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Nuclear receptors are classically defined as ligand-activated transcription factors that reg-
ulate key functions in reproduction, development, and physiology. Humans have 48 nuclear
receptors, which when dysregulated are often linked to diseases. Because most nuclear
receptors can be selectively activated or inactivated by small molecules, they are promi-
nent therapeutic targets. The basic understanding of this family of transcription factors was
accelerated in the 1980s upon the cloning of the first hormone receptors. During the next
20 years, a deep understanding of hormone signaling was achieved that has translated
to numerous clinical applications, such as the development of standard-of-care endocrine
therapies for hormonally driven breast and prostate cancers. A 2004 issue of this journal re-
viewed progress on elucidating the structures of nuclear receptors and their mechanisms of
action. In the current issue, we focus on the broad application of new knowledge in this field
for therapy across diverse disease states including cancer, cardiovascular disease, various
inflammatory diseases, the aging brain, and COVID-19.

Introduction
Hormones are signaling molecules produced in one part of the body that can travel great distances to
regulate the functions of distant organs, tissues, and cells. While the existence of hormones had been es-
tablished since the early 1900s, their mechanism of action remained unknown for decades. That changed
in the late 1950s when Elwood Jensen began a series of studies to understand how estrogen regulated
immature female reproductive organs [1]. At the time, the prevailing theory was that hormones, such as
estrogen or one of its metabolites, functioned as enzyme cofactors in much the same way as many vitamins.
To better understand how estrogens worked, Jensen made a technological breakthrough that allowed him
to efficiently radiolabel estradiol and thus, track its fate when injected into animals in small, physiologi-
cal amounts [2]. When injected into immature rats, Jensen found that, unlike most other tissues, female
reproductive tissues known to respond to estrogens like the uterus and vagina somehow captured and re-
tained the hormone. This was the first evidence of a hormone receptor [3]. Moreover, Jensen noted that the
radioactive signal was mostly present in the nuclei of cells, suggesting the presence of a nuclear hormone
receptor [3]. This seminal discovery was first presented in 1958 to an international congress in Vienna
that consisted of a grand total of five audience members [4]. Jensen proceeded to demonstrate that the
hormone estradiol was not further metabolized in these cells [5]. Work from David Toft and Jack Gorski
using sucrose density gradients and proteolytic enzymes proved that the receptor was a protein [6]. The
collective work of Jensen and Gorski went on to build the early molecular model of estrogen’s mechanism
of action, whereby estrogens bound a protein that could exist in the cytoplasm and promote its shuttling
to the nucleus where it bound DNA [7–9]. While long suspected, the estrogen receptor (ER) was not
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proven to be a transcriptional regulator until Bert O’Malley’s laboratory discovered that estrogen induced the synthe-
sis of chicken ovalbumin mRNA and protein [10]. The concept that hormone-bound receptors could bind to discrete
regions of the genome and regulate the expression of distinct subsets of genes was solidified by the combined work of
Jensen, Gorski, and O’Malley as well as other pioneers in the field such as Jan-Åke Gustafsson, Keith Yamamoto, and
Gordon Tompkins [11]. Their work during the enzymology era went on to demonstrate the existence of a family of
ligand-inducible transcription factors that could regulate key aspects of reproduction and physiology. The ubiquitous
expression of nuclear receptors as well as their pronounced biological effects drew large numbers of new scientists
into this emerging field.

The advent of the molecular biology era in the 1980s led to a series of major breakthroughs for the field as the
first nuclear receptors were cloned. The first full-length nuclear receptor to be cloned was the human glucocorticoid
receptor (GR, encoded by the gene NR3C1) in 1985 by Ronald Evans’s laboratory [12]. Around this time, Pierre
Chambon’s group cloned the first estrogen receptor (ERα, encoded by ESR1) [13]. Both Evans et al. and Chambon
et al. noted the similarity of these receptors to the viral oncogene v-erbA [14,15]. Also around this time, Evans and
Björn Vennström, whose group had recently cloned the human complementary sequence of v-erbA, c-erbA [16],
reported that c-erbA was a thyroid hormone receptor (TR, encoded by THRA) [17,18]. These findings merged steroid
and thyroid hormone receptors into one family. A year later, cloning of the receptors for structurally diverse ligands
including retinoic acid (a vitamin A metabolite) and vitamin D confirmed the existence of a large superfamily of
structurally related receptors [19–21]. The formal defining of the Nuclear Receptor Superfamily was a major milestone
for the field that launched a new era of endocrine physiology as it was now recognized that the development and
physiology of diverse animal species were regulated by similar molecular mechanisms [22]. Following the sequencing
of the human genome, we now know that there are 48 human nuclear receptors that, based on sequence analysis, are
classified into seven subgroups (Figure 1). This large superfamily of proteins is thought to have evolved from a series of
gene amplifications and subsequent mutations/diversifications. Most ligands for nuclear receptors are small, lipophilic
compounds that can readily diffuse across the plasma membrane of cells and bind their cognate receptors, whereas
other ligands, such as thyroid hormone, are actively imported into cells through specific transporters [23]. Although
nuclear receptors were first identified as ligand-binding proteins, there is disagreement whether the common ancestor
to all 48 receptors could in fact bind ligands or was a constitutively active receptor that bound DNA, possibly as a
monomer [24–26]. It should not be entirely surprising then that more than half of the nuclear receptors do not have
a known endogenous ligand. However, some of these ‘orphan’ receptors have been found to bind, often with low
affinity, and be modulated by metabolites with previously unknown functions. Emerging evidence indicates that
these ‘adopted’ receptors may have important functions in sensing metabolic changes [27].

The therapeutic potential of this field was realized relatively early on in the 1970s when Jensen and Craig Jor-
dan demonstrated that an anti-estrogen called tamoxifen could be used to treat women with breast cancer in an
ER-dependent manner [28]. These studies were later aided by the development of new antibodies that could detect
the specific presence of the nuclear receptors. This work established one of the first examples of biomarker-driven,
precision medicine [29]. Today, nuclear receptors remain one of the largest and most commonly targeted family of
druggable proteins, accounting for billions of dollars in annual pharmaceutical sales [30]. Discussions of recent ad-
vances in the therapeutic targeting of nuclear receptors are presented throughout this special issue.

Structure and mechanisms
A defining feature of nuclear receptors is their conserved functional domain organization (Figure 2). With the excep-
tion of the atypical nuclear receptors dosage-sensitive sex reversal-adrenal hypoplasia congenital critical region on
the X chromosome, gene 1 (DAX1, encoded by NR0B1) and small heterodimer partner (SHP, encoded by NR0B2),
all other nuclear receptors share four to five common domains labeled A–F. Domains A and B make up the highly
variable (both in length and sequence) amino/N-terminal domain (NTD). This domain also contains the first of two
transactivation domains (activation function 1, AF-1). The A/B domain is intrinsically disordered and hence, has
made it difficult to obtain full-length, 3D structures of the receptors. However, as discussed here by Yi et al. [31]
and Bourguet et al. [32], progress has been made in this area due to advances in crystallography and emerging tech-
nologies like cryogenic electron microscopy (cryo-EM) that can often more readily resolve large macromolecular
structures. Adjacent to the A/B domain is the highly conserved C domain. This region contains the DNA-binding
domain (DBD) which consists of two zinc finger DNA-binding motifs. The D domain or ‘hinge’ region is a flexible
region that often contains the main nuclear localization sequence (NLS). C-terminal to the hinge region is the fairly
well-conserved E domain which contains the ligand-binding domain (LBD). This region contains the second trans-
activation domain (AF-2). The E domain is often involved in dimerization. Finally, some receptors also contain a
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Figure 1. The nuclear receptor family tree

All 48 human nuclear receptors clustered according to the Nuclear Receptors Nomenclature Committee-defined sequence homol-

ogy subfamilies.

short, variable carboxy/C-terminal domain (CTD; F domain). While the F domain often has unknown functions, as
described by Arao and Korach of this issue, recent studies indicate key roles for the F domain in ERα’s response to
selective estrogen receptor modulators (SERMs) and more specifically, SERM-mediated LBD dimerization and AF-1
activity [33].

For many receptors, such as GR and the progesterone receptor (PR, encoded by PGR), in the absence of ligand,
the receptors are held in the cytoplasm in an inactive state by heat shock proteins. Ligand-binding induces a confor-
mational change that causes the release of the heat shock proteins, nuclear translocation, and dimerization (although
the exact sequence of these two events, translocation and dimerization, is still debated and may be receptor- and/or
context-dependent), and association with chromatin at specific sequences of DNA termed hormone response ele-
ments (HREs). For this class of proteins, often referred to as Type I nuclear receptors based on their mechanism of
action, it has been realized in the past decade that the prevailing dogma that these receptors predominantly reside in
the cytoplasm is often wrong. Instead, in vivo analyses indicate that in many cases, steroid hormone receptors such
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Figure 2. Nuclear receptor structural domains

Nuclear receptors exhibit a common organization of their structural domains. This begins with the variable A/B domains that make

up the NTD, which includes the first of two transactivation domains (AF-1). Next is the C domain, which contains a conserved DBD

possessing two zinc finger binding motifs. C-terminal to this is the D domain, which is also known as the hinge region. The hinge

region contains a short NLS. Next, is the fairly well-conserved carboxy/C-terminal E domain which contains the LBD as well as a

second transactivation domain (AF-2). The E domain is particularly important for the dimerization of a group of nuclear receptors

that form heterodimers. Finally, some nuclear receptors also possess a highly variable CTD (the F domain) that often has unknown

functions.

as ER and AR can almost exclusively reside in the nucleus, perhaps as a result of basal stimulatory signaling. Other
receptors, such as TR are primarily found in the nucleus regardless of in vitro or in vivo conditions. Interestingly,
recent studies have emerged that indicate rapid responses to some hormones such as progesterone and estrogen can
occur via binding to and activation of extranuclear-localized receptors. In many cases, rapid signaling events can
coordinate with more conventional genomic signaling to coordinate hormone-mediated gene expression [34]. For
example, as described by Kerkvliet et al. of this issue, rapid stress signaling cascades can converge to phosphorylate
and activate GR [35]. This increased GR activity, which can be ligand-independent, can promote positive feedback
loops that maintain stress signaling and drive oncogenic cell behavior in triple-negative breast cancers.

Nuclear receptors exhibiting classic genomic effects can directly bind DNA as homodimers (e.g. GR), heterodimers
(e.g. RAR/RXR), or monomers (e.g. SF-1, encoded by NR5A1). Additional DNA binding mechanisms such as teth-
ering through other transcription factors is also common. As discussed by Arao and Korach, it has been revealed that
some nuclear receptors such as ER, which classically bind as homodimers, can also bind DNA in a ligand-specific
manner via long-spaced multiple direct repeat motifs or as monomers [33]. Studies from Gordon Hager’s group have
revealed that nuclear receptors cycle dynamically on and off of DNA much more rapidly than previously thought [36].
Later, the omics revolution enabled large-scale studies of the impact of these receptors on the transcriptome, reveal-
ing how they bind over the genome to regulate their target genes. Studies from the early 2000s demonstrated that ER
regulates hundreds to thousands of genes in breast cancer [37,38], and genome-wide binding-site studies pioneered
by Myles Brown’s laboratory revealed that many ER enhancers were located far away from the genes they regulated
[39]. Importantly, DNA response elements themselves, like ligands, can allosterically modulate receptor activity and
secondary structure, as described for RAR/RXR heterodimers by Bourguet et al. [32]. Moreover, nuclear receptors
are heavily regulated by post-translational modifications, providing yet another layer of transcriptional regulation.

Another breakthrough in our understanding of nuclear receptor mechanism of action was the discovery in the
mid-1990s of coregulatory proteins that interacted with and modulated the transcriptional activity of nuclear re-
ceptors [40–46]. The discovery of these co-activators and co-repressors indicated that the previously held notion
of nuclear receptors as simple, ligand-mediated on/off switches was outdated. Rather, nuclear receptors could func-
tion as inducible scaffolds capable of coordinating large transcriptional complexes. In that regard, different ligands
could induce different receptor conformations which would lead to unique protein–protein interaction surfaces being
exposed and therefore accessible for coregulator binding. This realization provides a framework for understanding
how structurally distinct ligands such as SERMs could, via the same receptor, regulate different genes in the same
cells. It also explains how the same ligand can regulate different genes in different tissues or developmental stages
based on the tissue-specific availability of coregulators (reviewed in [47]). Receptor-bound coregulators can make
direct interactions with the core RNA polymerase machinery and/or possess enzymatic activity that engenders the
nuclear receptor–coregulator complex with the ability to modify chromatin structure and subsequent accessibility
[48]. As described by Yi et al. in this issue, new insights from cryo-EM studies of ER and AR indicate that despite
their similar domain organizations, these two related nuclear receptors interact with coregulators through different
mechanisms—findings that will likely impact future drug development efforts [31]. A key feature of nuclear receptors
is their ability to regulate different sets of genes within different cell types based on the tissue-specific transcriptional
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complexes they form and ability to select cell-specific enhancers. Formation of these cell type-specific complexes is
often guided by lineage-determining factors that help open chromatin, allowing activated transcription factors to
bind specific regions of the genome [49]. In this way, nuclear receptors can control patterns of gene expression that
influence different aspects of physiology (e.g. reproduction and development) and disease (e.g. prostate cancer).

Functions in physiology and pathology
Nuclear receptors are found in all multicellular organisms except fungi and plants. While the first nuclear receptors
evolved approximately 640 million years ago in organisms that lacked organs or tissues (porifera), they likely func-
tioned as environmental sensors. Endocrine or hormone receptors evolved later and are found in nematodes, insects,
fish, and mammals [50]. They regulate key functions such as reproduction, development, and physiology. For exam-
ple, the mineralocorticoid receptor (MR, encoded by NR3C2) is well known to modulate salt and water resorption
in the kidneys through the ligand-mediated actions of aldosterone. MR also has additional important functions in
adipose tissue, the brain, immune system, and heart [51]. In these tissues, MR can respond to diverse corticosteroids
including aldosterone and cortisol. Here, aberrant MR activity is a causal driver of various pathological conditions
such as heart failure. Accordingly, MR antagonists benefit patients with these conditions. Over the past decade, it
has been recognized that there are important differences in MR regulation in the heart and kidney. As discussed by
Young and Clyne in this issue, new regulatory mechanisms for MR that include both classical and non-classical rapid
signaling have been described in the heart that have refined our understanding of how MR controls normal cardiac
functions and can also contribute to heart disease [52]. Interestingly, the circadian clock has emerged as a novel part-
ner of MR in the heart. These findings modify the current view of MR’s regulation and role in the heart and may have
therapeutic implications.

While key functions for steroid hormone receptors like MR have been well established, our appreciation for the
essential roles of orphan nuclear receptors such as Nur77 (encoded by NR4A1) has rapidly grown over the past
decade. We now know that Nur77 is important for our adaptive and innate immune systems. In this issue, Lith and de
Vries summarize the current knowledge on Nur77’s role in inflammation and highlight its potential in the therapeutic
intervention of atherosclerosis, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and sepsis [53].
In addition, Safe et al. describe the therapeutic potential of Nur77, describing how novel, non-classical ligands bind
different parts of Nur77, thereby enabling pharmacologic modulation of this orphan receptor [54].

The ERs (α and β) have critical roles in development (reviewed in [55]) and fertility. ERα controls neurobiological
processes related to reproduction and ERβ is necessary for normal ovarian function and fertility [56,57]. ERα is also a
mediator of secondary sex characteristics, including ductal elongation and growth of the mammary gland [58]. Since
1886, when it was first observed that oophorectomy (removal of the ovaries and thereby synthesis of estradiol) im-
paired metastatic breast cancer [59], the field has focused on modulating hormone signaling to combat this pathology.
Following the isolation and characterization of sex hormones in the 1930s, when contraceptives were also developed,
the synthetic estrogen diethylstilbestrol (DES) was shown to temporarily help some breast cancer patients [60]. This
became the first true breast cancer drug. The mortality in breast cancer had been remarkably stable since the early
1930s (approx. 35 per 100 000 age-adjusted U.S. female population), but this changed during the mid-1990s and is
now markedly reduced (approx. 20 per 100 000) [61]. This improvement coincided with the widespread approval and
prescription of the SERM tamoxifen as a breast cancer treatment. Tamoxifen was synthesized by Dora Richardson at
Imperial Chemical Industries, U.K., as a contraceptive pill in the 1960s, but failed [62]. However, inspired by the role
of androgens in prostate cancer, further studies and clinical trials during the early 1970s showed its efficacy in the
treatment of metastatic breast cancer [63]. While a patent in the U.S. was not awarded until 1986, tamoxifen is now
one of the most prescribed therapeutics worldwide and is highly efficient both as an adjuvant and preventive therapy.
In fact, tamoxifen was the first preventive therapeutic approved for any cancer [62]. Although its clinical develop-
ment was not based on precise knowledge of its molecular mechanism, it is now known to function as an antagonist
of ERα in the breast. Accordingly, the ERα gene (ESR1) was cloned from the human breast cancer cell line, MCF-7
[13,14,64], and studies by Jensen and Jordan in the 1970s demonstrated the therapeutic potential of targeting ER+
breast cancer with SERMs like tamoxifen [28]. Numerous ER-targeting drugs have since been developed and function
by blocking estrogen synthesis, as ER antagonists (partial or full; for example, tamoxifen is an antagonist in the breast
but agonist in the uterus and bone), or, more recently, targeting the receptor for degradation. ERα has correspond-
ingly been used as a treatment-predictive biomarker in breast cancer clinics. Approx. 70% of primary breast cancers
express ERα and are eligible for endocrine treatment. Even when as few as 1% of tumor cells express ERα, it is predic-
tive of a response to treatment. Despite the success and broad arsenal of ER-targeting therapies available, resistance
to these drugs remains a major clinical challenge. In this issue, Donald McDonnell and colleagues highlight novel
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mechanisms of resistance and potential strategies to overcome relapse by targeting reactivated ER [65]. Interestingly,
the answer may not lie solely in targeting the cancer cell, but rather targeting ER’s non-cancer cell-autonomous roles.

Since the 2004 nuclear receptor issue of this journal, there have been tremendous advances in our understanding
of AR’s functions in prostate cancer, development of new AR-targeting therapies and identification of novel mecha-
nisms of resistance to these hormone therapies. The major finding that came into focus around the period of the last
issue was the realization that, despite the failure of current hormone treatments such as androgen deprivation ther-
apy (ADT) and weak antiandrogens like bicalutamide (Casodex®), castration-resistant prostate cancers (CRPCs) still
often rely on AR for disease progression [66]. As such, AR and the processes downstream of the receptor remain vi-
able therapeutic targets. As a result, second-generation antiandrogens such as enzalutamide (Xtandi®), apalutamide
(Erleada®), and darolutamide (Nubeqa®) have been developed and shown to delay disease progression and extend
overall survival in men with advanced prostate cancer. Furthermore, the realization that adrenal androgens, as well
as intratumoral androgen synthesis contributes to ADT resistance led to the development and now widespread use
of improved CYP17A1 inhibitors like abiraterone (Zytiga®). These findings have changed the standard-of-care for
patients at diverse stages of the disease. Beyond adrenal androgens and increased intratumoral androgen synthesis,
several other mechanisms of resistance have since also been identified including AR gene amplifications, LBD point
mutations, amplification of enhancers controlling AR gene expression, the presence of constitutively active AR splice
variants that lack the LBD, and potential shifts away from AR dependence towards other cell lineages or even different
nuclear receptors like GR. These newly identified mechanisms of resistance have reinvigorated interest in targeting
nuclear receptors through novel approaches that are currently being tested in clinical trials. While these new discover-
ies have had a profound positive impact on men with prostate cancer, they have been extensively reviewed elsewhere
and, as such, will not be covered in this issue. For more details on recent advances in prostate cancer, we refer readers
to a recent book and two excellent reviews that more comprehensively cover this expanding field [67–69].

Since the revelations that both AR and ERα can be successfully targeted to treat cancer, the idea of pharmacologi-
cally targeting nuclear receptors for cancer treatment has been a major research focus. A second ER, ERβ, was discov-
ered in 1996 by Jan-Åke Gustafsson’s group [70]. ERβ binds the predominant endogenous estrogen (17β-estradiol,
E2) with similar affinity as ERα. The two ERs have nearly identical DBDs. Still, they exhibit major functional differ-
ences, which are thought to be related to distinct differences in their AF domains and differential interaction with
coregulators and other proteins. While major efforts have investigated the therapeutic potential of ERβ in breast can-
cer, this has been complicated by extensive use of antibodies with poor specificity [71,72]. Whereas ERβ is highly
expressed in the ovaries (granulosa cells) where it impacts female fertility, it is now clear that ERβ is not highly ex-
pressed and thus does not appear to have a significant role in breast cancer. Conversely, other hormone receptors have
been found to be therapeutic candidates for breast cancer, including GR [73], AR [74], and PR [75,76]. PR expression
is regulated by ERα and has long been used as a biomarker for ER activity in breast cancer. However, studies have
revealed a major role for PR itself. In this issue, Lanari et al. discuss current insights into the role of PR in mammary
development and as a therapeutic target in breast cancer [77]. Moreover, female hormones impact human papilloma
virus-driven cervical cancer. Sanghyuk Chung and colleagues describe recent mechanistic findings that elucidate how
both ERα and PR impact cervical cancer tumorigenesis [78]. As noted by Haines et al., estrogen and its receptors also
have anti-inflammatory properties [65]. Beyond estrogens’ actions in the breast cancer tumor microenvironment
[65], Maioli et al. summarizes knowledge on how the ERs modulate neuroprotection and resilience of the aging brain
[79], while Garcia-Villatoro and Allred describe ERs’ roles in colitis, inflammatory bowel disease, and colorectal can-
cer [80]. Finally, Ronald Evans’s group portrays the view of bile acids as hormonally active compounds, synthesized
from cholesterol in the liver and transformed by the microbiome, to act through nuclear receptors, notably the far-
nesoid X receptor (FXR, encoded by NR1H4), to regulate metabolic and immune homeostasis in the intestine [81].
He points to the potential to pharmacologically target this axis for prevention of metabolic disorders and intestinal
tumorigenesis.

Because nuclear receptors evolved as, and still partly function as environmental sensors, they are targeted not
only by endogenous ligands, but are also often unintentionally affected by other natural and synthetic compounds.
This inadvertent targeting, known as endocrine disruption, is a growing concern because (1) dysregulation of nuclear
receptor function and signaling often manifests as disease and (2) endocrine disrupting chemicals (EDCs) are becom-
ing increasingly ubiquitous in the environment, impacting both humans and wildlife. Adverse consequences of EDC
exposures include altered metabolism leading to diabetes and obesity, neurodevelopmental perturbations, reduced
reproductive health, and increased risk of hormone-sensitive cancers in both women and men. Disturbingly, the in-
creased disease risk can be inherited for several generations due to epigenetic modifications caused by altered nuclear
receptor activity. Large-scale and high-throughput screening programs have been developed to perform the mam-
moth undertaking of identifying EDCs among tens of thousands of synthetic industrial and agricultural compounds
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[82]. Although endocrine disruption is not specifically discussed in this issue, it is important to note that EDCs are
major contributors to nuclear receptor-mediated diseases. For a comprehensive review on endocrine disruption, see
the Endocrine Society’s second scientific statement on EDCs [83].

This issue ends with a focus on the COVID-19 pandemic, which has ravaged the world during the composition
of this issue, and its implications for nuclear receptor research [84]. The two research fields unexpected collided fol-
lowing early observations that (1) the expression of ACE2 and TMPRSS2, two host proteins that the SARS-CoV-2
coronavirus needs for infection, are regulated by multiple steroid hormone receptors and (2) clinical studies suggest-
ing that antiandrogens may have a protective role in preventing the incidence and severity of COVID-19. This article
reviews roles for steroid hormone receptors and how they impact COVID-19 in the contexts of lung development
and function, the immune system, and expression of the host proteins, ACE2 and TMPRSS2. It concludes with a
discussion of the potential for targeting steroid receptors to prevent infection or treat infected patients.

Conclusions and future perspectives
Major strides have been made characterizing nuclear receptor mechanisms of action and their impact on biology. New
technologies have enabled the 3D structure of full-length nuclear receptors in complex with coactivator complexes
(cryo-EM) and comprehensive characterization of gene targets for individual nuclear receptors (omics). We now have
a detailed understanding of nuclear receptor activation, their interactions with chromatin, transcriptional impact, and
an appreciation of their non-genomic effects. Pharmaceutical interventions, such as those targeting ERα or AR, have
improved cancer mortality for millions of people and, together with an array of other agents targeting a broad range
of conditions such as hypothyroidism, inflammatory diseases, and metabolic syndrome, demonstrate the potential of
nuclear receptor-based therapies. Work is ongoing to understand the biological function of each of the 48 receptors
and how they impact diseases. This issue describes current advances and highlights the potential for novel treatments
of multiple conditions.

Still, there are numerous poorly understood areas that warrant future investigations. These include studies that
will permit a deeper understanding of the cell- and tissue-specific functions of nuclear receptors and the extent and
mechanism of nuclear receptor cross-talk. Large-scale analyses and comparisons of nuclear receptors’ cistromes and
corresponding transcriptomes, proteomes, and metabolomes are prime for entering the new era of data-driven life
sciences. Such efforts may help yield a systematic view and reveal the intricate manners in which nuclear receptors
cooperate to regulate our physiology. In combination with new therapies for existing druggable receptors as well
as manipulations of orphan receptors by novel ligands, we may continue the expansion of nuclear receptor-based
personalized treatments. In future, we anticipate the continued design and development of superior therapies through
selective targeting of multiple nuclear receptors that can simultaneously avoid adverse side effects—advances that will
be enabled by a more complete understanding of how we can utilize cell- and tissue-selective treatments.
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