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Abstract: Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple
histological subtypes. Molecular diversity has been shown to occur within specific histological
subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as
within individual tumors. Recent advances in the molecular characterization of epithelial ovarian
cancer tumors have provided the basis for a simplified classification scheme in which these cancers
are classified as either type I or type II tumors, and these two categories have implications regarding
disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation
sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of
ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade
serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that
may be associated with development of chemoresistance. Potential therapeutic targets have been
identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of
a number of specific targeted therapies have been evaluated or are currently being studied for the
treatment of women with this disease.
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1. Introduction

Ovarian cancer is the leading cause of gynecologic cancer death in developed countries and
often presents at an advanced stage [1]. The current standard-of-care for the treatment of the
majority of patients with advanced ovarian cancer involves cytoreductive surgery and platinum-based
chemotherapy [2]. Despite high response rates for many patients receiving initial chemotherapy,
most patients with advanced ovarian cancer ultimately develop recurrent disease that is resistant
to chemotherapy. Alternative approaches to the diagnosis and treatment of patients with ovarian
cancer are, therefore, urgently needed. This review focuses on recent advances in the molecular
characterization of ovarian cancer and the implications for its earlier detection as well as for selection
of therapy in patients with refractory or recurrent disease.
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2. Ovarian Cancer Screening

Currently, there is no established screening test for ovarian cancer, thereby hindering early stage
detection of this disease. An assessment of ovarian cancer screening conducted in 1998 by the National
Health Service Health Technology Assessment Programme based on a review of 25 ovarian cancer
screening studies was that the routine use of cancer antigen 125 (CA125) serum testing and transvaginal
ultrasound was unwarranted [3]. While some evidence suggested that these modalities may be capable
of detecting ovarian cancer at an earlier stage in asymptomatic women, the recommendation against
routine screening was based on the absence of randomized clinical trials investigating this approach, as
well as the lack of evidence regarding its associated benefits, harms and costs. Subsequently, publication
of the results of the ovarian arm of the randomized, controlled Prostate Lung Colorectal Ovarian
(PLCO) study comparing serum CA125 testing plus transvaginal ultrasound with no screening in over
78,000 women aged 55 to 74 years did not show an ovarian cancer specific survival benefit associated
with ovarian cancer screening [4], even with extended follow-up of a median of 15 years [5]. Recently,
results from the large UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) study have
been reported [6]. In this study of over 202,000 postmenopausal women aged 50 to 74 years, subjects
were randomly assigned in a 1:1:2 ratio to ovarian cancer screening using a multimodal strategy (MMS)
involving serum CA125 testing followed by transvaginal ultrasound as a second-line test in women
with serum CA125 values exceeding a pre-established cutoff point, transvaginal ultrasound alone, or
no screening [6]. While the primary analysis of the UKCTOCS study data did not reveal a significant
reduction in mortality with ovarian cancer screening, a comparison of the MMS and no screening arms
showed a trend for decreased mortality in the former group that emerged after year seven. In this
context, it is worth noting that insight into the molecular characteristics of ovarian cancer oncogenesis
has the potential to enhance early detection of ovarian cancer through multiple approaches, such as
the identification of possible precursor lesions, as well as other serum biomarkers (e.g., circulating
cell-free DNA or microRNA) in women at high risk for the disease; these topics will be addressed in
more detail in subsequent sections.

3. Ovarian Cancer as a Heterogeneous Disease

3.1. Type I and II Epithelial Ovarian Cancers

On both histologic and molecular levels, it is becoming increasing clear that ovarian cancer is
a clinically diverse and morphologically and molecularly heterogeneous disease [7]. Although the
majority of ovarian cancers are classified as epithelial cancer, the histological subtypes of epithelial
ovarian cancer include serous, endometrioid, clear cell, mucinous, malignant Brenner tumors, and
mixed histologies, with over two-thirds of cases classified as having serous histology (Figure 1) [8,9].
The other histological subtypes of epithelial ovarian cancer are considerably less common compared
with high-grade serous carcinoma, although the incidence of ovarian clear cell carcinoma has been
reported to be higher in Japan compared with the results of studies conducted on populations in the
U.S. and Canada [10–13].

Traditionally, high-grade serous carcinoma, a common and typically aggressive form of
ovarian cancer, has been considered to arise from a well differentiated, low-grade form of serous
carcinoma [14,15]. However, recent advances in tumor molecular characterization correlated with
findings from clinicopathologic and molecular characterizations of ovarian cancers have revealed that
epithelial ovarian cancer can be defined by two distinct groups termed type I and type II carcinomas
(Figure 2) [14–18].
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Figure 1. (A) Histological subtypes of ovarian cancer; and (B) traditional epithelial ovarian cancer 
classification paradigm based on tumor histology and grade (prevalence of histological subtypes 
from: McCluggage et al. [8]).  

 
Figure 2. (A) Histological subtypes of ovarian cancer; and (B) widely accepted epithelial ovarian 
cancer classification paradigm based on clinicopathologic and molecular evidence that type I and type 
II tumors develop through different pathways (Kurman et al. [18]). * Indicates rare tumor; † Mucinous 
and malignant Brenner tumors are considered to be possible exceptions that may arise from 
transitional cells at or close to the junction of the fallopian tube and the peritoneum.  

Figure 1. (A) Histological subtypes of ovarian cancer; and (B) traditional epithelial ovarian cancer
classification paradigm based on tumor histology and grade (prevalence of histological subtypes from:
McCluggage et al. [8]).
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Figure 2. (A) Histological subtypes of ovarian cancer; and (B) widely accepted epithelial ovarian cancer
classification paradigm based on clinicopathologic and molecular evidence that type I and type II
tumors develop through different pathways (Kurman et al. [18]). * Indicates rare tumor; † Mucinous
and malignant Brenner tumors are considered to be possible exceptions that may arise from transitional
cells at or close to the junction of the fallopian tube and the peritoneum.
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These studies have shown that low-grade serous carcinoma is unlikely to be a precursor lesion
for high-grade serous carcinoma; rather, the two conditions are generally believed to be separate
diseases characterized by differing patterns of genomic variation, with distinctly different prognostic
implications [14,15,18]. Using this newer paradigm, low-grade serous carcinoma is classified as a type
I carcinoma. Type I lesions are generally characterized as having a more indolent clinical course and a
relatively stable genomic profile [15,18]. High-grade serous carcinoma, on the other hand, is classified
as a type II carcinoma and associated with a more aggressive clinical course [15,18].

This new classification scheme not only facilitates more accurate characterization of disease
and prediction of patient prognosis, it also provides insight into the mechanisms underlying the
development of epithelial ovarian cancers. For example, most type I tumors are believed to arise from
endometriosis or borderline serous tumors whereas type II tumors are generally believed to principally
originate in the fallopian tube [8,14,15,18]. This latter finding is consistent with the advanced stage
at which high-grade serous carcinomas are typically detected, and has implications regarding earlier
detection of this form of ovarian cancer.

3.2. Molecular Classification and Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis

Molecular studies have uncovered a wide range of genomic variability associated with different
histological subtypes of epithelial ovarian cancer, but also have been fundamental to providing the
basis for a more simplified approach to organizing these cancers with respect to clinical course and
disease origin [15,18]. For example, the more indolent type I tumors, with the possible exception of
ovarian clear cell carcinoma, are often characterized by mutations in regulators of the mitogen-activated
protein kinase (MAPK) pathway (e.g., KRAS or BRAF), as well as a number of other genomic variants
(Table 1) [15,18–37].

Table 1. Type I ovarian cancers: Frequencies of selected potentially pathogenic genomic alterations.

Gene Alterations Low-Grade
Serous Cancer

Ovarian Clear
Cell Carcinoma Endometrioid Mucinous

Mutations

BRAF 33% a; 38% b; 16% c 0% e; 1% f 24% a 0% k; 23% l; 5% m;
KRAS 19% b; 35% a; 21% c <1% a; 7% f <1% a 50% k; 68% n; 65% m

PIK3CA 11% b 25% e; 33% f 12% e 14% m

PTEN 20% d 0% e; 5% f 14% j; 31% e 3% m

ARID1A – 46% g; 57% h 30% g 9% l

CTNNB1 – 0% e; 3% f 23% e; 24% j 5% m

CDKN2A – – – 19% m

TP53 – – – 57% m; 52% l

Copy number alterations

ERBB2 (HER2; gain) – 14% i – 12% m; 19% o

a Singer et al. [29]; b Jones et al. [20]; c Hunter et al. [32]; d Landen, et al. [23]; e Willner et al. [25]; f Kuo et al. [24];
g Wiegand et al. [27]; h Jones et al. [26]; i Tan et al. [22]; j Catasus et al. [34]; k Gemignani et al. [30];
l Ryland et al. [35]; m Mackenzie et al. [36]; n Cuatrecasa et al. [31]; and o Angelesio et al. [37]; HER2: human
epidermal growth factor receptor 2; – Dashed lines indicate that data are unavailable or not included.

More specifically, in addition to activating mutations in either KRAS or BRAF, particularly in
low-grade serous, endometrioid tumors, and mucinous tumors, alterations of genes encoding β-catenin
(e.g., CTNNB1), CDKN2A, PIK3CA, and PTEN have also been found in a number of studies of type I
lesions; mutations in TP53 are rarely seen in these tumors, with the exception of mucinous carcinoma
in which TP53 mutations occur relatively frequently (Table 1) [15,18,21,24,25,29,33–36]. Although type
I ovarian cancers have been less well characterized by high throughput sequencing studies compared
with type II tumors, the findings of these studies have supported the existence of genetic heterogeneity
between and within each ovarian cancer histological subtype classified as type I ovarian cancer.
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For example, a number of studies have revealed a high frequency of inactivating mutations in ARID1A
(a tumor suppressor gene involved in chromatin remodeling) in ovarian clear cell carcinomas [26,27],
and amplification of ERBB2 (gene encoding for HER2) in 19% and 14% were reported in mucinous
tumors and clear cell carcinomas of the ovary, respectively [22,37]. In addition, recent DNA sequencing
studies have revealed the presence of somatic and germline mutations in homologous recombination
genes in non-serous ovarian cancers, including some type I lesions; these included somatic mutations
in BRCA1, BRCA2, CHEK2, ATM, and germline mutations in BRCA1, BRCA2, RAD51D, CHEK2 and
BRIP1, although BRCA1/2 alterations were less common compared with serous ovarian cancers [38–40].
In one study, a loss of function in at least one homologous recombination gene occurred in 28% of
non-serous cases [38]. In contrast, high throughput sequencing studies of the more clinically aggressive
type II tumors have generally revealed a high degree of genomic/chromosomal instability, and are
characterized by nearly ubiquitous mutations in TP53 (Table 2) [14–16,18]. In fact, a careful review of
the few reported cases of TP53 wild-type high-grade serous ovarian cancer from the TCGA showed
that the majority of these tumors were not actually pure high-grade serous ovarian carcinoma [41].
In addition, high rates of somatic and germline genomic defects in BRCA1/2 and other homologous
recombination genes overall, as well as a high percentage of gene copy number variations have been
reported in high-grade serous ovarian cancer (Table 2) [16,38–40].

Table 2. Selected genomic alterations and their frequencies in high-grade serous ovarian carcinoma
from the TCGA a.

Gene Frequency of Mutations Frequency of Copy Number Alterations b

TP53 96% 0.9%
BRCA1 c 12% 0.6%
BRCA2 11% 2%
MYC 0% 31%

MECOM 0.6% 22%
CCNE1 0% 20%
PRKCI 0.6% 19%
EIF5A2 0% 18%
PIK3CA 0.6% 17%

NOTCH3 0.9% 11%
KRAS 0.6% 11%
RAB25 0% 7%
AKT2 0% 6%

AURKA 0% 3%
PIK3R1 0.3% 2% d

AKT1 0% 3%
ERBB2 0.9% 2%

KIT 2% 1%
FGF1 0% 1%
EGFR 2% 0.4%
BRAF 0.6% 5%
PTEN 0.6% 6% d

RB1 2% 7% d

NF1 4% 6% d

ETV4 0% 0.5%
FOXM1 0% 5%

LSR 0% 8%
CD9 0.3% 6%

RAB11FIP4 0% 3% d

FGFRL1 0% 3%
a The Cancer Genome Atlas Research Network [16]; b Other genes with copy number alterations exceeding
a frequency of 15% include NDRG1, EPPK1, PLEC, RECQL4, PTK2, EXT1, and RAD21; c Promoter
hypermethylation is also present in 12% of BRCA1; and d Represented by all or mostly all copy number deletions.
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Although assignment of epithelial ovarian cancer tumors to either type I or type II categories is
currently done on the basis of disease histology and tumor grade, it is reasonable to expect that evolving
molecular analyses made possible by more sophisticated DNA and RNA sequencing technologies will
continue to provide a more accurate basis for tumor classification in the future, and may further refine
the classification of ovarian cancers according to molecular characteristics, leading to more detailed
models of the disease. For example, genomic profiling is likely to be very helpful in further classifying
ovarian tumors designated as undifferentiated or mixed histology according to histopathological
analyses. Furthermore, advanced molecular profiling technologies are likely to serve as the basis for
validating the sites of origin of high-grade serous ovarian cancers. More specifically, serous tubal
intraepithelial carcinomas (STICs), occurring within the fallopian tubes, are being closely scrutinized
as possible precursor lesions of high-grade serous ovarian cancer [7,18,42], and the finding that TP53
mutations are common in these lesions, and may represent a very early driver mutation, provides
support for this proposal [42,43]. Nevertheless, whether STICs represent the sole source of high-grade
serous ovarian cancer is still being investigated [44–46].

3.3. Inter- and Intratumoral Heterogeneity in Ovarian Cancer

As previously detailed, molecular characterization of ovarian cancer specimens has uncovered a
wide range of tumor heterogeneity within epithelial ovarian cancer (e.g., inter-patient heterogeneity)
that extends to tumors of the same histological subtype. In addition, these types of studies have also
demonstrated the existence of both intra- and intertumoral heterogeneity at the level of the individual
patient, a phenomenon that has also been observed in other tumor types [47]. Synchronous ovarian
cancers that are separated in space (e.g., primary and metastatic lesions) and have distinct molecular
profiles are representative of spatial intertumoral heterogeneity. Intratumoral heterogeneity is another
example of spatial heterogeneity and is likely to occur through subclonal tumor evolution [48–50].
Temporal heterogeneity in the molecular profiles of ovarian cancer tumors can also occur. For example,
changes in the molecular profiles of ovarian cancer tumors may occur over time (e.g., at diagnosis vs.
relapse), probably in response to the selection stress of specific therapeutic regimens [50,51].

Next-generation/high-throughput sequencing has been used to investigate tumor evolution
of specimens of high-grade serous ovarian cancer [40,48,49,51–53], as well as non-serous ovarian
cancer lesions [40]. These studies have allowed for the construction of phylogenetic trees for the
assessment of evolutionary patterns representing the intrinsic diversity of subclonal populations
within treatment-naive ovarian cancer tumors and, in some cases, tumor evolutionary response to
treatment. Some of the major findings from these studies include the demonstration of significant
genomic variation between different regions of the same tumor and/or between synchronous primary
and metastatic tumors, even in untreated patients [40,48,49,52,53]. Furthermore, a high degree of
spatial heterogeneity was also observed in type I ovarian cancer tumors [39,40]. Regarding temporal
heterogeneity, some studies of high-grade ovarian serous cancer show that most clonal characteristics
evident in recurrent or metastatic disease are present as subclonal populations within the primary
tumor [40,49,52], although one study showed evidence of ongoing tumor evolution [51]. In this
context, it is worth noting that assays for sequencing tumor cell-free circulating DNA from the
bloodstream, while still evolving, have the potential to detect ovarian cancer at an early stage, to
provide simultaneous genomic information on multiple tumor foci and to reveal ongoing changes
in tumor genomic characteristics that occur following surgery and subsequent therapy, thereby
circumventing many of the limitations imposed by direct sampling of heterogeneous tumors [54].
In addition, next-generation/high throughput sequencing studies of STIC specimens may provide an
opportunity to uncover molecular processes involved in tumorigenesis and the development of tumor
heterogeneity in the setting of high-grade serous ovarian cancer [7].

Beyond DNA sequencing, the molecular characterization of epithelial ovarian cancers at the level
of mRNA expression has the potential to identify and quantify specific transcripts expressed within the
tumor specimen at a given point in time, and to provide an enhanced understanding of tumor evolution
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on a detailed molecular level. Gene expression profiling studies conducted within the last decade
have focused on the elucidation of differential gene expression between epithelial ovarian cancer and
normal ovarian tissue using RNA microarray analysis. These studies have provided evidence for the
existence of several distinct molecular subtypes of high-grade ovarian cancer (i.e., immunoreactive,
differentiated, proliferative, and mesenchymal) that correlate with clinical outcome [55–57]. A similar
type of assay was used to determine whether more than one molecular subtype could be detected
when tumor located in different anatomic locations (i.e., right and left ovary, omentum, and peritoneal
metastases to the bladder or uterus) in individual chemo-naive patients were compared [58]. While
most of the tumor subtypes were unchanged across anatomic locations, primary tumors classified
as proliferative subtype showed substantial heterogeneity across multiple anatomic sites. However,
results from another similar study revealed that individual high-grade serous ovarian tumor specimens
often expressed multiple subtype signatures [59]. One limitation of these types of studies is that they
provide only an indirect determination of the sequence of complementary DNAs (cDNAs) and cannot
detect novel genes and isoforms. More recently, a systematic analysis of the transcriptomes of a large
number of specimens of high-grade serous ovarian cancers acquired using high throughput RNA
sequencing (RNA-seq) was reported [60]. This study was designed to uncover specific mRNA isoforms
that can be classified as being highly or exclusively expressed in ovarian cancer, but not in normal
tissue, and the results revealed that the tumors were frequently characterized by expression of ETV4,
FOXM1, LSR, CD9, RAB11FIP4, and FGFRL1. However, the authors stated that further work is needed
before therapeutic applications of these findings are elucidated.

3.4. Molecular Classification of Chemoresistant Epithelial Ovarian Cancer

Genomic heterogeneity can occur as the result of selective pressures (e.g., chemotherapy) that
induce changes to the molecular landscape of epithelial ovarian tumors. A study involving whole
genome sequencing of specimens from patients with chemoresistant high-grade serous ovarian cancer
has recently been reported [61]. An advantage of whole genome sequencing over an approach focused
on sequencing exons only is that it detects structural aberrations that may occur outside coding
areas of the genome, such as translocations and rearrangements, including gene breakages and gene
fusions; it also provides a more direct and accurate assessment of copy number alterations as well
as of the exome itself. This study is particularly notable for two reasons: it is the first study to
completely characterize the genome of a common form of ovarian cancer that is associated with a
poor prognosis and very limited treatment options, and it provides more comprehensive insight into
the genomic heterogeneity of high-grade serous ovarian cancer that has evolved under the selective
influence of a specific type of therapeutic approach. The results of this study showed that acquired
resistance to chemotherapy is associated with inactivating gene breakages in tumor suppressors RB1,
NF1, RAD51B, and PTEN, and that resistant/refractory disease was frequently associated with a
relatively high frequency of CCNE1 amplification. Moreover, the low frequency of point mutations
observed in earlier next-generation/high throughput sequencing studies of high-grade serous ovarian
cancer was also observed in chemoresistant recurrent disease. In this study, which also involved
matched sequencing of germline DNA samples, there were cases of reversions in germline BRCA1
or BRCA2 mutations as well as loss of BRCA1 promoter hypermethylation in the setting of acquired
resistance. In addition, the ABCB1 gene encoding for the multi-drug-resistant protein 1 (MDR1)
was upregulated as a result of promoter translocation and fusion events in approximately 8% of
samples of patients with recurrent disease. The results of this study, as well as several other recent
studies utilizing next-generation/high throughput sequencing technology to characterize molecular
changes in high-grade serous ovarian tumors over time in response to the selective pressure of
chemotherapy suggest that both selection of subclones present in the primary tumor as well as
acquisition of a limited number of new genomic alterations may be associated with the development of
acquired chemoresistance in patients with recurrent high-grade serous ovarian cancer [40,49,51,61,62].
Interestingly, a very recent whole exome sequencing study of 31 high-grade serous ovarian cancer
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specimens did not show evidence of reactivating mutations in BRCA1 or BRCA2 in platinum-sensitive,
relapsed tumors after a single line of standard-of-care, platinum-based chemotherapy compared with
untreated primary tumors [62].

4. Implications of the Molecular Characterization of Epithelial Ovarian Cancer for Selection of
Targeted Therapy

One of the main objectives of developing a molecular classification of epithelial ovarian cancer that
reflects the underlying pathogenesis of the disease is to facilitate individualized treatment selection.
However, despite the complexity of ovarian cancer, the current standard-of-care for the treatment
of this disease is only minimally dependent on histological subtype or other disease classification
scheme, and platinum-based chemotherapy is currently recommended as primary systemic therapy
for most patients with epithelial ovarian cancer [2]. Furthermore, these treatment recommendations,
particularly with respect to type I ovarian cancers, are often based on limited evidence of efficacy.
Use of the dichotomous classification paradigm (i.e., types I and II), based in part on the genomic
characterization of ovarian cancers, has provided a possible pathophysiologic explanation for the
primary chemoresistance often associated with type I lesions which are considered to be more
genomically/chromosomally stable than type II ovarian cancer tumors [15–18]. Nevertheless, even
high-grade serous ovarian cancer, categorized as a genomically unstable, type II lesion [15–18],
frequently recur following an initial response to chemotherapy, and, as discussed above, some of
the molecular changes associated with this type of chemoresistance have recently been revealed
using next-generation/high throughput sequencing technology [49,51,61,62]. Furthermore, there is
no standard-of-care for the treatment of epithelial ovarian cancer that is either refractory or acquires
resistance to platinum-based chemotherapy.

Although molecularly-targeted therapies are urgently needed for patients with ovarian cancer,
these types of treatment approaches necessitate knowledge of one or more driver mutations that alter
the function of a limited number of cellular signaling pathways. In addition, selection of targeted
therapy is based on the premise that these genomic alterations are “actionable” in the sense that
they have significant therapeutic implications in subsets of patients with ovarian cancer and for
specific therapies. At the present time it is likely that only a limited portion of the highly complex
molecular information available through the detailed molecular characterization of epithelial ovarian
cancers by next-generation/high throughput sequencing will be translatable into targeted therapeutic
approaches [7]. Moreover, it is possible that the existence of multiclonal disease and tumor subclonal
evolution may serve to decrease the effectiveness of a particular targeted therapy if at least some of
the subclones are representative of true tumor heterogeneity and have additional genomic alterations
that drive tumorigenesis [63]. In addition, selection pressure exerted by treatment may alter the
relative proportions of subclonal populations, ultimately leading to treatment resistance [64]. Hence, a
therapeutic approach involving successively altered combinations of targeted agents that are selected
in response to dynamic molecular changes occurring in the tumor may be a more logical strategy in the
treatment of recurrent or chemoresistant ovarian cancer. Such a strategy is based on molecular findings
observed across serial biomarker assessments performed at tumor progression. Another potential
treatment approach may involve therapy directed against targets demonstrated, through longitudinal
sequencing studies of ovarian cancer tumors, to be less affected by clonal evolution and to occur more
consistently within those tumors.

Presently, only two targeted agents have received approval for the treatment of ovarian cancer
by the U.S. Food and Drug Administration and the European Medicines Agency (EMA). These
are the polyadenosine diphosphate (ADP)-ribose polymerase (PARP) inhibitor, olaparib, and the
antiangiogenic agent, bevacizumab, both of which are approved for patients with advanced disease
that has been pretreated with chemotherapy [65,66]; first-line bevacizumab for the treatment of ovarian
cancer has also been approved by EMA [67]. In addition trabectedin, an inhibitor of DNA replication
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and transcription and an inducer of DNA double-strand breaks and loss of homologous recombination
repair [68], is also available in Europe for the treatment of patients with advanced ovarian cancer [67].

4.1. Molecular Targets for Therapy in Ovarian Cancer

Multiple potential therapies targeted against specific molecular alterations are currently being
investigated for the treatment of ovarian cancer, although it is likely that they will be useful in particular
patient subsets only. The molecular targets and associated targeted therapies listed in the section below
illustrate the diversity of therapeutic approaches that are being evaluated in advanced ovarian cancer,
although this list is not meant to be an all-inclusive. Figure 3 depicts molecular pathway components
that are targeted by many of these therapies. Of note, crosstalk between the RAS/RAF/MEK/ERK
pathway and the mTOR pathway can also occur (i.e., ERK suppression of the tumor suppressor,
TSC1/2, indirectly stimulates mTOR complex 1) [69].

Figure 3. Molecular targets in ovarian cancer treatment; * Indicates inactive (phosphorylated)
form of cyclin-dependent kinase 1; Green arrows indicate stimulation while the red lines indicate
inhibition; 4E-BP1: eukaryotic translation initiation factor 4E-binding protein 1; AKT: protein kinase
B; CCNB: cyclin B; CDK1: cyclin dependent kinase-1; ERK: extracellular signal-related kinase; HER2:
human epidermal growth factor receptor 2; MEK: MAPK/ERK kinase; mTORC1: mammalian
target of rapamycin complex 1; mTORC2: mammalian target of rapamycin complex 2; PDK1:
phosphoinositide-dependent kinase-1; PI3K: phosphoinositol 3-kinase; RAF: a serine/threonine-specific
kinase; RAS: a member of a specific GTPase superfamily; Rheb: Ras homolog enriched in brain protein;
S6K1: S6 kinase beta-1; TSC1/2: tuberous sclerosis proteins 1 and 2; VEGF: vascular endothelial growth
factor; VEGFR: vascular endothelial growth factor receptor.
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4.1.1. BRCA1/2 Mutations

PARP inhibition has been shown to lead to an accumulation of DNA strand breaks, and is believed
to be particularly effective in patients with ovarian cancer who have mutations in the BRCA1 or BRCA2
tumor suppressor genes since those molecular alterations are also associated with impairment of
homologous recombination in DNA repair. More specifically, use of PARP inhibitors in patients with
tumors characterized by deficient homologous recombination is an example of synthetic lethality,
cell death resulting from a combination of mutations in two or more genes. In addition, there is
evidence that the combination of a PARP inhibitor with a platinum agent, which also damages DNA
and interferes with its repair, may provide another level of synergism [70,71].

Regulatory approval of olaparib for the treatment of advanced ovarian cancer is based on
results of a nonrandomized phase II trial of 298 patients with solid tumors and germline BRCA1
or BRCA2 mutations, including 193 patients with recurrent ovarian cancer [72,73]. In the subgroup
of patients with ovarian cancer, the majority of whom were heavily-pretreated with chemotherapy,
median progression-free survival (PFS) was seven months and median overall survival (OS) was 16.6
months [73]. Other PARP inhibitors in development for the treatment of patients with ovarian cancer
include veliparib, niraparib, and rucaparib [74,75]. More recently, the phase III ENGOT-OV16/NOVA
study investigated niraparib maintenance therapy or placebo in patients with platinum-sensitive
recurrent ovarian cancer previously treated with two or more platinum-based regimens who were
stratified according to whether they did or did not have a germline mutation in BRCA1/2 [76]. Although
the subgroup of patients with germline BRCA1/2 mutations experienced a substantial PFS benefit with
niraparib therapy compared with placebo (21.0 vs. 5.5 months; hazard ratio = 0.27; 95% confidence
interval (CI), 0.17 to 0.41; p < 0.001), perhaps even more notable was the finding that in the niraparib
arm, the cohort of patients without a germline BRCA1/2 mutation also experienced a marked benefit
vs. placebo (median PFS 9.3 vs. 3.9 months; hazard ratio = 0.38; 95% CI, 0.34 to 0.61; p < 0.001).
In this latter group, niraparib-associated PFS benefit was more pronounced in patients with somatic
mutations in BRCA1/2 or other defects in homologous recombination, emphasizing the potential utility
of biomarkers other than BRCA1/2 in selecting patients for treatment with PARP inhibitors. However,
long-term benefit of niraparib was also observed in approximately 20% of the patients without either
of these biomarkers. Overall, niraparib was well tolerated although grade 3/4 hematologic toxicities
were observed in approximately 20% to 33% of patients receiving niraparib.

In this context, it is also worth noting the data from a recently published exploratory analysis
of patients enrolled in the phase III OVA-301 study investigating the use of pegylated liposomal
doxorubicin with or without trabectedin in patients with recurrent ovarian cancer. In this analysis,
the response rate, PFS and OS for the subgroup of patients with germline BRCA1 mutations in
the trabectedin arm were significantly higher compared with this subgroup of patients receiving
chemotherapy alone. However, in the subgroup of patients classified as BRCA1 wild-type, the
addition of trabectedin to chemotherapy was not associated with a difference in OS compared with
chemotherapy alone [77]. A phase III clinical trial is now underway to prospectively evaluate this
hypothesis [78].

4.1.2. VEGF Pathway

The molecular rationale for the use of antiangiogenic therapy is based on the results of studies
showing that increased levels of vascular endothelial growth factor (VEGF) in ovarian cancer were
associated with increased resistance to chemotherapy and a poorer prognosis [79]. Bevacizumab,
an anti-VEGF-A antibody, in combination with chemotherapy has been shown to increase PFS
compared with chemotherapy alone in patients with recurrent disease, although no OS difference
was observed between the two treatment arms [80–82]. Overall, bevacizumab has been shown to be
reasonably well-tolerated in heavily-pretreated patients with recurrent ovarian cancer [83]. In addition,
the combination of bevacizumab with upfront platinum-based chemotherapy followed by bevacizumab
maintenance therapy has also been associated with a PFS, but not an OS, benefit in the setting of
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advanced ovarian cancer [84–86]. The use of bevacizumab in combination with platinum-based
chemotherapy in the first-line setting or in combination with chemotherapy in pretreated patients
with recurrent disease is considered to be a possible treatment option, although not an essential
component of standard-of-care treatment [2]. In this context, it is worth noting the results of a
recent case-control study of 222 women with advanced ovarian cancer in which women treated
with first-line carboplatin/paclitaxel plus bevacizumab were matched with women treated with
first-line carboplatin/paclitaxel without bevacizumab [87]. While a seven-month PFS advantage was
observed in the patients treated with bevacizumab, this group also experienced more multifocal
disease at relapse, as well as a lower rate of secondary cytoreductive surgery, and a lower response
rate and a shorter time to progression for second-line chemotherapy. Future analyses of data from
the randomized clinical trials involving bevacizumab use in the first-line setting would be better able
to address potential confounding factors and should provide more insight into these observations.
There is retrospective evidence from the Gynecologic Oncology Group (GOG) study 0218 trial that
a phenotypic marker (i.e., ascites) is associated with significant PFS and OS benefit in women with
advanced ovarian cancer receiving bevacizumab-containing, first-line chemotherapy followed by
maintenance therapy with bevacizumab [88].

A current drawback with the use of antiangiogenic therapy is the lack of a molecular biomarker to
identify patients most likely to benefit from such an approach. However, recent studies investigating
response to bevacizumab in molecularly-defined subgroups of women with ovarian cancer have
provided initial support for the feasibility of such a molecularly-guided approach [89]. For example,
an evaluation of the gene expression profiles of patients with high-grade serous ovarian cancer enrolled
on the phase III ICON7 trial of woman with advanced ovarian cancer receiving first-line chemotherapy
with or without bevacizumab showed that the subgroup of patients with tumors characterized by
angiogenic gene repression and immune gene upregulation who received bevacizumab had worse
PFS and OS compared with those receiving chemotherapy alone, whereas a trend toward improved
PFS with the addition of bevacizumab was seen in the subgroup of patients with tumors characterized
by high expression of angiogenesis-related genes [90].

Tyrosine kinase inhibitors that specifically target the VEGF receptor or act as multi-targeted
receptor tyrosine kinase inhibitors, including cediranib, pazopanib, and sunitinib, are also under
investigation in the setting of advanced ovarian cancer [91]. For example, in a recently reported
phase III trial, patients with relapsed platinum-sensitive ovarian cancer were randomly assigned to
one of three treatment arms: platinum-based chemotherapy plus placebo followed by placebo only
maintenance therapy (arm A); cediranib plus platinum-based chemotherapy followed by placebo
only maintenance therapy (arm B); and cediranib plus platinum-based chemotherapy followed by
cediranib maintenance therapy (arm C) [92]. Median PFS in the three treatment arms was 8.7 months,
9.9 months, and 11.0 months, respectively, with a hazard ratio of 0.56 (95% CI, 0.44–0.72, p < 0.0001)
for the comparison of arms C and A, although toxicity was increased for patients receiving cediranib.
Interestingly, results from a recent phase II study have demonstrated that PFS in patients with
recurrent, platinum sensitive high-grade serous ovarian cancer was significantly longer (17.7 months vs.
9.0 months; hazard ratio = 0.42; 0.23–0.76; p = 0.005) in patients receiving the combination of cediranib
and olaparib compared with olaparib alone, suggesting that the two agents may act synergistically [93].

4.1.3. PI3K/Akt/mTOR Pathway

Alterations associated with genes encoding for components of the PI3K/Akt/mTOR signaling
network (e.g., PIK3CA and PTEN), a prototypic survival pathway, have been identified in type I and
type II tumors (Tables 1 and 2) [16,20,23–25,34–36]. Therapies directed against specific components
within this pathway have the potential to interrupt its constitutive signaling [17,94,95]. For example,
single-agent mTOR inhibition therapy, such as temsirolimus, has shown modest activity in epithelial
ovarian cancer [96–98]. However, genomic markers predictive of response to mTOR pathway inhibitors
across cancers are only beginning to emerge and have not been established [99,100]. Furthermore,
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inhibition of the mTOR pathway may be more effective when an mTOR inhibitor is administered in
combination with chemotherapy or another targeted agent, given the complexity of the mTOR pathway
which allows for its activation through multiple pathway components. A number of combination
therapy approaches involving this class of agents, including the combinations of everolimus and
letrozole and everolimus and bevacizumab, are under investigation in ovarian cancer [101–103].
In addition, PI3K and Akt inhibitors, acting upstream of mTOR inhibitors, are in clinical development
for the treatment of ovarian cancer and may have the potential to more effectively disrupt this
pathway [104,105]. For example, results of a phase I trial of perifosine, an Akt inhibitor, administered
in combination with docetaxel showed evidence of clinical activity with a good safety profile in patients
with platinum- and taxane-resistant or refractory epithelial ovarian cancer [106]. In addition, a recent
phase I study evaluating the combination of an Akt inhibitor, AZD5363, plus the PARP inhibitor,
olaparib, as a potential strategy for overcoming resistance to PARP inhibition showed responses in
a patient with BRCA1-mutant ovarian cancer and also in another with BRCA1/2 wild-type ovarian
cancer [105]. Beyond demonstrating the potential usefulness of an approach that simultaneously
targets these two molecular processes, the early results of this study suggest that a BRCA mutation
may not be the only a determinant of response for patients receiving this combination, and underscore
the importance of evaluating new targeted treatment approaches within the context of a clinical trial.
Finally, an early-phase clinical trial evaluating a dual mTOR1/2 inhibitor in combination with olaparib
in gynecologic cancer is also underway [107].

4.1.4. TP53 Mutations

The tumor suppressor p53 is involved in the regulation of response to stressors including oxygen
deficiency, activation of oncogenes, and DNA damage through control of a number of signaling
pathways involved in programmed cell death, cell cycle arrest, and cell aging [108]. The very high
rate of TP53 mutations observed in high-grade serous carcinoma make this genomic alteration a very
attractive potential therapeutic target (Table 1) [16].

A recent phase I study of AZD1775, an inhibitor of the Wee1 G2 checkpoint kinase, administered
as a single agent, demonstrated partial responses in patients with refractory solid tumors, including
a patient with BRCA1/2-mutated ovarian cancer [109]. Two randomized phase II clinical trials
investigating AZD1775 in combination with chemotherapy in patients with TP53-mutated epithelial
ovarian cancer have shown some promising anti-tumor activity for the combination [110,111].
The rationale for this approach is based on the roles played by p53 and Wee1 in the G1 and G2
DNA damage checkpoints, respectively [112]. Tumor cells with impairment in the G1 checkpoint
may be more vulnerable to AZD1775, especially when it is administered concomitantly with
chemotherapy [113]. In addition, a clinical trial of kevetrin, an activator of p53, has been conducted in
patients with advanced solid tumors [114].

Another novel method of targeting TP53 mutations involves inhibition of heat shock protein 90
(Hsp 90) which has been shown to form a stable complex with mutant p53, preventing the degradation
of the latter protein, thereby resulting in its accumulation [115,116]. A two-part, multicenter, phase
1/2 clinical trial evaluating the Hsp 90 inhibitor, ganetespib, as a single agent and in combination
with paclitaxel in patients with high-grade serous, high-grade endometrioid, or undifferentiated,
platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer is underway [117].

4.1.5. RAS/RAF/MEK/ERK Pathway

Although approaches to targeting components of the RAS/RAF/MEK/ERK pathway in epithelial
ovarian cancer have not been explored to a great extent, they may be particularly relevant to the
treatment of type I lesions given the relatively high frequency of KRAS and BRAF mutations found
in many of these tumors (Table 1). Results from an open-label phase II study of the MEK inhibitor,
selumetinib, in 52 patients with recurrent low-grade ovarian serous carcinoma showed an either an
objective response (15.4%) or stable disease (65%) in over 80% of patients [118]. In addition, selumetinib
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was well tolerated in this patient population. Nevertheless, results of an exploratory analysis revealed
that the BRAF and KRAS mutational status of the tumors did not appear to correlate with response
to selumetinib [118]. A recent planned interim analysis of data from the phase III MILO study of
the MEK inhibitor, binimetinib, in patients with low-grade serous ovarian cancer did not show a
significant difference in PFS compared with chemotherapy, although a tumor mutation in a component
of the RAS/RAF/MEK/ERK pathway was not an inclusion criterion for study enrollment [119,120].
A randomized phase II/III study of another MEK inhibitor, trametinib, compared with standard
therapy in women with recurrent or progressive low-grade serous carcinoma is underway, with plans
to characterize tumor mutational status and correlate it to treatment response [121].

4.1.6. Other Receptor Tyrosine Kinase Pathways: HER2

An understanding of the significance of HER2 expression in epithelial ovarian cancer is
evolving [122]. Rates of objective response in clinical trials of single agent trastuzumab, pertuzumab
or lapatinib in patients with advanced, refractory ovarian cancer have been modest, and no significant
change in median PFS was observed with the addition of pertuzumab to carboplatin/paclitaxel in
a randomized phase II study of patients with relapsed, platinum-sensitive ovarian cancer [123–126].
However, data from a phase II trial suggest that the combination of pertuzumab with gemcitabine is
active in patients with platinum-resistant disease [127]. In this context, it is worth noting the relatively
low frequency of ERBB2 amplification or mutation observed in high-grade serous ovarian cancer [16]
(Table 2). Furthermore, the higher frequencies of amplification in ERBB2 reported in some studies of
clear cell and mucinous carcinomas of the ovary suggest that anti-HER2 directed therapy may be more
beneficial in these subgroups (Tables 1 and 2) [22,37,122].

4.1.7. MicroRNAs

MicroRNAs (miRNAs) are short, non-coding RNAs that are thought to function as
posttranscriptional gene regulators that can either suppress or stimulate tumor growth [128].
Differential expression of miRNAs observed in some cancers, including ovarian cancer, compared
with normal tissue has led to the proposal that these molecules may contribute to tumorigenesis [128].
In one study, RNA microarray expression data from the TCGA were used to investigate correlations
between expression of specific miRNAs and mRNAs in ovarian cancer in order to identify potential
mRNA targets of miRNAs [129]. Specific miRNA-based signatures or networks have been identified
in epithelial ovarian cancers characterized by a poor prognosis, and have the potential to serve as
prognostic markers in both early and advanced stages of the disease [130–132]. In addition, stable
circulating cell-free miRNAs that closely mimic the miRNA profiles of tumor have been isolated
from the serum and plasma of women with ovarian cancer [133]. Furthermore, distinctly different
circulating miRNA signatures were observed in women with ovarian cancer compared with healthy
controls, suggesting that circulating miRNAs may be useful as markers for early detection, as well
as for disease prognosis [133,134]. Finally, therapeutic strategies involving either replacement or
suppression of specific miRNAs have been proposed, although there are currently no clinical trials
investigating miRNAs in ovarian cancer.

4.1.8. Immunologic Pathways

The concept of targeting the immune system to attack cancer cells has recently emerged
as a promising new avenue for the treatment of ovarian cancer. Immune cells can recognize
and destroy aberrantly proliferating cells, and this activity is modulated by immune checkpoints
expressed on T-cells [135,136]. Increased expression of inhibitory immune checkpoints in the tumor’s
microenvironment can restrain immunologic responses, enabling cancer cells to evade attack by the
immune system, thereby facilitating unrestrained cell growth [135,136].
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Data from a phase II trial examining the safety and efficacy of nivolumab, an antibody against the
programmed cell death-1 (PD-1) immune checkpoint, in 20 patients with platinum-resistant ovarian
cancer were recently published [137]. Treatment-related grade three and four and serious adverse
events occurred in 40% and 10% of patients, respectively. Fifteen percent of patients experienced
an objective response, the disease control rate was 45%, and median OS was 20.0 months. Tumor
specimens from the majority (80%) of patients enrolled in the study exhibited high expression of the
programmed cell death receptor-ligand 1 (PD-L1) which, when bound to PD-1, interferes with T cell
activation. However, 87.5% of the 16 patients who exhibited high programmed cell death-ligand 1
(PD-L1) expression levels, did not respond to nivolumab, indicating that high PD-L1 expression may
not be a sufficiently sensitive predictor of response to PD-1 inhibitors. Studies have suggested that
the presence of tumor infiltrating lymphocytes, high mutational burden within the tumor genome,
or mismatch repair defects may be additional factors to aid in the prediction of response to inhibitors
of immune checkpoints [138]. Other immune checkpoint inhibitors, including antibodies against
cytotoxic tumor lymphocyte antigen 4 (CTLA4), are also being evaluated for the treatment of patients
with ovarian cancer [135,139].

Alternative immune-based approaches in development for the treatment of ovarian cancer include
vaccines, cytokines, and adoptive T-cell therapy, a treatment involving lymphocyte transfusion [140].
As more information about the subset of genes involved in the molecular regulation of immune function
become available, it is likely that next-generation/high throughput sequencing will play an increasing
role in the selection of patients with ovarian cancer for therapy targeted to the immune system.

5. Conclusions

The high degree of heterogeneity associated with epithelial ovarian cancer has long been an
impediment to its effective characterization and to optimizing the treatment of patients with this
disease. However, molecular characterization of different histological subtypes of epithelial ovarian
cancer, including results of more recent studies utilizing next-generation/high throughput sequencing
technology, have facilitated the development of a more unified approach to the classification of
these tumors. In conjunction with multiple tumor sampling separated through space and time, this
technology is likely to be fundamental in uncovering evolutionary patterns involved in the etiology
of tumorigenesis in epithelial ovarian cancer, particularly the molecular processes underlying the
pathogenesis of high-grade serous ovarian cancer, as well as the site(s) of precursor lesions and the
basis for the development of metastatic disease.

The limited effectiveness of most single-agent targeted therapies evaluated thus far and
the absence of a standard-of-care for patients with advanced epithelial ovarian cancer that is
resistant/refractory to platinum-based chemotherapy represent major unmet needs. While the recent
strides made in uncovering molecular details of epithelial ovarian cancer have been considerable,
the clinical implications of this information are only beginning to be understood. For example,
new avenues being opened up through the use of next-generation/high throughput sequencing
technology include approaches to characterize the genes responsible for drug resistance in order to
facilitate personalized selection and targeted delivery of treatment to suppress the development of
such resistance [61,141]. It is, however, clear that overcoming disease resistance to treatment will
require a diversity of approaches. Furthermore, it is critically important that the putative drivers of
individual tumors uncovered in molecular studies are linked with the discovery of new single-agent
and combination targeted regimens in the setting of clinical trials, such as those targeting multiple
therapeutic pathways based on the specific molecular characteristics of the disease in individual
patients [142,143].
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