ICB therapy.

MAP score for thyroid cancer outcome prediction
Thus far, we have calculated a MAP score that is enriched for

microenvironment genes.We next assessedwhetherMAP score

could be used as a robust predictor of aggressive disease. To

perform outcome prediction, we used two cohorts: our cohort

with enrichment for transformed and metastatic disease and

the TCGA cohort, which is primarily composed of patients with

non-metastatic (less aggressive) disease. The benefits of utiliz-

ing two cohorts were 2-fold, as it allowed (1) the ability to include
Figure 4. MAP score is associated with tumor microenvironment com

(A) Heatmap of select deconvolution results for PDTCs and ATCs. Diagnosis, tis

tations displayed on the top of the heatmap, followed by TIMER scores, M1/M

scores. Samples are arranged by increasing MAP score from left to right within ea

and CAF-rich ATC.

(B) Moderate and high MAP score ATC tumor categorization diagram (tumors spli

absoluteM2macrophage score, CIBERSORT absoluteM1macrophage score, an

scores are on a log2 scale. p values were calculated with Wilcoxon rank-sum te

(C) Representative multiplex IF image of ATC with MRC1+ macrophages and ad

tokeratin, white, MRC1, red, FAP, blue, nuclear. Quantification of staining below

value generated from a linear model with FAP staining score as the independent

(D) Linear model of M2 macrophage and fibroblast co-localization from SpaCET

representative spatial capture area M2 macrophage and fibroblast non-paramet

(E) Representative images of lymphocyte deconvolution from spatial transcripto

average lymphoid spatial capture fraction between moderate and high MAP s

calculated with Wilcoxon rank-sum test.

(F) Representative CD3 stained samples showing histologically excluded or inclu

(G) TIDE exclusion score in moderate and high MAP score ATCs and association

(H) TIDE score in moderate and high MAP score tumors. p value was calculated
an external cohort with the TCGA tumors and (2) the ability to

include our cohort enriched in well-differentiated tumors with

aggressive behavior such as distant metastases (26% of our pa-

tients vs. 1% of TCGA patients, Figure 5A). Survival analysis us-

ing our cohort with both well-differentiated and transformed tu-

mors, as well as with well-differentiated tumors alone, showed

that patients with positive MAP scores had significantly worse

survival (Figures 5B and S8A). Despite having primarily patients

with local disease, the TCGA cohort also showed a significant

decrease in disease-free and overall survival in tumors with pos-

itive MAP score (Figures 5Cand S8B).

To further assess the ability of the MAP score to predict dis-

ease progression, we performed generalized linear models

with penalized maximum likelihood estimation on our cohort.

Score performance was assessed on three groups of local dis-

ease malignant samples: all malignant samples, well-differenti-

ated malignancies, and well-differentiated malignancies that

were resected prior to any evidence of disease progression. In-

clusion of malignancies resected prior to disease progression al-

lowed for prediction of future disease risk. We compared these

scores to the predictive capacity of three common high-risk mu-

tations: TP53, TERTp, and/or PIK3CA. Both the MAP score and

the mutation scores performed similarly and were found to be

good predictors of aggression (Figures 5D and S8C and

Table S4). Significantly, combining the MAP score with high-

risk mutations provided the greatest predictive power by area

under the receiver operating characteristic curve (Figure 5D,

Table S4). In addition, the MAP score provided aggressive dis-

ease prediction in samples lacking these known high-risk muta-

tions (Figure 5D, Table S4). Altogether, we show that the molec-

ular prediction of disease outcome is improved with the inclusion

of both high-risk mutations and gene signatures that incorporate

stromal markers of aggressive disease. Molecular prediction of

the stromal infiltrate could be highly useful in enhancing outcome

prediction in thyroid cancer (Figure 6).

DISCUSSION

The primary focus of thyroid nodule molecular profiling has been

on malignancy prediction, rather than prediction of disease
position in ATCs

sue location, aggressive disease, MAP score category, and MAP score anno-

2 absolute value CIBERSORT immune deconvolution scores, and EPIC CAF

ch diagnosis. Representative histology shown for PDTC, lymphocyte-rich ATC,

t by 50th percentile MAP score), and boxplots of EPIC CAF score, CIBERSORT

d TIMERCD8+ T cell score, comparingmoderate and highMAP score ATCs. All

st.

jacent FAP+ fibroblasts. White arrows indicate MRC1+ cells. Green, pan-cy-

showing the relationship between FAP staining and MRC1 staining. R2 and p

variable.

deconvolution of eight ATCs as a dependent variable of MAP score (left), with

ric rho correlation plots of moderate and high MAP score ATCs (right).

mics data of moderate and high MAP score tumors (left) and comparison of

core tumors for all eight spatial transcriptomic samples (right). p value was

ded T cells.

with CD3 staining. p values were calculated with Wilcoxon rank-sum test.

with Wilcoxon rank-sum test.
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Figure 5. MAP score is associated with disease progression and predicted response to immune checkpoint blockade therapy

(A) Diagram showing 5-year survival of patients with well-differentiated thyroid cancer and patients with transformed thyroid cancer. Table showing percent of

samples that are metastatic in the internal cohort from Vanderbilt University Medical Center and University of WashingtonMedical Center and the external cohort

from TCGA.

(B) PFS in patients with well-differentiated and transformed thyroid cancer (left), as well as patients with only well-differentiated thyroid cancer (right), with positive

(pink) or negative (purple) MAP score. p values were calculated with log rank test.

(C) Disease-free survival in TCGA patients with well-differentiated thyroid cancer with positive (pink) or negative (purple) MAP score. p valueswere calculated with

log rank test.

(D) Receiver operating characteristic curve showing association between aggression and TERTp/TP53/PIK3CA mutation (blue), MAP score (red), and TERTp/

TP53/PIK3CAmutation + MAP score (green), for patients with well-differentiated and transformed thyroid cancer (left), well-differentiated thyroid cancer (center-

left), well-differentiated thyroid cancer sampled prior to aggression (center-right), and well-differentiated thyroid cancer sampled prior to aggression excluding

any samples with a mutation in TERTp, TP53, and PIK3CA (right). Area under the curve values with 95% confidence intervals are shown. Metastatic tumors were

excluded.
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progression, recurrence, or therapy response. Recent studies

have made significant progress in predicting patients with

higher-risk disease by focusing on high-risk alterations such as

mutations in TERTp, TP53, and PIK3CA, often in combination

with BRAF V600E.27 However, many patients with metastatic,

recurrent, or progressive thyroid cancer lack such known high-

risk mutational biomarkers. To better understand the pathogen-

esis of thyroid cancer progression and to identify additional bio-

markers, we sequenced a diverse collection of thyroid lesions
10 Cell Genomics 3, 100409, October 11, 2023
from a large patient cohort enriched for aggressive disease. As

expected, TERTp, TP53, and PIK3CA mutations were associ-

ated with decreased PFS. However, our findings suggest that

approximately 40% of patients with aggressive well-differenti-

ated tumors lack these previously identified high-risk mutations.

Based on these findings, we generated the MAP score, which

was associated with outcome in both our cohort and the TCGA

PTC cohort. We found that, when utilized in combination with

known high-risk mutations, MAP score improves the prediction



Figure 6. Outcome and therapy prediction using MAP score

Summary diagram showing the potential role of MAP score for risk stratifying thyroid tumors.
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of thyroid cancer aggressiveness. Importantly, the MAP score

could also potentially provide outcome prediction in patients

lacking these mutations.

In addition to outcome prediction, the MAP score also offered

an assessment of immune infiltrate, which could be useful in

identifying ATC patients who might respond to ICB immuno-

therapy. Clinical trials have recently showed some moderate

response of ATC to ICB therapy.33–38 Immune profiling with a

molecular signature such as the MAP score could help identify

ICB-responsive ATC patients. MAP-predicted differential im-

mune infiltration also highlights important biology that may

shed light on the drivers of aggressive disease. CAFs, macro-

phages, and neutrophils have been implicated as key regulators

of anti-tumor immunity and have substantial crosstalk with tumor

cells, indicating their ability to influence tumor growth and

response to therapy.48 As such, the robust infiltration of CAFs,

neutrophils, and M2 macrophages in MAP-high tumors may

play a key role in thyroid cancer progression. Additional research

is needed to explore whether differing CAF populations and/or

immune infiltrate compositions could be used to inform the

development of new targeted therapies for ATC patients.

In conclusion, our findings identify the stromal microenviron-

ment as an important component of outcome in thyroid cancer.

We show that incorporation of a molecular signature including

stromal genes with standard mutational analysis could improve

risk-stratification and may even predict immunotherapy res-

ponse inATCpatients. In the future,weenvisiona testingplatform

utilizing both mutational and stromal microenvironment data for

outcome and ICB response prediction. Continuing research on

the stromal microenvironment of thyroid cancer has the potential

to improve care of thyroid cancer patients, identify novel thera-
peutic targets for aggressive disease, and potentially help pre-

vent ATC, one of the most aggressive forms of thyroid cancer.

Similar molecular tests could potentially provide predictive value

for other stromal-rich cancers. While more research is needed,

assessment of stromalmicroenvironment geneshas thepotential

to deepen our understanding of cancer biology, redefine tumor

classification, and estimate poor outcome risk for patients across

a wide range of solid tumors.

Limitations of the study
Wenote a few limitations of our study. First, bulkRNAsequencing

and spatial transcriptomics have limited ability to subclassify mi-

nor immune cell populations andCAF subsets. Additional studies

using single-cell sequencing methods will be essential for

detailed classification of these stromal subpopulations.32 Sec-

ond, whole-exome sequencing depth could have limited our abil-

ity to detect subclonal mutations or mutations in samples with

lower tumor purity. Third, as none of the patients in our study

were treated with immunotherapy, computational algorithms

were used to predict potential ICB response. A larger cohort of

patients receiving ICB therapy will be needed to assess whether

the tumor’s stromal infiltrate can be used as an accurate predic-

tor of ICB response. Fourth, while our cohort includes a diverse

collection of thyroid tumors to study aggressive disease, larger

prospective cohorts are needed to determine the real-world clin-

ical utility of prognostic biomarkers. Finally, while the MAP score

performed well in this resection-based study, the potential clin-

ical utility of this gene score has not been assessed in fine-needle

aspirate biopsy material. We have previously confirmed the

robust identification of neutrophils, macrophages, and T cells us-

ing flow cytometry of thyroid cancer aspirate biopsy material
Cell Genomics 3, 100409, October 11, 2023 11
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(data not shown). However, large biopsy-based studies will be

needed to assess the differential cell enrichment in aspirate bi-

opsies and the modifications that would be needed for the MAP

score to provide prognostic information in fine-needle aspirates.
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Visium Spatial Gene Expression Slide Kit 10x Genomics PN-1000188

Deposited data

ExAC (Exome Aggregation Consortium) Lek et al.49 http://exac.broadinstitute.org/

1000G (1000 Genomes Project) Lek et al.49 https://www.internationalgenome.org/

gnomAD (Genome Aggregation Database) Karczewski et al.50 https://gnomad.broadinstitute.org/

GENCODE GRCh38.p13 genome Frankish et al.51 https://www.gencodegenes.org/human/

release_38.html

Gene Ontology Consortium resource Ashburner et al.,52

Aleksander et al.53
http://geneontology.org/

cBioPortal (TCGA Thyroid Carcinoma) Network CGAR,14Gao et al.,54

Cerami et al.55
https://www.cbioportal.org/

Oligonucleotides

Primer: TERTp forward:

5- TAATACGACTCACTATAGGGCAC

CCGTCCTGCCCCTTCACCTT-30

Koelsche et al.56 N/A

Primer: TERTp reverse:

50- GTAAAACGACGGCCAGGGCTTCC

CACGTGCGCAGCAGGA-30

Koelsche et al.56 N/A

Software and algorithms

Cutadapt (v2.10) Martin et al.57 https://cutadapt.readthedocs.io/en/v2.10/

index.html

FastQC Andrews et al.58 www.bioinformatics.babraham.ac.uk/

projects/fastqc

Burrows-Wheeler Aligner (v0.7.17-r1188) Li et al.59 https://bio-bwa.sourceforge.net/

GATK v. 4.1.8.1 McKenna et al.60 https://gatk.broadinstitute.org/hc/en-us/

sections/360009803432-4-1-8-1

STAR (v2.7.8a) Dobin et al.61 https://github.com/alexdobin/STAR

featureCounts (v2.0.2) Liao et al.62 https://www.rdocumentation.org/

packages/Rsubread/versions/1.22.2/

topics/featureCounts

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 (v1.30.1) Love et al.63 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

EnhancedVolcano (1.18) Blighe et al.64 https://bioconductor.org/packages/

release/bioc/html/EnhancedVolcano.html

Heatmap3 Zhao et al.65 https://github.com/slzhao/heatmap3

GSEA (v4.1.0) Subramanian et al.66 https://www.gsea-msigdb.org/gsea/

index.jsp

TIMER2.0 Li et al.67 http://timer.cistrome.org/

ggplot2 Wickham et al.68 https://ggplot2.tidyverse.org.

TIDE Jiang et al.47 http://tide.dfci.harvard.edu/

ComplexHeatmap Gu et al.69 https://github.com/jokergoo/

ComplexHeatmap

STAR-Fusion (v2.7.8a) Hass et al.70 https://github.com/STAR-Fusion/

STAR-Fusion/releases

Integrated Genomics Viewer Robinson et al.71 https://software.broadinstitute.org/

software/igv/

Panther Thomas et al.72 https://pantherdb.org/

Seurat 4.0 Hao et al.73 https://satijalab.org/seurat/

SpaCET Ru et al.74 https://github.com/data2intelligence/

SpaCET

maftools Mayakonda et al.75 https://github.com/PoisonAlien/maftools

brglm2 Kosmidis et al.76 https://github.com/ikosmidis/brglm2

Code for analysis and figure generation This paper https://doi.org/10.5281/zenodo.8229499
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vivian L.

Weiss (vivian.l.weiss@vumc.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d There are restrictions to the availability of patient clinical and sequencing data. This is a retrospective cohort, and it is not

possible to consent these patients with historic samples, particularly those with highly aggressive and rapidly lethal disease.

As such, the IRB has requested that we do not publicly share individual-level sequencing data from each patient. The data

is securely stored within a Vanderbilt patient data system. Aggregate-level data reported in this paper will be shared by the

lead contact (Dr. Vivian Weiss) upon request. Individual-level data is only available through collaboration following approval

of the lead contact and The Vanderbilt University Medical Center IRB. If the lead contact should leave the institution, collabo-

ration requests should be directed to the Pathology Department Chair (Dr. Alice Coogan, alice.coogan@vumc.org).

d Code for all analyses is available at the following link on GitHub: https://github.com/xgj797/Molecular-Signature-Incorporating-

Immune-Microenvironment-Enhances-Thyroid-Cancer-Outcome-Prediction, and in a frozen repository on Zenodo: https://doi.org/

10.5281/zenodo.8229499.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Following Institutional Review Board approval from Vanderbilt University Medical Center (VUMC) and the University of Washington

Medical Center (UWMC), all consecutive cases of advanced thyroid cancer (including well-differentiated tumors with distant metas-

tases, ATCs, and PDTCs) resected at VUMC between 10/14/2005 and 1/14/2020, and well-differentiated malignancies with distant

metastases at UWMCbetween 10/11/2002 and 7/14/2017were included in the study.We definewell-differentiated thyroid tumors as
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including Follicular Thyroid Carcinoma, FTC; Oncocytic Thyroid Carcinoma, OTC, Noninvasive Follicular Thyroid Neoplasm with

Papillary-like Nuclear Features, NIFTP, Encapsulated Follicular Variant Papillary Thyroid Carcinoma, EFVPTC, Papillary Thyroid Car-

cinoma, PTC, and Infiltrative Follicular Variant Papillary Thyroid Carcinoma, IFVPTC. All such cases of aggressive thyroid cancers

with sufficient FFPE tissues and tumor percentage were included in this study (N = 123 samples). Samples (collected during the

same data range) from age-matched patients with well-differentiated malignant thyroid lesions without distant metastases (N =

112 samples), multinodular goiters (N = 21 samples), patients with clinically diagnosed Hashimoto thyroiditis (N = 14 samples),

and benign neoplasms (N = 42 samples) were also included for comparison. In all, 312 samples from 251 different patients were

included in this study (VUMC,N = 292 samples andUWMN,N = 20 samples). Among the patients there are 163 females. For analyses,

samples were binned into non-neoplastic (MNG, HT), neoplastic (FA, OA), well-differentiated malignancies (FTC, OTC, EFVPTC,

IFVPTC, PTC), and transformed malignancies (PDTC, ATC). As NITFP is not yet clearly defined as either benign or malignant, it

was grouped with our well-differentiated malignancies. Diagnostic criteria are based on WHO and ATA guidelines. Each specimen’s

histopathology was reviewed by three board-certified pathologists (VW, MM, KE).

METHOD DETAILS

Clinical data
Manual chart review was performed (GX, ML, JG, EH) to gather additional/pertinent patient demographics (e.g., race), clinical his-

tories (e.g., prior exposures to ionizing radiation), treatment courses (e.g., types of surgeries), tumor details (e.g., size), and outcomes

(e.g., survival).

Patient outcomes and survival analyses
Responses to therapy (typically surgery and radioactive iodine) and patient outcomes were categorized in accordance with the latest

American Thyroid Association guidelines3 and are detailed below. Complex and equivocal cases were discussed (GX, ML, JG, VW)

until unanimous consensus was achieved. For aggressive disease classification, patients were grouped into the two categories

described below.

Indolent

Includes patients with no evidence of disease (NED), indeterminate disease, persistent disease, or recurrent disease in remission.

NED was defined by undetectable thyroglobulin (Tg) level, lack of circulating anti-thyroglobulin antibodies (aThyG), and a thyroid ul-

trasound indicating no evidence of disease. Patients without imaging follow-up were determined to be NED by laboratory testing (un-

detectable Tg or aThyG) alone. Imaging alone (without labs) was only sufficient for NED if the patient had a hemithyroidectomy or no

radioactive iodine. Indeterminate disease was defined by with stable/detectable Tg < 1.0 ng/mL, stimulated Tg < 10 ng/mL, positive

aThyG levels that were not increasing, imaging without Tg labs, and/or inconclusive imaging. Persistent disease includes stable

Tg > 1.0 ng/mL, stimulated Tg > 10 ng/mL, and/or a persistent lesion by imaging that did not increase in size over multiple years

of follow-up. Recurrent disease in remission includes malignancies that could be measured (via imaging or laboratory testing) after

a designation of NED but were treated with local intervention and followed by stable or decreasing tumor size or Tg.

Aggressive disease

Defined by local disease recurrence without stabilization of disease or remission following subsequent localized treatment;

increasing lesion size after initial therapy; biopsy demonstrating transformation to ATC; or distant metastasis after initial therapy

completion. Patients with transformed disease ormetastatic disease at presentation were categorized as having aggressive disease.

Survival analyses
For progression-free survival (PFS) analyses, the interval between the completion of initial therapy to the date of progression was

calculated. The date of disease progression was determined by the first date of either an increasing Tg (in an appropriately thy-

roid-stimulating hormone suppressed patient) or the increase in size of a lesion by imaging. All patients that were determined to

be progressive by Tg had subsequent imaging evidence of progressive disease. For patients without progression, the date of last

follow-up was used to determine PFS—and the data appropriately censored. Patients with no follow-up after therapy were omitted

from analysis. Overall survival similarly was calculated from the completion of initial therapy to the date of death or date of last follow-

up (also censored in the case of a living patient). For well-differentiated tumors, the date of initial therapy completion was either 1) the

date of post-operative radioactive iodine administration or 2) the date of surgery for low-risk tumors that did not require post-oper-

ative radioactive iodine (e.g., NIFTP). For undifferentiated tumors (PDTC and ATC), the date of surgery was used as the initial therapy

completion date.

DNA sequencing and mutational analysis
Nucleic acids were extracted using the COVARIS truXTRAC FFPE Total NA Kit per the manufacturer’s instructions (COVARIS, Wo-

burn,MA). DNA libraries were built using theNEBUltra II DNA Library Prep Kit per themanufacturer’s instructions (NEB, Ipswich,MA).

Sequencing was performed at the Vanderbilt Technologies for Advanced Genomics (VANTAGE) core facility on an Illumina NovaSeq

6000 platform using the IDT xGen Exome Research Panel (Illumina, San Diego, CA). Raw 150 bp paired-end reads were trimmed to

remove adapter sequences using Cutadapt (v2.10)57 and the quality of the reads before and after trimming was checked by
e3 Cell Genomics 3, 100409, October 11, 2023
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FastQC.(www.bioinformatics.babraham.ac.uk/projects/fastqc).58 Trimmed reads were aligned to hg38 genome using Burrows-

Wheeler Aligner (v0.7.17-r1188).59 GATK v. 4.1.8.1 was used to remove duplicate reads, perform base quality score recalibration

and variants discovery.60 Variant calling was first performed on individual samples using HaplotypeCaller in gVCF mode, all samples

were jointly genotyped, and variant filtering was performed with VQSR. Variant annotation was conducted with ANNOVAR (v2018-

04-16).77 Variants with minor allele frequency R0.1% in at least one of the ExAC (Exome Aggregation Consortium),49 1000G (1000

Genomes Project),49 and gnomAD (Genome Aggregation Database)50 databases were filtered out. BRAF, RAS, TP53, and PIK3CA

mutations were evaluated according to the standards and guidelines for the reporting of sequence variants in cancer by the Asso-

ciation for Molecular Pathology, American Society of Clinical Oncology, and the College of American Pathologists.78 Average depth

and coverage of whole exome sequencing was 157X and 91X, respectively.

TERT promoter alterations C228T and C250T were probed using Sanger sequencing with primers [5- TAATACGACTCACTA

TAGGGCACCCGTCCTGCCCCTTCACCTT-3’ (forward+T7 tail) and 50- GTAAAACGACGGCCAGGGCTTCCCACGTGCGCAGCAGGA-

3’ (reverse+M13F tail)]56and theHotStarTaqDNAPolymerasekit (QIAGEN,Hilden,Germany).Thermalcyclingconditionswereas follows:

95�C (15 min), followed by 35 cycles of 94�C (30 s), 56�C (30 s), and 72�C (20 s), followed by 72�C (10 min) and 4�C hold. Purified PCR

products were analyzed using Sanger sequencing (GENEWIZ, South Plainfield, NJ).

RNA sequencing and tumor-infiltrating immune cell deconvolution
Nucleic acids were extracted using the COVARIS truXTRAC FFPE Total NA Kit as above (COVARIS, Woburn, MA). Illumina TruSeq

mRNA sequencing libraries were prepared and sequenced at VANTAGE on a NovaSeq 6000 platform Raw (Illumina, San Diego, CA).

Raw 150 bp paired-end reads were trimmed to remove adapter sequences using Cutadapt (v2.10)57 and aligned to the GENCODE

GRCh38.p13 genome51 using STAR (v2.7.8a).61 GENCODE v38 gene annotations were provided to STAR to improve the accuracy of

mapping. Quality control on both raw reads and adaptor-trimmed reads was performed using FastQC.58 featureCounts (v2.0.2)62

was used to count the number of mapped reads to each gene. Significantly differential expressed genes with FDR-adjusted p value

<0.05 and absolute fold change >2.0were detected by DESeq2 (v1.30.1)63 and visualizedwith R package EnhancedVolcano (1.18).64

The R package Heatmap365 was used for cluster analysis and visualization. Gene Ontology was performed on differentially ex-

pressed genes using the Gene Ontology Consortium resource.52,53 Gene set enrichment analysis was performed using GSEA

(v4.1.0)66 on the msigdb v7.1 database. TIMER2.0 (http://timer.cistrome.org/), a web-based deconvolution program capable of esti-

mating tumor-infiltrating immune cells based on gene expression profiles across diverse cancer types67 was used. TIMER 2.0 was

run using THCA (Thyroid Carcinoma) as the cancer type gene signature. TIMER 2.0 immune deconvolution scores used include those

fromCIBERSORT-Abs,79 EPIC,79 andMCPCOUNTER.80 Descriptive results were plotted using the R package ggplot2.68 In addition,

we used the computation tool TIDE (http://tide.dfci.harvard.edu/)47 to estimate immune checkpoint blockade response based on

gene expression data. The TIDE response prediction module was run using the following settings: Cancer type = Other, Previous

Immunotherapy = No. TIMER and TIDE score heatmaps were generated using R package ComplexHeatmap.69

Fusion analysis
The STAR-Fusion (v2.7.8a) pipeline70 was used to align and map paired-end RNA-seq reads to the human genome (GRCh38_gen-

code_v37) using parameters optimized to capture fusion transcripts.81 FusionInspector, a component of the STAR-Fusion suite was

used to validate fusion transcripts in silico. Manual review of RNA data was performed using the Integrated Genomics Viewer71 and

two additional RET fusions were identified by blasting soft clip reads to the human genome.

The following parameters were used to run STAR-Fusion:

STAR –genomeDir –outReadsUnmapped None –chimSegmentMin 12 –chimJunctionOverhangMin 8 –chimOutJunctionFormat 1 –

alignSJDBoverhangMin 10 –alignMatesGapMax 100000 –alignIntronMax 100000 –alignSJstitchMismatchNmax 5 -1 5 5.

–runThreadN8 –outSAMstrandField intronMotif –outSAMunmappedWithin –alignInsertionFlushRight –alignSplicedMateMapLminO-

verLmate0 –alignSplicedMateMapLmin30–outSAMtypeBAMUnsorted–outSAMattrRGline ID:GRPundef –chimMultimapScoreRange

3 –chimScoreJunctionNonGTAG �4 –chimMultimapNmax 20 –chimNonchimScoreDropMin 10.

–peOverlapNbasesMin 12 –peOverlapMMp 0.1 –genomeLoad NoSharedMemory –twopassMode Basic.

Command.

STAR –genomeDir.

–outReadsUnmapped None.

–chimSegmentMin 12.

–chimJunctionOverhangMin 8.

–chimOutJunctionFormat 1.

–alignSJDBoverhangMin 10.

–alignMatesGapMax 100000.

–alignIntronMax 100000.

–alignSJstitchMismatchNmax 5 -1 5 5.

–runThreadN 8.

–outSAMstrandField intronMotif

–outSAMunmapped Within.
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–alignInsertionFlush Right.

–alignSplicedMateMapLminOverLmate 0.

–alignSplicedMateMapLmin 30.

–outSAMtype BAM Unsorted.

–outSAMattrRGline ID:GRPundef.

–chimMultimapScoreRange 3.

–chimScoreJunctionNonGTAG �4.

–chimMultimapNmax 20.

–chimNonchimScoreDropMin 10.

–peOverlapNbasesMin 12.

–peOverlapMMp 0.1.

–genomeLoad NoSharedMemory

–twopassMode Basic.

Calculation of RNA scores
BRAF-RAS score calculation

TheBRAF-RAS score (BRS) was calculated froma previously defined list of 71 genes14 using bulk RNA-sequencing data transformed

into Z score format. 69 of the 71 genes in the originally published score were covered in the sequencing data and were used here. In

brief, BRAF-mutant and RAS-mutant centroids were calculated and used to generate a BRS for each sample.

Calculating BRAF-mutant and RAS-mutant centroids

BRAF-mutant ([B]) and RAS-mutant ([R]) centroids were calculated from PTCs and FVPTCs with BRAF V600E and RAS mutations

(NRAS, HRAS, or KRAS). The centroids consisted of vectors of the median expression of each of the 69 BRS genes for each group

(BRAF or RAS mutant).

Calculating BRS for each sample

For each sample, a vector containing the expression of the 69 BRS genes was generated ([S]). The normalized squared Euclidean

distance between [S] and [B] and [S] and [R] was calculated. Finally, the BRSwas calculated as the difference between these normal-

ized squared Euclidean distances such that a negative value indicated a BRAF-like sample and positive value a RAS-like sample, as

shown below. Note that j½S� � ½B�j and j½S� � ½R�j indicate normalized squared Euclidean distances.

BRSðSÞ = j½S� � ½B�j � j½S� � ½R�j

Thyroid differentiation score calculation
The thyroid differentiation score, or TDS, was calculated from themRNA expression levels of 16 genes related to thyroid function and

metabolism, as previously described.14 To calculate TDS, the variance stabilized expression data were subtracted by the median

across all tumor samples. Next, the TDS was calculated from the average values across the 16 genes in each tumor.

ERK activity score calculation
The ERK score was calculated as previously described14 using the expression of 48-genes previously shown to be down-regulated

with MEK inhibition (set A) and 4 genes up-regulated with MEK inhibition (set B).82 In brief, expression data for set A and set B across

the cohort (excludingMNGandHT) was log2 transformed, and theZ score of the expression of each gene for each samplewas calcu-

lated. For each sample, the Z-scores of set A genes were summed, and the Z-scores of set B genes were summed. The Z score sum

of set B genes (up-regulated with MEK inhibition) was subtracted from the Z score sum of set A genes (down-regulated with MEK

inhibition) to achieve a final ERK score for each sample.

PI3K-AKT-mTOR (PI3K) score calculation
The hallmark PI3K-AKT-mTOR signaling gene set83 was used to calculate a PI3K activity score. Across our cohort of RNA-

sequencing data (MNG and HT excluded), the expression data for each of the 105 genes in the score was log2 transformed and

Z-scores were calculated. For each sample, the activity score was calculated as the sum of the Z-scores for the 105 genes in the

hallmark PI3K-AKT-mTOR signaling gene set.

MAP score calculation and enrichment analysis
MAP score was calculated from a list of 549 genes that were upregulated > 4-fold with an adjusted p value of <0.05 in aggressive

patient samples (relative to indolent) and > 2-fold with an adjusted p value of <0.05 inBRAF-like (relative toRAS-like) patient samples.

Across our cohort of RNA-sequencing data (MNG, FA, OA, HT excluded), the expression data for each of the 549 genes was log2

transformed and Z-scores were calculated. For each sample, the MAP score was calculated as the average Z score for the 549

genes. Enrichment analysis of the 549 MAP score gene list was performed using a Panther overrepresentation test (https://

pantherdb.org/).72
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Analysis of TCGA
Bulk RNA-sequencing, mutation, and clinical data from TCGA encompassing 496 PTCs14 was downloaded from cBioPortal.54,55

The clinical data included pre-calculated BRS and BRAF-like/RAS-like designations, disease free survival, and overall survival

data. RNA gene-level expression values were downloaded from cBioPortal in RNA-Seq by Expectation Maximization (RSEM)

and RSEM Z score formats.84 MAP score was calculated for TCGA samples as the average Z score across 520 genes upregulated

in BRAF-like and aggressive lesion samples in our cohort. Twenty-nine genes were excluded from the original 549 gene list

because they were not covered in the TCGA sequencing data. TIMER 2.0 immune deconvolution data for TCGA samples, con-

taining TIMER, CIBERSORT-Abs,79 EPIC,79 and MCPCOUNTER80 algorithms, was downloaded from timer.cistrome.org.67 For Tu-

mor Immune Dysfunction Exclusion (TIDE) analysis,47 RSEM formatted expression data were log2 transformed and the log-fold

change ratio was calculated for each gene in each sample. A log-fold change expression matrix was uploaded to TIDE for

response prediction.

Multiplex immunofluorescence (IF) of formalin-fixed paraffin-embedded (FFPE) tissue
Data generation

Five mm ATC tissue sections were cut from 33 FFPE blocks and stored at �20�C. Tissue sections were thawed overnight at room

temperature and heated for 1 h at 60�C. Tissue sections were deparaffinized with xylene (23 15 min), ethanol (100% 23 5 minutes,

95% 13 5minutes), and water (5 min) then washed with PBS. Antigen retrieval was performed by heating slides for 45 min in sodium

citrate buffer (pH 6.0) in a rice cooker followed by 30 min at room temperature. Tissues were washed with PBS and blocked for 2 h

with 10% goat serum in PBS (blocking buffer). Primary antibodies (Abcam ab207178 recombinant rabbit monoclonal anti-fibroblast

activation protein alpha (FAP) IgG, clone EPR20021, 1:100; Invitrogen MA5-16868 rat monoclonal anti-MRC1 IgG2a, clone MR5D3,

1:25) were diluted in blocking buffer and incubated on tissue sections at 4�C for 16 h (Abcam, Cambridge, UK; Thermo Fisher, Wal-

tham, MA). Tissue sections were washed with 0.05% Tween 20 in PBS. Secondary antibodies (Invitrogen A-21245 polyclonal goat

anti-rabbit IgG Alexa Fluor 647 1:150; Abcam ab6953 polyclonal goat anti-rat IgG Cy3 1:150) and conjugated primary antibodies

(eBioscience 53-9003-82mousemonoclonal anti-pan cytokeratin IgG1 AF488, clone AE1/AE3, 1:100) were diluted in blocking buffer

containing Hoechst 33342 nuclear stain (1:1000) and incubated on tissue sections at 37�C for 1 h (Abcam, Cambridge, UK; Thermo

Fisher, Waltham, MA). 12 representative 20X and 12 representative 60X images were taken of each tissue section on a Nikon Spin-

ning Disc confocal microscope.

Data analysis
Representative multiplex immunofluorescence images were scored by a practicing pathologist (VW). For each ATC tissue section,

FAP staining of non-malignant cells were scored for intensity (0–3) and frequency (0–3). An overall FAP staining score was calculated

as the product of the intensity and frequency scores (0–9). FAP staining scores of 0–1were categorized as low. FAP staining scores of

greater than 1 were categorized as high. The number of non-malignant MRC1 stained cells was counted on 12 20X images for each

tissue section. An average of less than 1 MRC1+ cell per 20X field was categorized as low. Greater than 1 MRC1+ cell per 20X field

was categorized as high.

Spatial transcriptomics for FFPE
The Visium FFPE platform was used to generate spatial transcriptomics data (10x Genomics, Pleasonton, CA).

Slide preparation

8 FFPE blocks of thyroid carcinomas with ATC histology were selected for Visium analysis. Following pathologist review (VW), 5 mm

sections up to 6 mm 3 6 mm in size were cut onto a Visium Gene Expression Slide (Visium Spatial Gene Expression Slide Kit, PN-

1000188). After sectioning, the slide was incubated at 42�C and then stored in a desiccator until use.

Data generation

Following manufacturer’s protocols (Visium FFPE 10X Genomics), samples were deparaffinized, stained (hematoxylin and eosin),

and scanned at 20X. 3 of 8 ATCs were stained with hematoxylin only due to a supply chain shortage of eosin. The Visium Human

Transcriptome Probe Set v1.0 was hybridized to samples overnight at 50�C. Following RNA digestion and tissue permeabilization,

sequencing libraries were prepared per manufacturer’s protocols. Sequencing was performed at a depth of >40,000 reads per spot,

and >150 million reads per sample using the NovaSeq 6000 platform (Illumina, San Diego, CA).

Data analysis

Visium sequencing data was pre-processed with Space Ranger 2.0.0 (10X Genomics). Analysis of Space Ranger outputs was per-

formed with Seurat 4.0.73 In brief, Seurat 4.0 was used to perform normalization, dimensionality reduction, and clustering. Dimen-

sionality was determined by elbow plot. For clustering, resolution was set to 0.2. Designation of ATC histology was done by pathol-

ogist review (VW). Deconvolution of immune cell frequencies within individual capture areas was performed with the R package

SpaCET.74 For determining capture area malignant cell fraction, the SpaCET PANCAN setting was chosen. ATC classification

was based on current standard-of-care clinical practice as outlined by theWHOandATA guidelines andwas reviewed by a practicing

pathologist (VW). Individual Visium samples were determined to be MAP-high or MAP-moderate based on the MAP score of the

associated bulk RNA sequencing sample.
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Oncoplots were generated with the R packages maftools75 and ComplexHeatmap.69 Kaplan-Meier survival curves were compared

and tested using the log rank test. PFS time and overall survival time were calculated as described in survival analyses methods

above. Continuous outcomes were summarized by group with boxplots and tested using Wilcoxon rank-sum test. Kruskal-Wallis

test with subsequent pairwise Wilcoxon rank-sum tests with Bonferroni’s correction was used when comparing more than two

groups. All statistical tests are two-sided unless otherwise specified. Logistic regression models were used to evaluate the associ-

ation between aggressive disease and each predictive score. Penalized maximum likelihood with Jeffreys-prior penalty was used to

allow for less biased and more stable estimation to account for the low number of events in some strata (R package brglm2).76 Area

under the receiver operating characteristic curve (AUC) and corresponding 95% confidence interval (CI) were computed to assess

the discrimination ability of a fitted model. All statistical analyses were performed in R version 4.1.2 (R Foundation, Vienna, Austria).
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