

Analysis of candidate genes for age-related macular degeneration subtypes in the Japanese population

Koji Tanaka,¹ Tomohiro Nakayama,² Mitsuko Yuzawa,¹ Zhaoxia Wang,² Akiyuki Kawamura,¹ Ryusaburou Mori,¹ Hiroyuki Nakashizuka,¹ Naoyuki Sato,² Yoshihiro Mizutani¹

¹Department of Ophthalmology, Nihon University School of Medicine, Tokyo, Japan; ²Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan

Purpose: Age-related macular degeneration (AMD) is thought to be a polygenetic disease. It is divided into three subtypes; neovascular AMD (nAMD), polypoidal choroidal vasculopathy, and retinal angiomatous proliferation (RAP). These subtypes are thought to have different pathophysiological and genetic backgrounds. We aimed to investigate the relationships between single nucleotide polymorphisms (SNPs) in candidate genes and subtypes of AMD in the Japanese population.

Methods: We genotyped 685 AMD patients and 277 controls for four SNPs of the selected candidate genes: rs800292 in complement factor H, rs10490924 in age-related maculopathy susceptibility 2 (*ARMS2*), rs2301995 in elastin (*ELN*), and rs1801133 in methylenetetrahydrofolate reductase (*MTHFR*). Case-control studies were performed using these AMD subtypes. Logistic regression analysis was performed using a history of hypertension, diabetes mellitus, and smoking as cardiovascular risks.

Results: The genotype-dominant or recessive distribution of all four SNPs differed significantly between the controls and the AMD patients. In the subtype analysis, there were significant differences between the controls and the AMD patients in genotype distributions. This was true for all AMD subtype analyses of both rs800292 (complement factor H) and rs10490924 (*ARMS2*). Logistic regression analysis indicated the TT genotype of the *ARMS2* gene to be significantly more common in RAP patients ($p=1.54\times10^{-13}$, odds ratio: 22.18). In contrast, there were significant differences in the genotype distribution between the controls and nAMD patients only for rs2301995 (*ELN*, p=0.022) and rs1801133 (*MTHFR*, $p=2.50\times10^{-3}$).

Conclusions: Our results indicate that SNPs of the *ARMS2* gene may serve as strong genetic markers of RAP, and that SNPs of the *ELN* and *MTHFR* genes are potential genetic markers for nAMD.

Age-related macular degeneration (AMD) is a leading cause of blindness in Western countries, and its prevalence is increasing in Japan [1,2]. AMD is thought to be a heterogeneous multifactorial disease associated with several environmental factors and genetic variants. Factors such as hypertension [3] and cigarette smoking [4] are closely related to the development of AMD. Identification of AMDsusceptibility genes might increase our ability to predict the risk of developing AMD. Complement factor H (CFH) is reportedly related to AMD in Caucasians [5]. In addition, agerelated maculopathy susceptibility 2 (ARMS2) and hightemperature requirement factor A1 have been shown to be associated with AMD in both Japanese and Caucasian patients [6-10]. The CFH polymorphism Y402H has been reported to be associated with AMD in studies conducted worldwide. However, several Japanese studies have found Y402H to be unrelated to AMD [11-14]. Other studies of the Japanese population have shown an association between *CFH* rs800292 and AMD [14-16]. Two studies examined gene polymorphisms associated with retinal angiomatous proliferation (RAP) [17,18].

In Japan, exudative AMD includes both neovascular AMD (nAMD) and serous retinal pigment epithelial detachment without choroidal neovascularization, while polypoidal choroidal vasculopathy (PCV) and RAP have been defined as specific forms of exudative AMD [19]. Reported frequencies of each subtype in the Japanese population are 35.3% for nAMD, 54.7% for PCV, and 4.5% for RAP [20]. PCV occurs in less than 8% of Caucasians [21-24]. Histopathological examination of PCV demonstrated choroidal vessels to be similar to those in atherosclerosis or choroidal neovascularization [25]. As these AMD subtypes may have different pathophysiological and genetic backgrounds, we undertook this study of the associations between genetic markers or mutations and individual AMD subtypes.

Several candidate genes for atherosclerosis have been reported. Elastin (*ELN*) is among the markers of atherosclerosis [26] and neovascularization [27,28]. Kondo et al. [29] reported an *ELN* gene polymorphism (rs2301995) to

Correspondence to: Tomohiro Nakayama, Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Ooyaguchi-kamimachi, Itabashi-ku, Tokyo 173-8610, Japan; Phone: +81 3-3972-8111 (ext. 8205); FAX: +81 3-5375-8076; email: nakayama.tomohiro@nihon-u.ac.jp

confer susceptibility only for PCV, not for nAMD. They reported the frequency of the rs2301995 polymorphism in the *ELN* gene to differ significantly between the PCV and control groups.

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the homocysteine cycle. Hyperhomocysteinemia reportedly is a risk for AMD [30,31] and induces vascular endothelial growth factor in the retina of a rat model [32]. Thus, the *MTHFR* gene is among the candidates for atherosclerosis susceptibility genes [33,34].

The present study aimed to use single-nucleotide polymorphisms (SNPs) to investigate the relationships between AMD subtypes and potential susceptibility genes, *ARMS2, CFH, MTHFR*, and *ELN*, in Japanese subjects. We determined the frequencies of three AMD subtypes, along with the age and gender distributions of the study's participants. We also analyzed four SNPs for AMD subtype associations and calculated corresponding odds ratios (ORs).

METHODS

Subjects: All AMD patients and control subjects were recruited at Nihon University Surugadai Hospital in Tokyo between 2001 and 2010. In total, 685 patients (478 men and 207 women; mean age 72.0±8.8 years) were diagnosed with AMD by color fundus photography, fluorescein angiography, and indocyanine green angiography. The patient group included 253 diagnosed with nAMD, 381 with PCV, and 51 with RAP. All study subjects were asked if they had a history of hypertension, diabetes mellitus, and/or smoking (including both previous and current smoking at the time of the study). In total, 277 subjects without AMD (111 men and 166 women; mean age 72.9±8.7 years) served as control subjects. There were no remarkable findings from the fundus examinations of the controls. Smokers were defined as current or former smokers, nonsmokers as subjects with no previous or current smoking history. Informed consent was obtained from all participants as per the protocol approved by the Human Studies Committee of Nihon University.

Genotyping: DNA was extracted from peripheral blood leukocytes by the phenol and chloroform extraction technique [35,36]. Briefly, the samples were centrifuged for 10 min at 1,500× g, and the pellet was resuspended in 3 ml of solution 1, which consisted of 10 mM tris (pH 7.5), 10 mM KCl, 10 mM MgCl₂, and Nonidet P40 (Sigma, St. Louis, MO), and incubated on a rotator for 30 min. The tube was centrifuged as described above for 10 min, and the supernatant was removed to another tube. Two milliliters of solution 2 (10 mM Tris (pH 7.5), 10 mM KCl, 10 mM MgCl₂, 50 mM NaCl, 5 mM EDTA (pH 8.0), 25 ml 10% SDS) and 10.4 ml of proteinase K (20 mg/ml H₂O; Sigma) were added to the supernatant. After incubation on a rotator at 37 °C overnight, 2.2 ml of phenol was added and incubate on a rotator for 30 min. The sample was centrifuged as described above for 10 min, and

the supernatant was removed with a large-bore tip to another tube. Phenol purification was repeated twice: 2.2 ml of phenol/ chloroform/isoamyl alcohol was added, and incubation and centrifugation were performed described; 2.2 ml of chloroform was added and incubation and centrifugation were performed again. The 400 ml of aqueous layer was transferred carefully to a new 1.5-ml microcentrifuge tube to which 1 ml of cold 100% ethanol was added, mixed, and incubated for 15 min at 20 °C. Genotyping was performed using the TaqMan SNP Genotyping Assay (Applied Biosystems, Carlsbad, CA). TaqMan SNP Genotyping Assays were performed using the method for Taq amplification [37,38].

Plates were read on an SDS 7700 instrument with the endpoint analysis mode of the SDS, version 1.6.3, software package (Applied Biosystems). Genotypes were determined visually, based on the dye-component fluorescent emission data depicted in the X-Y scatter plot of the SDS software. Genotypes were also automatically determined by applying signal processing algorithms of the software [35,36].

Statistical analysis: Data are shown as means, plus or minus standard deviation (±SD). Differences among the nAMD, PCV, RAP, and control groups were assessed by the ANOVA (ANOVA), followed by Fisher's protected least significant difference (PLSD) test. Hardy–Weinberg equilibrium was assessed by chi-square analysis. The overall distribution of the SNP alleles was determined using 2×2 contingency tables. The distributions of SNP genotypes in the AMD patients and the controls were tested using a 2-sided Fisher's exact test and multiple logistic regression analysis. Statistical significance was established at p<0.05. Because we examined four SNPs, we applied multiple comparisons with a strict p value (0.05/ SNP number in this study: four, p<0.0125).

Logistic regression analyses for assessing the contributions of major risk factors and the independence of each SNP in relation to AMD were performed using SPSS software for Windows, version 12 (SPSS, Chicago, IL).

RESULTS

The clinical features of AMD patients and the control group are shown in Table 1. There were no significant differences in age or history of hypertension between the AMD patients and the control group. There were significantly more males, and the frequencies of smoking were higher in the patient group than in the control group. However, there were significantly fewer subjects with diabetes mellitus in the patient group than in the control group.

Genotype and allele distributions of the four SNPs are shown in Table 2. All four SNPs in the controls were in Hardy–Weinberg equilibrium (data not shown, p>0.05). The genotype-dominant or recessive distribution of all four SNPs differed significantly between the control and AMD groups. Subtype analysis revealed a significant difference between the controls and the AMD patients in genotype distributions for

	TABLE 1. C	CHARACTERISTICS O	F STUDY PARTICIPA	NTS.		
				Case		
Parameters	Total AMD	p-value	nAMD	PCV	RAP	Control
No. of subjects	685	-	253	381	51	277
Age (mean±SD)	72.0±8.8	0.146	73.7±7.5	69.9±9.1	80.1±6.8	72.9±8.7
Male/female	478/207	<0.0001*	188/65	271/110	19/32	111/166
Hypertension (%)	39.1	0.254	38.3	39.4	41.2	43.0
Diabetes mellitus (%)	10.7	< 0.0001*	12.6	9.4	9.8	19.5
Smoking (%)	34.7	<0.0001*	34.8	37.3	15.7	17.7

Abbreviations: AMD represents age-related macular degeneration, nAMD represents neovascular age related macular degeneration, PCV represents polypoidal choroidal vasculopathy, RAP represents retinal angiomatous proliferation, N represents number, SD represents standard deviation. Information on hypertension, diabetes mellitus and smoking was obtained from the medical history of each patient. p-values reflect comparisons between case and control groups. p-values were calculated using Fisher's exact test. *p<0.05

all AMD subtypes, and both rs800292 (*CFH*) and rs10490924 (*ARMS2*). There were significant differences in the genotype distributions of rs2301995 (*ELN*) and rs1801133 (*MTHFR*) between the controls and nAMD patients.

The results of logistic regression analysis, adjusted for confounding factors, are shown in Table 3. This analysis was performed for the dominant or recessive genotype models that showed significant results, as presented in Table 2. Susceptibility genotypes were those with high frequencies in patient groups in case-control studies. *CFH* genotype distributions differed significantly between the controls and all AMD subtypes, especially for nAMD (p= 7.66×10^{-8} ; OR: 2.90). Similarly, the *ARMS2* genotype distributions differed significantly between the controls and all AMD subtypes. In particular, the TT genotype of the *ARMS2* gene was significantly more frequent in RAP patients (p= 1.54×10^{-13} , OR: 22.18). In contrast, SNPs in the *ELN* (p=0.022) and *MTHFR* (p= 2.50×10^{-3}) genes were associated only with nAMD, that is, not with either PCV or RAP.

Multiple logistic regression analysis was performed to determine the independence of the four SNPs as risk factors for AMD (Table 4). Each p value and 95% CI for the SNPs showed a statistically significant difference after adjustment for all confounding factors. Each SNP was confirmed to be an independent risk factor for AMD.

DISCUSSION

Our results indicated significant differences between all AMD subtypes and the controls in the distributions of genotypes and alleles of SNPs in the *CFH* and *ARMS2* genes. Both the *CFH* SNP (rs800292) and *ARMS2* SNP (rs10490924) are located within exons and are known to be I62V and A69S missense mutations. Although several studies have examined the functions of these genes, controversies concerning their exact functions persist [37,38].

As in previous reports, the SNPs of CFH (rs800292) and ARMS2 (rs10490924) were both strongly associated with AMD in our study. In comparing these two genes, the ARMS2 SNP is a more powerful marker of AMD than is the CFH SNP. The odds ratio (OR) for CFH was equal in the three subtypes, suggesting that CFH might be a marker for all AMD subtypes. In contrast, the OR for ARMS2 was markedly higher for RAP than for the other subtypes. These results may support the theory suggested by Hayashi et al. [18]. They reported an SNP in the ARMS2 gene to be highly associated with all three subtypes, with the association being strongest for RAP and weakest for PCV. They concluded that PCV and RAP might thus be subtypes of AMD that are genetically distinct from nAMD. We agree with their conclusion. ARMS2 gene might serve as strong genetic markers of RAP. There may be pathological distinctions among these three subtypes. The significant differences between these two SNPs in casecontrol studies using AMD subtypes might be explained as follows: 1) The CFH and ARMS2 genes may influence a common factor such aging in all three subtypes. 2) An unknown gene might affect each of these genotypes.

We examined the histopathology of human PCV specimens excised during the diagnosis of nAMD. CD68positive cells were detected around hyalinized vessels. Hypoxia-inducible factor (HIF)-1alpha positive inflammatory cells were located in the stroma of these specimens. Our results indicate that the hyalinization of choroidal vessels, like arteriosclerosis, is characteristic of PCV [27]. Other investigators reported that ELN is highly associated with the calcification of elastic fibers in human atherosclerotic plaques [26]. Therefore, the ELN gene was considered to be a candidate gene for PCV. Because the rs2301995 SNP in the ELN gene was already reported to be associated with PCV [30], we conducted association studies for all three subtypes using this SNP. Since rs2301995 is located in the intron, it is not clear whether this SNP affects gene function. Although a previous study demonstrated TT

Susceptibility number % p-value number genotype 386 56.4 p-c0.0001* 147 G/G 386 56.4 p-c0.0001* 147 G/A 263 38.4 93 33 G/A 366 5.3 p-c0.0001* 147 G/A 366 5.3 p-c0.0001* 147 G/A 366 5.3 p-c0.0001* 147 G/A 36 5.3 p-c0.0001* 147 G/A 36 5.3 p-c0.0001* 147 G/A 335 24.5 p-c0.0001* 147 G/A 335 24.5 p-c0.0001* 146 G/G 142 207 p-c0.0001* 126 G/G 142 207 p-c0.0001* 126 G/G 142 207 p-c0.0001* 126 G/G 142 290 45 207 G/G 142 290	mber % 147 58.1 93 56.8 13 5.1 147 58.1 13 5.1 147 58.1 166 41.9 13 5.1 240 94.9 13 5.1 240 94.9 13 5.1 240 94.9 13 5.1 240 94.9 119 23.5 126 49.8 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p-value p<0.0001* p<0.0001* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	number 210 210 210 211 211 21 21 212 192 125 94 287 287	% 55.1 5.5 5.5 5.5 5.5 74.9 5.5 24.7 25.2 25.2 25.2 24.7 24.7 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	p-value p<0.0001* 0.0008* p<0.0001* p<0.0001*	number 29 29 22 22	% 56.9	p-value	number	%
GG 5.3 5.4 p -0.0001* 147 GA 36 5.3 8.4 p -0.0001* 147 GA 36 5.3 p -0.0001* 147 GA 386 56.4 p -0.0001* 147 GA 386 56.4 p -0.0001* 147 GAVA 299 43.6 p -0.0001* 147 GAVA 299 43.6 p -0.0001* 147 GAVEG 649 p -7.5 p -0.0001* 147 S800292 (CFH) Allet 1035 7.5.5 p -0.0001* 147 GG 142 207 p -0.0001* 146 GG 142 207 p -0.0001* 146 GG 142 207 p -0.0001* 166 GG 142 207 p -0.0001* 166 GG 142 207 p -0.0001* 176 GG 243 79.3 p -0.0001* 166 GG	147 58.1 93 56.8 13 5.1 147 58.1 147 58.1 166 41.9 13 5.1 240 94.9 587 76.5 119 23.5 119 23.5 119 23.5 119 23.5 126 49.8 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	210 150 210 210 171 21 21 192 125 125 287 287	55.1 39.4 5.5 5.5 5.1 5.5 5.5 24.7 24.7 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	p<0.0001* p<0.0001* p<0.0001* p<0.0001*	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	56.9		100	
GG 5.3 38.4 p	13 5.1 147 5.1 166 41.9 13 5.1 240 94.9 587 76.5 519 94.9 240 94.9 119 23.5 119 23.5 119 23.5 119 23.5 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* 0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	210 210 210 211 171 210 212 210 212 212 222 222 222 222	394 5.5 5.5 6.5 7.5 9.4 9.5 2.5 2.5 2.5 2.5 2.2 2.2 2.2 2.2 2.2 2	p<0.0001* 0.0008* p<0.0001* p<0.0001*	5 5 5 5 5 <u>6</u>		0.011*		36.1
MA 36 5.3 $90001*$ 147 G/G 386 56.4 $p<0.0001*$ 147 A/A 36 5.3 $p<0.0001*$ 147 G/G 386 56.4 $p<0.0001*$ 147 GA/G 649 94.7 240 $B80292$ (CFH) Allele 335 24.5 $p<0.0001*$ 139 G 335 24.5 $p<0.0001*$ 139 G/G 142 20.7 $p<0.0001*$ 46 G/G 142 20.7 $p<0.0001*$ 46 G/G 142 20.7 $p<0.0001*$ 126 G/G 142 20.7 $p<0.0001*$ 126 G/G 142 29.3 $p<0.0001*$ 126 G/G 142 29.3 $p<0.0001*$ 126 G/G 333 92.3 $p<0.0001*$ 126 G/G 543 92.3 <	13 5.1 147 5.1 106 41.9 13 5.1 240 94.9 387 76.5 119 23.5 119 23.5 119 23.5 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* 0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	21 210 210 21 21 21 171 171 171 172 28 28 28 28 28 28	5.5 55.1 44.9 5.5 9.4.5 7.4.8 22.5 25.2 25.2 24.7 24.7 23.28 24.7 25.2 25.2 25.2 25.2 25.2 25.3 24.7 25.3 25.3 25.4 7 55.3 25.4 55.3 25.4 55.3 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 55.1 55.5 555	p<0.0001* 0.0008* p<0.0001* p<0.0001*	2 2 2 2 2	39.2		141	50.9
G/G 386 56.4 p <0.0001* 147 A/A 299 43.6 5.3 p <0.0001*	147 58.1 106 41.9 13 5.1 240 94.9 387 76.5 119 23.5 119 23.5 119 23.5 119 23.5 119 23.5 119 23.5 119 23.5 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* 0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	210 171 21 360 570 94 125 125 287 287	55.1 44.9 5.5 9.4.5 7.4.8 25.2 25.2 25.2 24.7 24.7 23.28 24.7 25.3 24.7 25.3 25.2 25.2 25.2 25.3 25.3 25.3 25.5 25.5	p<0.0001* 0.0008* p<0.0001* p<0.0001*	23 22	3.9		36	1.3
GAVA 299 43.6 5.3 p -0.0001* 113 AA 36 5.3 p -0.0001* 13 GA/GG 649 94.7 240 $rs800292$ (<i>FH</i>) Allete 1035 7.5.5 p -0.0001* 13 $rs800292$ (<i>FH</i>) Allete 1035 7.5.5 p -0.0001* 240 $rs800292$ (<i>FH</i>) Allete 1035 2.4.5 p -0.0001* 240 GG 142 2.0.7 p -0.0001* 46 G/G 142 2.0.7 p -0.0001* 46 G/G 142 2.0.7 p -0.0001* 126 G/G 142 2.0.7 p -0.0001* 17 G/G 142 2.0.7 p -0.0001* 17 $GT+GG$ 333 36.9 p -0.0001* 17 T 2.90 42.3 p -0.0001* 17 T 2.91 3.33 32.31 32.32 33.31 T S 57.7	106 41.9 13 5.1 240 94.9 287 76.5 387 76.5 119 23.5 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	171 21 360 570 94 125 125 287 287	44.9 5.5 94.5 25.2 24.7 24.7 22.7 22.7 22.7 22.7 22.7 22	0.0008* p<0.0001* p<0.0001*	53 c	56.9	0.005*	100	36.1
AA 36 5.3 $p<0.0001*$ 13 GA/GG 649 94.7 240 rs800292 (<i>FH</i>) Allete 1035 75.5 $p<0.0001*$ 13 A 335 24.5 $p<10001*$ 240 rs800292 (<i>FH</i>) Allete 1035 75.5 $p<0.0001*$ 240 B 1035 75.5 $p<0.0001*$ 46 G/G 142 20.7 $p<0.0001*$ 46 G/G 142 20.7 $p<0.0001*$ 46 G/G 142 20.7 $p<0.0001*$ 126 $GT+GG$ 335 57.7 $p<0.0001*$ 126 $GT+GG$ 335 57.7 $p<0.0001*$ 126 $GT+GG$ 335 57.7 $p<0.0001*$ 126 $GT+GG$ 333 57.7 $p<0.0001*$ 177 T 230 9.6 9.6 9.6 177 T 3333 </td <td>13 5.1 240 94.9 287 76.5 387 76.5 119 23.5 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 126 49.8 126 49.8 127 81.8 233 65.8 333 65.8</td> <td>0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*</td> <td>21 360 570 94 125 287 287</td> <td>5.5 94.5 74.8 25.2 25.2 24.7 22.7 22.7 22.7 22.7 0753</td> <td>0.0008* p<0.0001* p<0.0001*</td> <td>ç</td> <td>43.1</td> <td></td> <td>177</td> <td>63.9</td>	13 5.1 240 94.9 287 76.5 387 76.5 119 23.5 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 126 49.8 126 49.8 127 81.8 233 65.8 333 65.8	0.002* p<0.0001* p<0.0001* p<0.0001* p<0.0001*	21 360 570 94 125 287 287	5.5 94.5 74.8 25.2 25.2 24.7 22.7 22.7 22.7 22.7 0753	0.0008* p<0.0001* p<0.0001*	ç	43.1		177	63.9
GA/GG 649 94.7 240 rs800292 (<i>FH</i>) Allele 035 75.5 p < $0.0001*$ 387 G 335 24.5 p 119 R10490924 (<i>ARMS2</i>) Genotype 142 20.7 p < $0.0001*$ 46 G/G 142 20.7 p < $0.0001*$ 126 G/G 142 290 42.3 p < $0.0001*$ 126 G/G 142 290 42.3 p < $0.0001*$ 126 G/H 333 57.7 p < $0.0001*$ 126 G/G 132 p < $0.0001*$ 126 173 T 233 57.7 p < $0.0001*$ 173 T 233 333 173 173 T	240 94.9 387 76.5 119 23.5 46 18.2 81.8 207 81.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001* p<0.0001*	360 570 94 125 287 287	94.5 74.8 25.2 25.2 32.8 32.8 32.8 24.7 24.7 0753	p<0.0001* p<0.0001*	1	3.9	0.063	36	1.3
Iss00292 (CFH) Allele 75.5 p -0.0001* 387 G 1035 75.5 p -0.0001* 46 Is 10490924 (ARMS2) Genotype 142 20.7 p -0.0001* 46 G/G 142 20.7 p -0.0001* 46 G/G 142 20.7 p -0.0001* 46 G/T 290 42.3 p -0.0001* 126 GT+GG 395 57.7 p -0.0001* 126 GT+GG 395 57.7 p -0.0001* 173 T 207 302 60.8 333 T 203 302 60.8 333 T 207 302 60.8 333 T 88 60.8 333 333 T 207 207 207 207	387 76.5 46 18.2 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001* p<0.0001*	570 192 162 125 287 287	74.8 25.2 24.7 32.5 32.5 24.7 24.7 24.7 24.7	p<0.0001* p<0.0001*	49	96.1		241	8.7
G 1035 75.5 $p=0.0001^*$ 387 A 335 24.5 $p=0.0001^*$ 387 Is 10490924 (ARMS2) Genotype 112 20.7 $p=0.0001^*$ 387 GG 142 253 36.9 123 81 TT 290 42.3 96.9 81 TT 290 42.3 96.0001^* 46 GT+GG 395 57.7 96.0001^* 126 TT 290 42.3 96.0001^* 126 GT+GG 395 57.7 96.7 127 TT 239 57.7 96.0001^* 173 TT 233 57.7 96.0001^* 173 T 833 60.8 57.7 97.7 127 T 233 97.2 96.7 96.7 173 T 833 97.8 97.8 97.7 173	857 7.6.5 119 23.5 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001* p<0.0001*	570 192 162 125 287 287	74.8 25.2 42.5 32.8 24.7 24.7	p<0.0001* p<0.0001*	Ĩ				3
A 53.5 24.5 11.9 is 10490924 (ARMS2) Genotype 142 20.7 p <0.0001*	119 25.5 46 18.2 81 32.0 126 49.8 126 49.8 126 49.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	94 94 162 94 287 287	25.2 24.7 32.8 24.7 24.7	p<0.0001*	8/	76.5	0.004^{*}	341	61.6 20.4
G(G 142 20.7 p -0.0001* 46 G(T 253 36.9 42.3 81 T/T 290 42.3 126 G(G 142 20.7 p -0.0001* 46 G(T+T) 543 79.3 207 46 G(T+T) 543 79.3 207 207 T/T 290 42.3 p -0.0001* 126 G(T+G(G)) 395 57.7 p -0.0001* 173 G(T+G(G)) 833 60.8 92.3 207 T 833 60.8 333 173 T 833 60.8 92.8 92.8 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.035*$ 181 C/T	46 18.2 81 32.0 126 49.8 46 18.2 207 81.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	94 162 125 94 287	24.7 42.5 32.8 24.7 0753	p<0.0001*	†	C.C7		C17	1.00
GG 142 20.7 p -0.0001* 46 GT 253 36.9 81 TT 290 42.3 p -0.0001* 46 GT+TT 543 79.3 p -0.0001* 126 GT+GG 142 20.7 p -0.0001* 126 GT+GG 395 57.7 p -0.0001* 126 GT+GG 395 57.7 p -0.0001* 126 S10490924 (ARMS2) Allele 39.2 p -0.0001* 126 G 833 60.8 33.3 173 T 833 60.8 33.3 333 rCC 457 66.7 0.037* 181 C/C 457 66.7 0.035* 181 CT 207 30.2 72 72 T 21 3.1 0.047* 8 CT 213 3.1 0.035* 181 CT 213 3.1 0.047* 8 CT 213 3.1 0.013* 426 171 213	40 15.2 126 19.2 46 18.2 207 81.8 207 81.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	94 162 94 287	24.7 24.7 24.7	. Innn'n~d	ſ	0,0	* / 0 000 1 *	00	1 30
O(I) 2.03 $3.0.9$ $0.0.9$ TT 2.90 $3.0.9$ $0.0.9$ GT+TT 2.90 42.3 79.3 207 TT 2.90 42.3 79.3 207 GT+GG 1395 57.7 $p<0.0001*$ 126 GT+GG 395 57.7 $p<0.0001*$ 127 rs10490924 (ARMS2) Allele 39.2 $p<0.0001*$ 173 rs2301995 (ELM) Genotype 66.7 $0.037*$ 181 C/C 457 66.7 $0.037*$ 181 C/C 207 30.2 $0.037*$ 181 C/C 207 30.2 $0.037*$ 181 C/C 207 30.2 $0.037*$ 181 C/C 233 33.3 33.3 33.3 33.3 red 207 30.2 $0.037*$ 181 C/C 245 66.7 $0.035*$ 181 C/C 245 33.3 $0.047*$ 8 245	ol 22.0 126 49.8 207 81.8 126 49.8 126 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	102 125 94 287	42.3 32.8 24.7 0 753		7 2	و.د ۱۵ د	p≺u.uuu1*	66 1	1.00
Interprete 200 $4.2.5$ $2.0.7$ $5.4.3$ $5.0.7$ $5.0.0001*$ 4.6 GT+TT 543 79.3 79.3 79.3 79.3 207 207 466 GT+GG 395 57.7 2900 42.3 79.3 207 Isi 0490924 (ARMSZ) Allele 339.2 $9-0.0001*$ 126 Isi 537 39.2 $p-0.0001*$ 126 GG 537 39.2 $p-0.0001*$ 127 Isi 537 39.2 $p-0.0001*$ 173 T 537 39.2 $p-0.0001*$ 173 IT 231 39.2 $p-0.0001*$ 173 IT 231 39.2 $p-0.0001*$ 173 C/C 537 39.2 $p-0.0001*$ 173 IT 231 30.2 66.7 $0.037*$ 181 C/C 247 66.7 $0.035*$ 181 272 IT 21 31.3 $0.047*$ 86 <	120 49.8 207 81.8 207 81.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	94 287 287	24.7 0.753		10	19.0 76.5		142 36	01.0 2 1
CC 142 20.7 90.0001 40 T 290 42.3 79.3 20.7 20.7 ST+GG 395 57.7 290 42.3 $9-0.0001*$ 126 GT+GG 395 57.7 290 42.3 $9-0.0001*$ 126 ST 833 60.8 39.2 $p-0.0001*$ 173 207 207 T 8333 60.8 33.3 60.8 333 333 C/C 457 66.7 $0.037*$ 181 64 173 C/C 457 66.7 $0.037*$ 181 8 64 171 8 21 31.1 8 8 C/C 457 66.7 $0.037*$ 181 8 72 181 127 8 21 31.1 8 8 121 121 121 121 121 121 121 121 121 121 121 121 121 121 121	40 18.2 207 81.8 126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001* p<0.0001*	287 287	24.7 0 753	*0000	ές (C.0/	~ ~ 0 0001 *	00	0.1 L 30
TT 290 7.5 7.0 126 GT+GG 395 57.7 290 42.3 $p<0.0001*$ 126 Is 10490924 (ARMS2) Allele 537 39.2 $p<0.0001*$ 173 T 833 60.8 39.2 $p<0.0001*$ 173 T 833 60.8 39.2 $p<0.0001*$ 173 C/C 457 66.7 $0.037*$ 181 C/C 45.7 66.7 $0.035*$ 181 C/C 45.7 66.7 $0.037*$ 181 C/C 45.7 66.7 $0.035*$ 181 C/C 45.6 9.69 9.69 $0.013*$ 426 T 2.49 182 $0.013*$ 426 55.0089 <td>126 49.8 127 50.2 173 34.2 333 65.8</td> <td>p<0.0001* p<0.0001*</td> <td>102</td> <td></td> <td></td> <td>4 Q</td> <td>7.6 0.061</td> <td>. Innn n~d</td> <td>971 871</td> <td>1.00</td>	126 49.8 127 50.2 173 34.2 333 65.8	p<0.0001* p<0.0001*	102			4 Q	7.6 0.061	. Innn n~d	971 871	1.00
Triangle 57.7 72.7 72.7 Is [0490924 (ARMS2) Allele 53.7 39.2 p -0.0001* 173 T 833 60.8 39.2 p -0.0001* 173 T 833 60.8 39.2 p -0.0001* 173 T 833 60.8 39.2 p -0.0001* 173 Siz 301995 (ELN) Genotype 6.7 $0.037*$ 181 C/C 457 66.7 $0.035*$ 181 C/C 457 66.7 $0.035*$ 181 C/C 457 66.9 33.3 $0.047*$ 8 C/T+CC 664 96.9 $0.013*$ 426 T 249 182 $0.013*$ 426 T 249	127 50.2 173 34.2 333 65.8	p<0.0001*		37.8	m<0.0001*	f 66	107.0	m<0.0001 *	36	13.0
Crossenergy 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 53.7 39.2 $p-c0.0001*$ 173 T 833 60.8 53.7 39.2 $p-c0.0001*$ 173 rs2301995 (ELN) Genotype 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.035*$ 181 C/C 457 66.7 $0.035*$ 181 C/T 211 3.1 $0.047*$ 8 T 21 3.1 $0.047*$ 8 C7+CC 664 96.9 $0.013*$ 426 C7+CC 664 96.9 $0.013*$ 426 C7 249 182 $0.013*$ 426 C7 249 182 $0.013*$ 426 C8 $0.013*$ $0.013*$ <td< td=""><td>173 34.2 333 65.8</td><td>p<0.0001*</td><td>756</td><td>0.75</td><td>1000.0~d</td><td>c -</td><td>73.5</td><td>Innnon</td><td>140</td><td>0.01</td></td<>	173 34.2 333 65.8	p<0.0001*	756	0.75	1000.0~d	c -	73.5	Innnon	140	0.01
G (1) 537 39.2 p -0.0001* 173 T 833 60.8 333 333 rs2301995 (ELN) Genotype 333 60.8 333 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.037*$ 181 C/C 457 66.7 $0.035*$ 181 C/T 211 3.1 $0.047*$ 8 CT+TT 218 3.33 $0.047*$ 8 CT+CC 664 96.9 $0.013*$ 426 T 21121 81.8 $0.013*$ 426 CT+CC 664 96.9 $0.013*$ 426 C 1121 81.8 $0.013*$ 426 T 249 182 80133 80133 80133	173 34.2 333 65.8	p<0.0001*	007	7.10		71	0.07		1+7	0.10
T 833 60.8 333 rs2301995 (ELN) Genotype 30.2 457 66.7 0.037* 181 C/C 457 66.7 0.037* 181 C/C 457 66.7 0.037* 181 C/C 457 66.7 0.037* 181 C/T 207 30.2 64 64 T/T 21 3.1 0.047* 8 CT+TT 21 3.1 0.047* 8 CT+CC 664 96.9 72 72 T 21 3.1 0.047* 8 CT+CC 664 96.9 245 CT 21 3.1 0.013* 426 C 1121 81.8 0.013* 426 T 249 18.2 73 72 S1801133 (MTHFR) Genotype 56.0 36.5 0089 110	333 65.8		350	45.9	p<0.0001*	14	13.7	p<0.0001*	340	61.4
Is 2301995 (ELM) Genotype C/C 457 66.7 0.037* 181 C/T 207 30.2 64 64 T/T 21 3.1 8 64 T/T 21 3.1 8 64 C/C 457 66.7 0.035* 181 C/T 21 3.1 9 64 CT+TT 228 33.3 72 T 21 3.1 0.047* 8 CT+TT 21 3.1 0.047* 8 CT+TT 218 3.1 0.047* 8 CT+CC 664 96.9 245 R2201995 (ELM) Allele 1121 81.8 0.013* 426 T 249 182 80 S1801133 (MTHFR) Genotype 36.5 0.089 110			412	54.1		88	86.3	ĸ	214	38.6
C/C 457 66.7 0.037* 181 T/T 207 30.2 64 T/T 21 3.1 8 CT+TT 21 3.1 8 CT+TT 21 3.1 8 CT+TT 21 3.1 0.035* 181 CT+TT 228 3.3.3 72 72 T 21 3.1 0.047* 8 CT+TT 21 3.1 0.047* 8 CT+CC 664 96.9 72 72 rs2301995 (ELM) Allele 1121 81.8 0.013* 426 T 249 18.2 80 80 80 rs1801133 (MTHFR) Gentype 560 36.5 0.089 110										
C/T 207 30.2 64 T/T 21 3.1 8 CC 457 66.7 0.035* 181 CT+TT 21 3.1 8 72 TT 228 33.3 72 72 TT 21 3.1 0.047* 8 rS201995 (ELM) Allele 81.8 0.013* 426 T 249 18.2 80 72 T 249 18.2 90 76 T 249 18.2 80 80 r 2549 18.2 90 90	181 71.5	0.013*	239	62.7	0.237	37	72.5	0.176	165	59.6
T/T 21 3.1 8 CC 457 66.7 0.035* 181 CT+TT 228 33.3 72 TT 221 3.1 0.047* 8 TT 21 3.1 0.047* 8 S2301995 (ELM) Allele 664 96.9 245 C 1121 81.8 0.013* 426 T 249 18.2 80 T 249 18.2 660 365 S1801133 (MTHFR) Genotype 560 365 0089	64 25.3		130	34.1		13	25.5		96	34.7
CC 457 66.7 0.035* 181 CT+TT 228 33.3 72 72 TT 21 3.1 0.047* 8 72 resolution 664 96.9 70 245 745 T 249 18.2 8 8 76 76 T 249 18.2 80 80 80 80 T 249 18.2 603 65 80 80 T 249 36.5 60.69 36.5 80 80 T 249 36.5 36.5 36.5 80	8 3.2		12	3.1		1	7		16	5.7
CT+FT 228 33.3 72 TT 21 3.1 0.047* 8 TT 21 3.1 0.047* 8 CT+CC 664 96.9 245 rs2301995 (ELM) Allele 81.8 0.013* 426 C 1121 81.8 0.013* 426 T 249 18.2 6013* 426 T 249 18.2 80 76 TS801133 (MTHFR) Genotype 56 0.089 110	181 71.5	0.004^{*}	239	62.7	0.41	37	72.5	0.08	165	59.6
TT 21 3.1 0.047* 8 CT+CC 664 96.9 0.047* 8 rs2301995 (ELN) Allele 121 81.8 0.013* 426 C 1121 81.8 0.013* 426 T 249 18.2 80 T 249 18.2 706 80 C 249 35.5 0.089 110	72 28.5		142	37.3		14	27.5		112	40.4
CT+CC 664 96.9 245 rs2301995 (ELN) Allele 81.8 0.013* 246 C 1121 81.8 0.013* 426 T 249 18.2 80 rs1801133 (<i>MTHFR</i>) Genotype 75 0.089 110 C/C 35 0.089 110	8 3.2	0.148	12	3.1	0.099	-	7	0.259	16	5.8
IS2501995 (EL/V) Allete C 1121 81.8 0.013* 426 T 249 18.2 80 IS1801133 (<i>MTHFR</i>) Genotype C/C 36 5 0.089 110	245 96.8		369	96.9		50	9.8		261	94.2
C 1121 81.8 0.015* 426 T 249 18.2 80 Sis1033 (<i>MTHFR</i>) Genotype 55 0.089 110 C 55 0.089 110		*0000	007			t		0.000		
1 2 249 18.2 30 18:1801133 (MTHFR) Genotype 55 0089 110 75 55 0089 110	426 84.2 90 15.9	0.003*	6U8 154	8.6/	0.200	8/	5.08	960.0	426	10.9
C/C 36 5 0089 110	0.CI NO		104	7.07		CI	14./		120	1.62
	110 125	*0000	102	<i>с сс</i>	0 607	L	<i>c cc</i>	0.010	01	
	2.04 011 2.14 201	. 700.0	001	0.20	0.072		0.00	0.019	10	7.67
UI 530 48.2 103 T/T 105 15.2 28	C.14 COI		198 60	0.70		17	7.2C		701	0.4C
CC 250 365 0032* 110	110 43.5	0.001*	173	37.3	0 404	17	33.3	0 558	F 2	C 0C
CC 200 2000 0002 110 CT+TT 435 63.5 143	595 511	100.0	758	C-7C	101.0	34	C. CC	0.0.0	196	4.07 8.01
TT 105 153 0829 38	38 15.0	0 783	00 7	15.7	0 962	5	13.7	0 696	44	15.9
CT+CC 580 84.7 215	215 85.0		321	84.3		44	86.3		233	84.1
rs1801133 (<i>MTHFR</i>) Allele										
C 830 60.6 0.114 325	325 64.2	0.012^{*}	444	58.3	0.564	61	59.8	0.558	314	56.7
T 540 39.4 181	181 35.8		318	41.7		41	40.2		240	43.3
Abbreviations: AMD represents age-related macular deg	r degeneration	nAMD represe	ents neovasc	ular age-1	related macul	lar degenera	ution PCV	represents po	lypoidal	
choroidal vasculonathy PAD represents retinal anciomat	matone nrolife	ation n-walne	s for the con	nnaricon	hetween race	s and contro	بنافيت ماد	es for genoty	Dec mare	

© 2011 Molecular Vision

Susceptibility genotype	To	otal AMD	patients		nAMD			PCV			RAP	
rs800392 (CFH)	p-value	OR	95%CI	p-value	OR	95%CI	p-value	OR	95%CI	p-value	OR	95%CI
GG (rec)	2.36×10^{-8}	2.47	1.79–3.41	7.66×10^{-8}	2.90	1.96-4.27	1.42×10^{-5}	2.26	1.55–3.27	0.029	2.09	1.08 - 4.06
GG+GA (dom)	3.33×10^{-4}	2.71	1.57-4.67	6.22×10^{-3}	2.68	1.32-5.34	8.46×10^{-3}	2.32	1.23-4.39			
rs10490924 (ARMS2)												
GT+TT (dom)	3.85×10^{-6}	2.29	1.61 - 3.26	2.00×10^{-5}	2.59	1.67 - 4.02	5.88×10^{-3}	1.75	1.17 - 2.62	0.001	11.60	2.69-50.03
TT (rec)	2.37×10^{-19}	5.74	3.76-8.77	3.24×10^{-16}	7.03	4.40-11.23	1.54×10^{-6}	3.37	2.09–5.42	1.54×10^{-13}	22.18	9.74-50.50
rs2301995 (ELN)												
CC (rec)				2.2×10^{-2}	1.58	1.07 - 2.35						
CC+CT (dom)												
rs1801133 (MTHFR)												
CC (rec)				2.50×10^{-3}	1.82	1.23-2.68						
CC+CT (dom)												

CI represents confidence intervals, dom represents dominant model, rec represents Abbreviations: AMD represents age-related macular degeneration, nAMD represents neovascular age-related macular degeneration, PCV represents polypoidal recessive model. p-values for comparisons between the case and control groups. p-values for genotypes were calculated using Fisher's exact test. p<0.05. Blanks Logistic regression analysis was performed for each genotype with adjustment for confounding factors (age, gender, hypertension, diabetes mellitus and smoking) choroidal vasculopathy, RAP represents retinal angiomatous proliferation, indicate no siginificant difference.

Molecular Vision 2011; 17:2751-2758 < http://www.molvis.org/molvis/v17/a297>

TABLE 4. ODDS RAT	IOS AND 95% CONFIDENCE INTE	RVALS FOR EACH MOD	DEL.
Susceptibility genotype	p-value	OR	95% CI
CFH recessive model	4.27×10^{-7}	2.17	1.60-2.94
ARMS2 recessive model	2.76×10^{-15}	4.73	3.22-6.99
ELN recessive model	0.018	1.44	1.06-1.96
MTHFR recessive model	0.037	1.40	1.02–1.94

p-values reflect the comparison between each gene. Abbreviations: OR represents odds ratio CI represents confidence intervals.

homozygosity to be a risk factor for PCV, we found CC homozygosity to be higher in the nAMD group. These findings suggest that the CC homozygosity of rs2301995 is related to nAMD rather than PCV.

In addition to these results, several other reports have demonstrated a relationship between the ELN protein and neovascularization [27,28]. Skeie et al. [27] reported that ELN abnormalities might play a role in the neovascularization that occurs in AMD. Sivaprasad et al. [28] reported that serum ELN-derived peptides might increase the risk of conversion from early AMD to neovascular AMD. Taken together, these reports suggest that ELN might be related to neovascularization. To our knowledge, ours is the first report showing the ELN SNP (rs2301995) to be associated with nAMD but to have no association with PCV. The previously reported, opposite results may be due to the different sample sizes in our study and that of Kondo et al. [29], who analyzed only 74 cases. We believe our results to be more reliable than theirs because our sample was much larger. Since we investigated only one SNP, we cannot conclude that the ELN gene has no association with PCV.

It is known that rs1801133 is a missense mutation in the MTHFR gene, which is located in the exon known as A222V. Although Haas et al. [39] concluded that this variant was not related to AMD, there is a widely accepted view that homocysteine is a risk factor for atherosclerosis [31,33] and AMD [30]. Therefore, we examined the association between this variant and AMD subtypes in Japanese subjects. Significant differences were noted among the nAMD and control groups, suggesting MTHFR to be a potential marker of AMD. In addition, our results also indicate that nAMD might not be related to atherosclerosis. Most previous studies showed TT homozygosity to be more common in subjects with atherosclerosis than in those without it. However, we found the rate of CC homozygotes to be higher in the AMD group than in the controls. This is quite the opposite of previous reports on atherosclerosis. This variant may be a genetic marker that does not affect gene function, and the C or T allele may be linked to different susceptibility alleles for either atherosclerosis or AMD.

To our knowledge, this is the first application of logistic regression analysis to confounding factors known to be associated with AMD risk in three AMD subtypes (Table 3). All genotypes showing significant differences in the simple case-control study also yielded significant p values from the logistic regression analyses. These results suggest that each of the genotypes examined is an independent risk factor for AMD.

The present study is the first to examine potential correlations of the *MTHFR* and *ELN* genes with each of three AMD subtypes based on examinations of SNPs. Our findings suggest that polymorphisms of each gene are potentially useful genetic markers of AMD, and indicate that SNPs of the *ARMS2* gene may serve as strong genetic markers of RAP. The major limitation of this study is that only one SNP in each of the four genes was examined in a rather small numbers of patients. These results are preliminary, especially for RAP. Based on the present results, we plan further studies to investigate specific SNPs for each subtype of AMD, particularly those for PCV and RAP. Findings from these studies are anticipated to facilitate clarification of the causes of AMD.

ACKNOWLEDGMENTS

We thank all patients who participated in this study. This work was funded in part by the Research Committee on Chorioretinal Degenerations and Optic Atrophy, and by The Ministry of Health and Welfare of Japan (Mitsuko Yuzawa).

REFERENCES

- Oshima Y, Ishibashi T, Murata T, Tahara Y, Kiyohara Y, Kubota T. Prevalence of age related maculopathy in a representative Japanese population: the Hisayama study. Br J Ophthalmol 2001; 85:1153-7. [PMID: 11567955]
- Yasuda M, Kiyohara Y, Hata Y, Arakawa S, Yonemoto K, Doi Y, Iida M, Ishibashi T. Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population the Hisayama study. Ophthalmology 2009; 116:2135-40. [PMID: 19744734]
- Sperduto RD, Hiller R. Systemic hypertension and age-related maculopathy in the Framingham Study. Arch Ophthalmol 1986; 104:216-9. [PMID: 3947296]
- Klein R, Klein BE, Linton KL, DeMets DL. The Beaver Dam Eye Study: the relation of age-related maculopathy to smoking. Am J Epidemiol 1993; 137:190-200. [PMID: 8452123]

Molecular Vision 2011; 17:2751-2758 < http://www.molvis.org/molvis/v17/a297>

- Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308:385-9. [PMID: 15761122]
- Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH. Hypothetical ARMS2 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 2005; 14:3227-36.
 [PMID: 16174643]
- Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C, Tam PO, Chan WM, Lam DS, Snyder M, Barnstable C, Pang CP, Hoh J. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006; 314:989-92. [PMID: 17053108]
- Yoshida T, DeWan A, Zhang H, Sakamoto R, Okamoto H, Minami M, Obazawa M, Mizota A, Tanaka M, Saito Y, Takagi I, Hoh J, Iwata T. HTRA1 promoter polymorphism predisposes Japanese to age-related macular degeneration. Mol Vis 2007; 13:545-8. [PMID: 17438519]
- Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. ARMS2/ HTRA1 variants in polypoidal choroidal vasculopathy and age-related macular degeneration in a Japanese population. Am J Ophthalmol 2007; 144:608-12. [PMID: 17692272]
- Gotoh N, Nakanishi H, Hayashi H, Yamada R, Otani A, Tsujikawa A, Yamashiro K, Tamura H, Saito M, Saito K, Iida T, Matsuda F, Yoshimura N. ARMS2 (LOC387715) variants in Japanese patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Am J Ophthalmol 2009; 147:1037-41. [PMID: 19268887]
- Okamoto H, Umeda S, Obazawa M, Minami M, Noda T, Mizota A, Honda M, Tanaka M, Koyama R, Takagi I, Sakamoto Y, Saito Y, Miyake Y, Iwata T. Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis 2006; 12:156-8. [PMID: 16541016]
- Gotoh N, Yamada R, Hiratani H, Renault V, Kuroiwa S, Monet M, Toyoda S, Chida S, Mandai M, Otani A, Yoshimura N, Matsuda F. No association between complement factor H gene polymorphism and exudative age-related macular degeneration in Japanese. Hum Genet 2006; 120:139-43. [PMID: 16710702]
- Uka J, Tamura H, Kobayashi T, Yamane K, Kawakami H, Minamoto A, Mishima HK. No association of complement factor H gene polymorphism and age-related macular degeneration in the Japanese population. Retina 2006; 26:985-7. [PMID: 17151483]
- Mori K, Gehlbach PL, Kabasawa S, Kawasaki I, Oosaki M, Iizuka H, Katayama S, Awata T, Yoneya S. Coding and noncoding variants in the CFH gene and cigarette smoking influence the risk of age-related macular degeneration in a Japanese population. Invest Ophthalmol Vis Sci 2007; 48:5315-9. [PMID: 17962488]
- Mori K, Horie-Inoue K, Gehlbach PL, Takita H, Kabasawa S, Kawasaki I, Ohkubo T, Kurihara S, Iizuka H, Miyashita Y, Katayama S, Awata T, Yoneya S, Inoue S. Phenotype and genotype characteristics of age-related macular degeneration

in a Japanese population. Ophthalmology 2010; 117:928-38. [PMID: 20132989]

- 16. Goto A, Akahori M, Okamoto H, Minami M, Terauchi N, Haruhata Y, Obazawa M, Noda T, Honda M, Mizota A, Tanaka M, Hayashi T, Tanito M, Ogata N, Iwata T. Genetic analysis of typical wet-type age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese population. J Ocul Biol Dis Infor. 2009; 2:164-75. [PMID: 20157352]
- Wegscheider BJ, Weger M, Renner W, Steinbrugger I, März W, Mossböck G, Temmel W, El-Shabrawi Y, Schmut O, Jahrbacher R, Haas A. Association of complement factor H Y402H gene polymorphism with different subtypes of exudative age-related macular degeneration. Ophthalmology 2007; 114:738-42. [PMID: 17398321]
- Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, Nakata I, Tsujikawa A, Otani A, Saito M, Iida T, Matsuo K, Tajima K, Yamada R, Yoshimura N. CFH and ARMS2 variations in agerelated macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 2010; 51:5914-9. [PMID: 20574013]
- Takahashi K, Ishibashi T, Ogur Y, Yuzawa M, Working Group for Establishing Diagnostic Criteria for Age-Related Macular Degeneration. Classification and diagnostic criteria of agerelated macular degeneration. Nippon Ganka Gakkai Zasshi 2008; 112:1076-84. [PMID: 19157028]
- Maruko I, Iida T, Saito M, Nagayama D, Saito K. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 2007; 144:15-22. [PMID: 17509509]
- Yannuzzi LA, Wong DW, Sforzolini BS, Goldbaum M, Tang KC, Spaide RF, Freund KB, Slakter JS, Guyer DR, Sorenson JA, Fisher Y, Maberley D, Orlock DA. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 1999; 117:1503-10. [PMID: 10565519]
- Lafaut BA, Leys AM, Snyers B, Rasquin F, De Laey JJ. Polypoidal choroidal vasculopathy in Caucasians. Graefes Arch Clin Exp Ophthalmol 2000; 238:752-9. [PMID: 11045343]
- Ladas ID, Rouvas AA, Moschos MM, Synodinos EE, Karagiannis DA, Koutsandrea CN. Polypoidal choroidal vasculopathy and exudative age-related macular degeneration in Greek population. Eye (Lond) 2004; 18:455-9. [PMID: 15131673]
- Torrón Fernández-Blanco C, Marcuello Melendo B, Pérez-Oliván S, Ruiz-Moreno O, Ferrer Novella E, Honrubia López FM. Idiopathic polypoidal choroidal vasculopathy. Arch Soc Esp Oftalmol 2004; 79:229-35. [PMID: 15173967]
- Nakashizuka H, Mitsumata M, Okisaka S, Shimada H, Kawamura A, Mori R, Yuzawa M. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2008; 49:4729-37. [PMID: 18586873]
- Bobryshev YV. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005; 180:293-303. [PMID: 15910855]
- Skeie JM, Mullins RF. Elastin-mediated choroidal endothelial cell migration: possible role in age-related macular degeneration. Invest Ophthalmol Vis Sci 2008; 49:5574-80. [PMID: 18708613]

Molecular Vision 2011; 17:2751-2758 < http://www.molvis.org/molvis/v17/a297>

- Sivaprasad S, Chong NV, Bailey TA. Serum elastin-derived peptides in age-related macular degeneration. Invest Ophthalmol Vis Sci 2005; 46:3046-51. [PMID: 16123400]
- Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2008; 49:1101-5. [PMID: 18326737]
- Vine AK, Stader J, Branham K, Musch DC, Swaroop A. Biomarkers of cardiovascular disease as risk factors for agerelated macular degeneration. Ophthalmology 2005; 112:2076-80. [PMID: 16225921]
- Ates O, Azizi S, Alp HH, Kiziltunc A, Beydemir S, Cinici E, Kocer I, Baykal O. Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J Exp Med 2009; 217:17-22. [PMID: 19155603]
- Lee I, Lee H, Kim JM, Chae EH, Kim SJ, Chang N. Short-term hyperhomocysteinemia-induced oxidative stress activates retinal glial cells and increases vascular endothelial growth factor expression in rat retina. Biosci Biotechnol Biochem 2007; 71:1203-10. [PMID: 17485853]
- Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002; 325:1202. [PMID: 12446535]
- Sawabe M, Arai T, Araki A, Hosoi T, Kuchiba A, Tanaka N, Naito T, Oda K, Ikeda S, Muramatsu M. Smoking confers a

MTHFR 677C>T genotype-dependent risk for systemic atherosclerosis: results from a large number of elderly autopsy cases that died in a community-based general geriatric hospital. J Atheroscler Thromb 2009; 16:91-104. [PMID: 19403988]

- Mizutani Y, Nakayama T, Asai S. Study on the association between angioid streaks and *ABCC6* as the causal gene of pseudoxanthoma elasticum. Int J Biomed Sci 2006; 2:9-14.
- Sato N, Nakayama T, Mizutani Y, Yuzawa M. Novel mutations of ABCC6 gene in Japanese patients with angioid streaks. Biochem Biophys Res Commun 2009; 380:548-53. [PMID: 19284998]
- Alsenz J, Schulz TF, Lambris JD, Sim RB, Dierich MP. Structural and functional analysis of the complement component factor H with the use of different enzymes and monoclonal antibodies to factor H. Biochem J 1985; 232:841-50. [PMID: 2936333]
- Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, Weber BH. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 2008; 40:892-6. [PMID: 18511946]
- Haas P, Aggermann T, Steindl K, Krugluger W, Pühringer H, Oberkanins C, Frantal S, Binder S. Genetic cardiovascular risk factors and age-related macular degeneration. Acta Ophthalmol. 2009

Articles are provided courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China. The print version of this article was created on 19 October 2011. This reflects all typographical corrections and errata to the article through that date. Details of any changes may be found in the online version of the article.