J Physiol 596.5 (2018) pp 885-899 885

Kv4.2 channel activity controls intrinsic firing dynamics
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Key points

e Neurons in the hypothalamus of the brain which secrete the peptide kisspeptin are important
regulators of reproduction, and normal reproductive development.

e Electrical activity, in the form of action potentials, or spikes, leads to secretion of peptides and
neurotransmitters, influencing the activity of downstream neurons; in kisspeptin neurons, this
activity is highly irregular, but the mechanism of this is not known.

o In this study, we show thatirregularity depends on the presence of a particular type of potassium
ion channel in the membrane, which opens transiently in response to electrical excitation.

® The results contribute to understanding how kisspeptin neurons generate and time their
membrane potential spikes, and how reliable this process is.

¢ Improved understanding of the activity of kisspeptin neurons, and how it shapes their secretion
of peptides, is expected to lead to better treatment for reproductive dysfunction and disorders
of reproductive development.

Abstract Kisspeptin neuronsin the hypothalamus are critically involved in reproductive function,
via their effect on GnRH neuron activity and consequent gonadotropin release. Kisspeptin
neurons show an intrinsic irregularity of firing, but the mechanism of this remains unclear.
To address this, we carried out targeted whole-cell patch-clamp recordings of kisspeptin neurons
in the arcuate nucleus (Kiss1*), in brain slices isolated from adult male Kiss-Cre:tdTomato
mice. Cells fired irregularly in response to constant current stimuli, with a wide range of spike
time variability, and prominent subthreshold voltage fluctuations. In voltage clamp, both a
persistent sodium (NaP) current and a fast transient (A-type) potassium current were apparent,
activating at potentials just below the threshold for spiking. These currents have also previously
been described in irregular-spiking cortical interneurons, in which the A-type current, mediated
by Kv4 channels, interacts with NaP current to generate complex dynamics of the membrane
potential, and irregular firing. In Kiss1"™ neurons, A-type current was blocked by phrixotoxin, a
specific blocker of Kv4.2/4.3 channels, and consistent expression of Kv4.2 transcripts was detected
by single-cell RT-PCR. In addition, firing irregularity was correlated to the density of A-type
current in the membrane. Using conductance injection, we demonstrated that adding Kv4-like
potassium conductance (gx,4) to a cell produces a striking increase in firing irregularity, and
excitability is reduced, while subtracting gx,+ has the opposite effects. Thus, we propose that Kv4
interacting dynamically with NaP is a key determinant of the irregular firing behaviour of Kiss1#™
neurons, shaping their physiological function in gonadotropin release.
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Introduction

Hypothalamic kisspeptin-GPR54 signalling is critical
in regulating reproductive functions in mammals
(d’Anglemont de Tassigny & Colledge, 2010). Disruption
of this pathway leads to infertility in both sexes, as it
prevents maturation of the gonads during puberty (de
Roux et al. 2003; Seminara et al. 2003; Kirilov et al.
2013). The neuropeptide kisspeptin is produced in two
distinct regions in the rodent hypothalamus: one localised
in the rostral periventricular area of the third ventricle
(Kiss1®"3V) and another in the arcuate nucleus (Kiss14).
The release of kisspeptin from these neurons is able to
activate the G-protein coupled receptor KISSIR (also
known as GPR54), expressed by gonadotropin-releasing
hormone (GnRH) neurons (Han et al. 2005; Piet et al.
2014), which in turn stimulates GnRH neuron firing and
causes the secretion of GnRH into the hypophyseal-portal
blood system.

Although both groups of kisspeptin neurons appear
to synapse directly onto GnRH neurons, they show
distinct properties. Notably, Kiss1®"3V neurons synapse
onto GnRH neuron cell bodies and proximal dendrites,
and exhibit a sexual dimorphism, where the females have
a larger neuronal population (Clarkson & Herbison 2006;
Kauffman et al. 2007). In contrast, Kiss1* neurons,
whose population is relatively similar in size in both sexes
(Clarkson & Herbison, 2006; Hoong Yip ef al. 2015),
synapse onto the more distal projections of the GnRH
neurons within the median eminence region.

It is not entirely clear how these two populations
regulate GnRH neuron firing. Recently, optogenetic
stimulation was used to investigate how these kisspeptin
neurons might integrate their inputs, and to test the firing
conditions required for release of luteinizing hormone
(LH) into the bloodstream. Firstly, optogenetic activation
of GnRH neurons revealed that these cells require
stimulation for atleast 2 min at 10 Hz to evoke an LH surge
(Campos & Herbison, 2014). Secondly, the excitation
of GnRH neurons by upstream neurons was addressed
(Han et al. 2015), revealing that Kiss1* neurons also
need to fire for 2-5 min at 10 Hz in order to increase
LH in the blood to physiologically-effective levels, via
a kisspeptin/GPR54 mediated mechanism. Thirdly, the
synaptic pathway through which Kiss14™ neurons recruit
other kisspeptin neurons has also recently been uncovered
(Qiu et al. 2016). Briefly, Kiss1*™ neurons were shown
to display a frequency-dependent differential release of
peptides (kisspeptin, neurokinin-B and dynorphin) and
amino acid neurotransmitters (glutamate), which, at high
firing frequency (20 Hz), evoked synchronised activity of
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Kiss1®"*V neurons, as well as ipsilateral and contralateral
Kiss1#™ neurons.

Although the circuitry in which kisspeptin neurons are
embedded is slowly being unravelled, characterisation of
the intrinsic electrophysiological properties of these cells
remains incomplete. Several studies have shown that a
variety of ion channels are present in these cells (Kelly
et al. 2013; Zhang et al. 2013; Piet et al. 2014), but it
is still unclear how the distribution and interaction of
ion channels determines their spiking patterns and overall
excitability.

In this paper, we have used a Kiss-Cre:tdTomato trans-
genic mouse (Yeo et al. 2016) to further characterise
the electrical properties of Kiss1™ neurons in males.
Using patch clamp recording combined with conductance
injection, we show that these cells have firing properties
strongly influenced by fast inactivating potassium currents
(A-type current). This current imposes sub-threshold
membrane oscillations, which by interacting with other
subthreshold currents — like persistent sodium currents
(NaP) — generates spiking irregularity, even in the absence
of synaptic activity. By characterising the A-type current
through means of pharmacological blockade and kinetics,
combined with single-cell RT-PCR, it is demonstrated
that this current is mediated mainly by Kv4.2. Using
conductance injection, we were able to effectively control
spiking irregularity and excitability in Kiss1*™ neurons
by modulating the level of Kv4-type conductance. These
results identify an important determinant of the firing
dynamics of Kiss1*™ neurons. The heterogeneous levels
of Kv4 conductance present in these cells not only
diversify their spiking patterns, but also control their
excitability, suggesting that it might be a strong candidate
for modulation in order to regulate Kiss1*™ excitation
onto GnRH neurons and other kisspeptin neurons.

Methods
Ethical approval

Animals were killed in accordance with the UK
Home Office regulations under the Animal (Scientific
Procedures) Act of 1986. The establishment, breeding and
care of the mouse line were approved by a Local Ethics
Committee at the University of Cambridge and performed
under authority of a Home Office Licence (UK).

Animal model

Arcuate kisspeptin neurons were located using a recently
developed Kiss-CRE:tdTomato mouse line (Yeo et al.
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2016). Briefly, Cre recombinase was inserted in exon 2 after
the first five amino-acids of the KISS1 protein sequence
(Met-Ile-Ser-Met-Ala). Next, the line was crossed with a
reporter line expressing tdTomato under the constitutive
CAG promoter, but preceded by a floxed STOP codon
(Jackson Laboratories, Bar Harbor, ME, USA). The
resulting offspring selectively expressed the tdTomato
reporter only in KissI-expressing cells. Since the Cre
recombinase gene disrupts the Kiss] coding sequence,
Kiss-Cre homozygous mutant mice had impaired gonad
development and thus were infertile. Heterozygous
animals, which were all genotyped, show normal fertility
and were used for breeding and for experiments.

All data shown are from heterozygous mice, with the
exception of the cells used for neurobiotin-filled images
(Fig. 1A), for which we used homozygous mutant mice,
as strong tdTomato expression in fibres allowed clearer
confocal images. In order to exclude the physiological
effects of the fluctuating levels of oestrogen throughout the
oestrous cycle, only adult males were used for experiments.

Brain slice preparation

Animals were killed by cervical dislocation, followed by
quick opening of the skull and careful removal of the
brain, which was placed in ice-cold solution consisting of
(inmM): 254 sucrose, 25 NaHCOs3, 2.5 KCl, 1.25 NaH, POy,
2 CaCly, 1 MgCl, and 10 glucose, maintained at pH 7.4
by bubbling with 95% oxygen/5% CO, gas mixture
(carbogen). Coronal slices 300 um thick were obtained
with a vibratome (LEICA VT1200S), and kept at room
temperature for 40 min in artificial cerebrospinal fluid
solution (aCSF), consisting of (in mm): 125 NaCl,
25 NaHCO3, 2.5 KCI, 1.25 NaH2PO4, 2 CaClz, 1 MgCIZ,
0.01 glycine and 25 glucose, equilibrated with carbogen.

Brain slices were imaged using an upright micro-
scope (BX50WT) and perfused with carbogen-equilibrated
aCSF, heated to 30-33°C. Arcuate kisspeptin neurons were
visualised with differential interference contrast (DIC) and
identified by tdTomato epifluorescence.

Patch-clamp recordings

Electrophysiological recordings were carried out with an
Axon Multiclamp 700B amplifier and CV-7B headstage
(Molecular Devices, Sunnyvale, CA, USA). Custom
written Matlab software (Mathworks, Natick, MA, USA)
was used to control a 16-bit National Instruments X-series
board, with sampling and waveform generation at 20 KHz.
Inputs were filtered before sampling using the built-in 4
KHz Bessel filtering of the Multiclamp. The Multiclamp
Commander software was used to obtain a bridge
balance (current-clamp experiments) and series resistance
compensation (voltage-clamp experiments; <30 M2 and
compensated up to 90%). Borosilicate glass capillaries
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(5-7 M Q, Harvard Apparatus, Kent, UK) were used
to pull patch pipettes with a PP-83 puller (Narishige,
Tokyo, Japan), which were then fire-polished (Micro
Forge MF-830, Narishige) to promote high-quality seal
formation.

Passive properties were determined by applying a
hyperpolarising step current (from —20 to —40 pA) in
current-clamp mode, and fitting an exponential curve to
the response:

Vin () = IRe™ "™ 4 Vi,

where, R is the input resistance, I is the step current
injected, 7 is the membrane time constant and Vi is
the resting membrane potential.

Firing properties were assessed in current-clamp
configuration, where synaptic activity was reduced by
10 uMm gabazine, 10 uM CNQX and 10 um APV. Firing
irregularity was quantified by applying a square current
step (2-10 s) sufficient to evoke firing at 7-13 Hz. Next,
the interspike intervals (ISI) were used to calculate the
coefficient of variation of the interspike interval (CVISI),
defined as the ratio of the standard deviation of the ISI to
the mean ISI.

Voltage-gated potassium currents were analysed in
the presence of tetrodotoxin (TTX, 300 nMm). In both
current and voltage-clamp experiments, the intracellular
solution used consisted of (in mm): 105 potassium
gluconate, 30 KCl, 10 HEPES, phosphocreatine Na,,
4 ATP-Mg, 0.3 GTP-Na and 1 EGTA, balanced to
pH 7.3 with KOH (10 mV liquid junction potential
correction applied, 290-300 mOsm). Persistent sodium
current was characterised with 2 mM 4-AP, 2 mMm
TEA and 200 um Cd?t added to the extracellular
solution, using an intracellular solution consisting of
(in mM): 90 caesium methanesulfonate, 30 CsCl, 10
BAPTA, 10 HEPES, balanced to pH 7.3 with HCI (liquid
junction potential = 12 mV). Salts were purchased from
Sigma-Aldrich (Dorset, UK), while synaptic blockers
were acquired from Tocris Bioscience (Bristol, UK), and
phrixotoxin from Abcam (Cambridge, UK).

Artificial conductance injection

Kv4-type conductance was artificially modulated in
Kiss1A™ neurons using the dynamic-clamp technique
(Robinson & Kawai, 1993; Sharp et al. 1993a; Robinson,
2013). In summary, a hard real-time SM2 system
(Cambridge Conductance; see Robinson, 2008) was
used to sample the membrane potential and inject a
fast-inactivating outward conductance according to the
Hodgkin-Huxley-type equation:

Ia(t) = g mh(Vy, — Ex),

where g is the maximum conductance; Vy, is the
membrane potential; Ex is the K reversal potential; and
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Figure 1. General electrophysiological properties of arcuate kisspeptin neurons

A, left: distribution of Kiss1-tdTomato cells in the arcuate nucleus in coronal sections, divided by the third ventricle.
Right: detailed morphology of a neurobiotin-filled neuron. Scale bars of 150 um and 50 um respectively. B,
around 22 % of the recorded cells displayed spontaneous firing, even in the presence of synaptic blockers. C, when
stimulated with a square step current, most cells displayed a clear irregular-spiking pattern, noticeably at lower firing
frequencies. D, in other neurons, spiking irregularity was also present at higher firing frequencies. E, distribution
of 5104 interspike intervals from a cell firing at 7-13 Hz. The broad distribution shows no distinct periodic peaks.
Kurtosis: 8.28 Skewness: 1.60. F, kisspeptin neurons resisted firing at frequencies higher than approximately 40 Hz,
as strong excitation led to depolarisation block. G, hyperpolarisation induced current (H-current) observed in a
fraction of kisspeptin neurons (14/49; seen here as a depolarising ‘sag’).
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m and h are the activation and inactivation variables,
respectively, which obey:

dm  me —m

dt T
and

dh . hoo — h

dt o Th ’

where m, and he, are the voltage-dependent, steady-state
limiting values of m and h and 1, and 7, are
the voltage-dependent time constant of activation
and inactivation, respectively. The voltage-dependent
quantities Moo, hoo, Try and ty, were specified as follows:

1
me V) = etz = v ™

T, (V) = 0.346eY/18272) 4 2 09,

1
)= 1 + exp(0.0878(V 4 55.1))

oo (

7 (V) = 2.1e57Y212) 4 4.627.

The Kv4 conductance kinetics were determined from
currents previously recorded in mouse cortical inter-
neurons (Mendonga et al. 2016), which displayed virtually
identical kinetics to those observed in Kiss14™ neurons. To
facilitate interpretation of dynamic-clamp experiments,
the amount of artificial Kv4-type conductance (ggy4)
injected is characterised by its peak value at 0 mV (gmax
0mV).

Confocal imaging

In some cases, neurobiotin (0.5%) was added to the intra-
cellular solution in order to analyse the morphology of
Kiss14™ neurons. Cells were patched for at least 20 min
in order to allow complete diffusion of neurobiotin
into finer processes of the neuron. Next, the slices were
fixed in 4% paraformaldehyde overnight, followed by
3 x 15 min phosphate-buffered saline (PBS) washes. Alexa
405 Fluor Streptavidin conjugated dye (1-2 ug mL™!, Life
Technologies) was then applied to the slice for 3 h at 5°C.
Another series of PBS washes was done before mounting
the samples on microscope slides with ProLong Gold anti-
fade reagent (Invitrogen), which were then kept in the
dark at 4°C for at least one day before imaging. Confocal
images were acquired with a Leica SP2 microscope, and a
minimum 2 pum resolution z-stack was acquired for each
cell.
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Cytoplasmic harvesting and single cell
reverse-transcription PCR

Single cell cytoplasm collection was carried out using
a similar approach to that described previously (Yano
et al. 2006; Subkhankulova et al. 2010). In summary,
using an intracellular solution containing an RNAse
inhibitor (RNase OUT, 1 U uL™!, Life Technologies),
a standard whole-cell recording mode was established.
Next, a gentle negative pressure was applied (<150 mbar),
creating a slow inward flow of the cytoplasm into the
patch pipette. Proper care was taken to maintain the
seal resistance. After approximately 2 min, most of the
cytoplasmic content was collected, whereupon a slightly
stronger pressure was applied in order to fully aspirate the
nucleus. The contents of the pipette were then expelled into
PCR tubes containing random primers, oligo-dT primers,
dNTPs (Promega, Southampton, UK), RNaseOUT (Life
Technologies, Paisley, UK) and sterile MQ water for cDNA
synthesis via reverse transcription.

Briefly, the presence of Kv4 channel mRNA in kisspeptin
neurons was verified with single cell nested PCR reactions,
in particular to detect Kv4.1, Kv4.2 and Kv4.3 gene
expression. The cDNA was amplified with two consecutive
PCRs, consisting of 40 cycles on the first round, 20
cycles on the second, and a 1:100 dilution of the product
between first and second rounds, using two sets of primers
(nested primers) for each gene of interest (See Table 1).
The resulting product was analysed for appropriate
size using 1.5% agarose gel electrophoresis. The Hprt
housekeeping gene was used as an internal positive control
to ensure that all cDNA conversions were successful. The
pro-opiomelanocortin (POMC) gene was used as an inter-
nal negative control to confirm that all tdTomato cells, and
only tdTomato cells, expressed Kiss] mRNA. Additionally,
sterile distilled water replacing cDNA was also used as a
negative control.

Data analysis and statistics

Data were analysed with custom Matlab scripts. All
statistical values described in this work are shown
as mean =+ standard error of the mean (SEM),
unless otherwise stated. In most experiments, adequate
demonstration of normality of distribution was not
possible, and so non-parametric tests, like the Mann-
Whitney U test, were applied, except where stated.

Results
Kiss1%' neurons display an irregular firing pattern

Kisspeptin-expressing neurons were distributed over a
large portion of the arcuate nucleus, notably in the
caudal region. These cells had very small somas, with

© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 1. Primers used for nested RT-PCR (see Methods)

J Physiol 596.5

Target Sequence Amplicon bp Accession number
KV4.1 forward primer ACCACACTTGGGTATGGAG 378 NM_008423.1
KV4.1 reverse primer TGAACTCGTGACACGTAGTCTTCT

KV4.2 forward primer ACACTGGGGTATGGCGACA 379 NM_019697.3
KV4.2 reverse primer AACTCATGGTTCGTGGTTTTCTC

KV4.3 forward primer CTACACTGGGATATGGAGACATGG 395 NM_001039347.1
KV4.3 reverse primer GCTCATCAATAAACTCATGGTTAGTGG

KISS 1 forward primer GGAACTCGTTAATGCCTGGG 319 NM_178260.3
KISS 1 reverse primer CTAGAAGCTCCCTGCCTTGG

HPRT forward primer ATGCCGACCCGCAGTC 563 J00423.1

HPRT reverse primer GAATTTCAAATCCAACAAAGTCTGG

Nested KV4.1 forward primer TTGGGTCCATCTGCTCACTT 203 NM_008423.1
Nested KV4.1 reverse primer GGCCCCCATTTTGCTTATAC

Nested KV4.2 forward primer ACCAAAACCAACGAGCAGAC 200 NM_019697.3
Nested KV4.2 reverse primer TGGTGCTGTGTCTCAAAGCTG

Nested KV4.3 forward primer ACAAAAGAAGGCCCGCCT 130 NM_001039347.1
Nested KV4.3 reverse primer CCTCTTCTGGGGTGCCC

Nested Kiss forward primer GAGAGCAAGCCTGGGTCTG 252 NM_178260.3
Nested Kiss reverse primer AATCCACCTGCAGCCCA

Nested HPRT forward primer CGTGATTAGCGATGATGAACCA 486 J00423.1

Nested HPRT reverse primer TTCACCAGCAAGCTTGCAAC

long dendritic projections that were mainly oriented
dorsally (Fig. 1A), with a fairly high input resistance
of 1.34 £ 0.69 G2, passive membrane time constant
of 41.9 + 18.55 ms, capacitance of 33.7 + 13.68 pF
and resting membrane potential of —67.4 £+ 8.17 mV
(mean £ SD, n = 49). Approximately 22% of cells
(11/49) displayed spontaneous spikes at around 1 Hz
(Fig. 1B). Interestingly, when a step current injection was
applied (from 2 to 10 s), most cells presented an irregular
spiking pattern with sub-threshold fluctuations, which
was usually, but not always, more pronounced at lower
firing frequencies (Fig. 1C-E). Kiss1™ neurons resisted
firing at high frequencies (Fig. 1F), reaching a maximum
of approximately 40 Hz, and exhibiting depolarisation
block with strong current stimulation. Additionally, 29%
(14/49) of the cells displayed a noticeable H current
(Fig. 1G) as described by others in Kiss1 neurons (Gottsch
et al. 2011; Zhang et al. 2013). Although these different
features illustrated the variation in electrophysiological
properties of Kiss1*™ neurons, no clear pattern emerged
sufficient to suggest the existence of distinct populations.

Kiss12" neurons display sub-threshold membrane
fluctuations and persistent sodium currents

Irregular-spiking kisspeptin neurons displayed highly
variable interspike intervals (ISIs), characterised by noisy
membrane potential fluctuations at the firing threshold,
especially during longer intervals (Fig. 2A-C), and with
a noticeable low frequency component (up to 30 Hz,
Fig. 2D). As noisy sub-threshold oscillations may perturb

spike timing precision, they were assumed to be an
important factor contributing to the generation of
irregular firing. These fluctuations persisted throughout
ISIs, with no apparent trend in amplitude over time
during ISIs, suggesting that they were likely produced by
non-inactivating voltage-dependent currents. Persistent
sodium currents (NaP), which have already been described
in Kiss1*"V neurons (Zhang et al. 2013), and are a likely
candidate for involvement in the depolarizing phase of
oscillations. We therefore sought to measure the level of
NaP in Kiss14* neurons.

In the presence of potassium and calcium channel
blockers (TEA 2 mmM, 4-AP 2 mMm and Cd?>* 200 um),
Kiss14™ neurons were subjected to a slowly depolarising
voltage ramp (20 mV s !), revealing a TTX-sensitive
inward current, activating at around —60 to —55 mV
(Fig. 2E, n = 9 total, n = 4 with TTX application),
and with no apparent inactivation, characteristic of NaP.
Based on this voltage range of activation it can be assumed
that NaP is involved in the generation of sub-threshold
fluctuations. However, NaP is expressed in numerous
types of neurons (Bean, 2007), and is not necessarily
related to firing irregularity. We therefore looked for
other sub-threshold currents that could promote ISI noise,
particularly currents that could interact with NaP.

An A-type current mediated by Kv4 is highly
expressed in Kiss1A™

We attempted to characterise outward currents that were
expressed in Kiss1*™ neurons. When depolarising voltage

© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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steps were applied, these cells displayed a prominent We used pre-pulse steps (Burdakov & Ashcroft, 2002;
to isolate the
to peak) and fast inactivating (=30 ms) component.  A-type current by subtraction, and measure its recovery
Surprisingly, this was the dominant outward current type  from inactivation (Fig. 3B, n = 17), as well as steady-state
expressed in Kiss1*™ (Fig. 3A, n = 13). A-type current is  activation and inactivation relationships (Fig. 3C). Using
mM TEA also

A-type K current, with a fast activating (=3 ms time  Amarillo et al. 2008; Maffie et al. 2013)

categorised as a sub-threshold current (Bean, 2007), and  the pre-pulse method in the presence of 5

since it was present in virtually all viable cells patched, we  allowed accurate isolation of the A-type current from
investigated its properties in more detail. other outward currents expressed in Kiss1™ neurons
A 15 pA, 6.25 Hz
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Figure 2. Irregular-spiking kisspeptin neurons show APs separated by sub-threshold voltage
fluctuations

A and B, detailed waveforms of noisy interspike intervals. Asterisk marks expanded examples. C, averaged
membrane potential amplitude histogram of long ISIs (n = 9 neurons, each represented by 4 ISIs of around
100 ms) shows that fluctuations cover the range from —60 mV to —45 mV. D, power spectrum (below) of traces
near the rheobase (example shown at top) reveals a broad distribution of low frequency fluctuations up to 30 Hz
(n = 7, averaged and band-pass filtered at 3-100 Hz). E, responses to slow depolarizing membrane potential
ramps show salient non-inactivating (persistent) sodium currents activating over the voltage range spanned by
sub-threshold oscillations. Inward peak current was 27.9 & 2.6 pA at —50 mV, using a linear leak subtraction.
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Figure 3. Kisspeptin neurons display a prominent A-type current
A, voltage steps from —50 to 50 mV reveal a fast-inactivating outward current activating at around the spike
threshold potential. B, illustration of the series of inactivating voltage steps that were used to characterise the
kinetics of the A-type current. C and D, data from A and B were used to reconstruct the steady-state activation
and inactivation curves (C), as well as the time constant for recovery of inactivation (D). E, inactivating pre-pulses
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(inset) were applied in order to isolate the fast inactivating current component (in the presence of 5 mm TEA),
which allowed characterisation of its activation and inactivation dynamics. For each voltage step, the isolated
A-type current was obtained by subtracting the control step (preceded by an inactivating step) from the test step.
Kisspeptin neurons showed 16.2 + 4.9 nS of peak conductance at 0 mV. f, the time constants for activation and
inactivation were weakly voltage dependent. G, left: the peak current amplitude is dominated by fast-inactivating
currents, particularly at more negative membrane potentials. Right panel: zoomed region of /~V plot shown on

the left, leak currents subtracted.

(Fig. 3E-G, n = 16). We found that these cells expressed
a total of 16.2 + 4.9 nS peak conductance at 0 mV.
The current activated at around —55 mV, and had a
time constant for the exponential recovery of inactivation
in the range 15-60 ms (weakly voltage-dependent;
Fig. 3F). The peak outward current was dominated by
the fast-inactivating fraction, which comprised 70% of the
total amplitude at 0 mV (1136 pA for A-type current, and
496 pA for the remaining TEA-resistant current, Fig. 3G).

Kv4-type channels are known to contribute sub-
stantially to the macroscopic A-type current in many
cell types, but in some cases, Kv1.4, Kv3.3 or Kv3.4 may
also be involved, as they display similar fast-inactivating
properties. However, the kinetics of the A-type current
recorded in Kiss1*™ neurons strongly suggest that it is
mainly mediated by somatic Kv4 channels. Specifically,
the similar activation and inactivation curves (Birnbaum
et al. 2004), the fairly fast recovery from inactivation
and the weak voltage dependence of its time course are
all known properties of Kv4 channels. Participation of
Kv1.4 can be discounted, as it has a time constant for
the recovery from inactivation in the range of seconds
(Wickenden et al. 1999).

Pharmacological blockers further substantiated the pre-
sence of Kv4 current. The A-type current was insensitive to
the non-specific Kv3 blocker TEA (Fig. 4A, n=>5), but very
sensitive to 4-AP (Fig. 4B, n = 5), which is a non-specific
Kv4 blocker. Lastly, we tested the specific Kv4.2/Kv4.3
blocker phrixotoxin (PhTX 5 um; Fig. 4C, n = 5) using
local perfusion, and observed a mean reduction of 56% in
the peak current (Fig. 4D, n=4), confirming the Kv4.2/4.3
identity of the A-type current.

Kv4 transcript expression in kisspeptin neurons
at the single-cell level

To corroborate the electrophysiological data, expression of
the Kv4 potassium channel subunits Kv4.1, 4.2 and 4.3 was
examined by RT-PCR following harvesting of cytoplasm
from single Kiss1?™ cells (Fig. 4F). A total of 15 arcuate
tdTomato/kisspeptin cells were screened for Kissl, Hprt
and Kv4 subtype transcripts, and we observed that Kv4.2
expression predominated: 86% of Kiss1*™ neurons were
positive for this Kv4 subtype. In contrast, only 9% of the
cells expressed Kv4.3, while no Kv4.1 expression was found.
The predominant expression of Kv4.2 suggested that the
prominent A-type current was mainly generated by this
channel subtype.

Spiking irregularity is correlated with the presence
of Kv4 conductance in Kiss1A" neurons

Kiss1** neurons displayed an abundant Kv4-type
conductance (gky4), which was presumed to affect their
firing properties, as it activated at fairly low membrane
potentials, and would thus be expected to influence
the trajectory of membrane potential as it approaches
threshold. We therefore anticipated that Kv4 current could
affect the spiking irregularity observed in Kiss14 cells,
in analogy to its role in irregular-spiking cortical inter-
neurons, as shown previously (Mendonga et al. 2016).

In order to test this possibility, we first quantified the
irregularity of kisspeptin neuron firing by estimating the
coefficient of the interspike interval (CVISI) at 10 Hz
(CVISI;y, from 7 to 13 Hz). We observed that these
cells were not homogeneous in this regard. Instead, they
displayed a broad distribution in their spiking irregularity
(Fig. 5A, n = 47). While some cells fired with a fairly
regular pattern (CVISIL;p < 0.2), most cells displayed
an irregular-firing pattern, ranging from relatively mild
(=~0.3) to very high (>0.7) spiking irregularity.

The broad distribution of spiking irregularity found in
Kiss 1™ neurons suggests that these cells might naturally
express ion channels in different proportions, resulting
in different firing patterns. We were particularly inter-
ested to test whether heterogeneity of spiking irregularity
was related to distinct Kv4 expression in each neuron.
Therefore, in some cells, we assessed both CVISI;,
and pre-pulse isolated gxv4, which was possible due
to their relative small soma size (space-clamp without
‘escaping’ sodium currents). When gxy4 was normalised
by the capacitance of each cell (proportional to their
membrane area), we found a clear correlation between
firing irregularity and giy4 density (Fig. 5B-D, compare C
and D). These findings suggest that the firing variability
of Kiss1*™ neurons could be determined by gis.

Artificial injection of Kv4 conductance modulates
spiking irregularity and excitability

As giya was apparently associated with the intrinsic spiking
irregularity of some Kiss1*™ neurons, the dynamic-clamp
conductance injection technique was used to investigate
this link further. This method allows injection of any
mathematically-described voltage-dependent conduc-
tance in a whole-cell current-clamp recording (Robinson
& Kawai, 1993; Sharp et al. 1993b; Robinson, 2013),
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allowing us to add or subtract controlled levels of gy
conductance, and test its effect on firing irregularity.
When gi,4 was altered in Kiss1* neurons, we saw a
striking effect on their intrinsic spiking irregularity. When
positive gxya was injected in mildly irregular-firing cells,
we observed a clear increase in interspike variability, which
was normally associated with the presence of prominent
noisy sub-threshold ‘plateaus’ (Fig. 6A and C). In contrast,
negative gxy4 injection in very irregular-firing cells resulted

A Control
Drug
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TEA 2mM ashout
- 500 pA
— -10mV L
-80 mV
100 ms I_
C
PhTX 5uM

200 pA
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J Physiol 596.5

in more regularly distributed action potentials (Fig. 6Band
C). A clear correlation was found between CVISI;y and the
normalised level of gi,4 injected (Fig. 6E, n=17).
However, gy modulation did not only impact how
irregularly Kiss1*™ neurons fired, but also created a
distinct effect on spiking adaptation. Some neurons
displayed a significant intrinsic decrease in the firing
frequency throughout the constant stimulation, which was
usually observed in very irregular-spiking cells. When giy4

B
4-AP 7mM
1nA
-10 mV
-80 mV I
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Figure 4. Pharmacological profile of A-type current matches that of Kv4-mediated current

A and B, the fast-inactivating current component was insensitive to TEA (4), but sensitive to 4-AP (B). TEA blocked
27% of the maintained current. C, additionally, the current was sensitive to the specific Kv4.2 and Kv4.3 blocker
phrixotoxin. D, phrixotoxin blocked 56% of the fast-inactivating component isolated with the pre-pulse protocol.
E, representative single cell RT-PCR transcript expression from a Kiss1 neuron. Cell contents were extracted from
a single Kiss1 neuron and RNA converted into cDNA for nested PCR amplification of Hprt, Kcnd1 (Kv4.1), Kcnd2
(Kv4.2), Kcnd3 (Kv4.3) and Kiss1 transcripts. Each single cell cDNA was split into three experimental replicates for
each transcript. RT-PCR from a female ARC Kiss1 neuron is shown, but equivalent data was obtained for male

Kiss1 neurons.
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was reduced in these neurons, they not only produced a
more regularised spiking pattern, but also fired steadily
at higher frequencies at lower levels of stimulus current

(Fig. 6F).

Discussion

Here, we have characterised the electrophysiological
properties of arcuate nucleus kisspeptin neurons from
a novel Kissl-Cre:tdTomato transgenic mouse line,
providing an insight into the biophysical mechanisms
governing their action potential generation. Some of the
electrophysiological properties shown here for kisspeptin
neurons have already been described by others in different
mouse strains, such as the high input resistance, the
expression of H-current, persistent sodium current, and
spontaneous spiking (Kelly et al. 2013; Zhang et al.
2013; Piet et al. 2014). In this study, we find that
these cells also express a strong A-type potassium
current. Using pharmacological blockers and single cell
RT-PCR, we demonstrated that this current is mainly
mediated by Kv4-type channels (likely predominantly

Kv4.2 potassium channels and firing irregularity in kisspeptin neurons 895

Kv4.2). Furthermore, we have highlighted the role that
this current plays in shaping the firing pattern of Kiss1*™
neurons. By interacting with subthreshold inward currents
(like NaP), these channels can create interspike voltage
fluctuations, which affect the timing of spikes and diversify
their firing patterns. Using dynamic-clamp conductance
injection, we have shown that modulation of gg,4 not
only changed their firing irregularity, but controlled their
firing frequency in response to a constant stimulus. These
findings are especially relevant when considering that
kisspeptin neurons are normally stimulated tonically by
neuropeptides like neurokinin-B (NKB; De Croft et al.
2013).

Since its early characterisation, A-type current,
commonly but not exclusively carried through Kv4 ion
channels, has mainly been associated with enabling
low-frequency, regular firing activity (Connor & Stevens,
1971). Here, by contrast, we confirm that, under the
right conditions, gg4 can contribute to sub-threshold
fluctuations and cause an increased irregularity in action
potential timing. The mechanism we report here is
strikingly similar to what we have observed recently

20 mV
500 ms 30 pA
80 pA
| 0.2 nS/pF
W’w‘f TR R
50 ms

Figure 5. Native Kv4-type conductance is correlated with the intrinsic spiking irregularity of kisspeptin
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A, the population of kisspeptin neurons shows a broad distribution of spiking irregularity (n = 47 cells). B, in
some cells with low series resistance (<20 M) permitting adequate voltage clamp, both spiking irregularity and
Kv4 current amplitude were measured. The coefficient of interspike interval (CVISI) at 7-13 Hz firing frequency
was then estimated, while the peak Kv4 conductance was normalised to the capacitance of each cell. Pearson
correlation P value: 0.019, r value = 0.88, n = 6. C, example segments of firing from a regular-spiking cell
(grey) contrasting with an irregular-spiking cell (black). D, corresponding isolated Kv4 conductance waveforms for
voltage steps from —90 to —20 mV obtained with the pre-pulse protocol.
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Figure 6. Injection of synthetic Kv4-type conductance effectively controls spiking irregularity

A-C, examples of cells subjected to gxya dynamic clamp, comparing responses with similar firing frequencies. In
example shown in C, the bottom blue trace shows the injected Kv4 current (inward current downwards) during the
injection of +2.18 nS conductance (green trace). D, summary of CVISljo of all cells subjected to gxya modulation.
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Mann-Whitney test, P value = 0.0012 and 6.38 x 10~ for positive and negative gk injection. E, a positive
correlation was found between the change in spiking irregularity and the amount of gxy4 injected (normalised
by each cell's capacitance). Pearson’s correlation r value = 0.655, P value = 7.8 x 1078. F, in some strongly
adapting cells, it was observed that negative gky4 injection produced a more regular firing, which could reach
higher frequencies with similar or lower current stimulation than control.

in irregular-firing interneurons (Mendonga et al. 2016),
where the same current types (A-type and NaP) have
been shown to create an almost identical effect on spiking
irregularity. However, although we show that Kiss1/™
neurons also display the same components, we cannot
exclude the possibility that other subthreshold currents
(e.g. T-type Ca*" currents) contribute significantly to
this mechanism. Using computational modelling, the
dynamical basis of increased irregular firing in cortical
interneurons produced by addition of gxy4 was made clear:
both unstable oscillations and slow dynamics in the inter-
spike interval emerge as ggw is increased, through its
dynamical interactions with the sodium current, including
NaP (Mendonga et al. 2016). It is interesting that cells
embedded in completely different physiological contexts,
in different brain regions, seem to use a similar control
of firing, which may be viewed as a conserved biophysical
mechanism for generating intrinsic spiking irregularity for
different purposes in the brain.

Even though it is plausible to draw close comparisons
between the firing dynamics of irregular-spiking cortical
interneurons and Kiss1* neurons, some distinctions
need to be made. Most importantly, the currents
required to generate spiking irregularity were present
in different proportions in these two cell types. While
irregular-spiking interneurons displayed a large NaP
current (80.9 pA at —50 mV, or 1.51 pA/pF normalised
to the overall mean of the capacitance), kisspeptin
neurons displayed a lower level (27.9 pA at —50 mV,
or 0.83 pA/pF). In contrast, while irregular-spiking cells
expressed sufficient Kv4 conductance to fire irregularly
(22.3 nS peak at 0 mV, or 0.42 nS/pF), it was even
higher in kisspeptin neurons, representing one of the
dominant K" conductance fractions (16.2 nS peak at
0 mV, or 0.48 nS/pF). Reflecting the relative dominance
of gk, Kkisspeptin neurons were more responsive to
its modulation. A reduction of gg. translated into a
significant decrease in one of the most important outward
conductances in these cells, which as expected, markedly
increased their excitability, especially in irregular-spiking
cells with strong firing adaptation. We propose that the
level of expression of functional Kv4 channels, in addition
to modulating firing irregularity, acts as a ‘gain controller’
of kisspeptin neurons, determining the size of responses
to their synaptic inputs.

A similar phenomenon, where A-type current acts as a
‘gain controller’ has been proposed in orexin-expressing
neurons in the lateral hypothalamus (Burdakov et al.
2004), where spontaneously firing cells required less

hyperpolarising current to reduce firing, when they
expressed larger A-type conductances, implying that
A-type current raises the effective gain of the firing
frequency—stimulus current relationship. Interestingly, in
addition to orexin and kisspeptin neurons, there are
reports of several other cell types in the hypothalamus
displaying A-type currents (Burdakov & Ashcroft, 2002;
Zhang & van den Pol, 2015), suggesting that hypothalamic
neurons may use A-type conductance modulation (or
specifically Kv4 conductance) as a common strategy to
control their excitability.

The surprising heterogeneity of spiking irregularity
found in kisspeptin neurons, associated with different
levels of gk expression, suggests a natural fine tuning
in these cells, which due to temporary or permanent
adjustment of Kv4 channel kinetics, might allow each
Kiss1”™ neuron to have distinctive influences on GnRH
neurons and/or other kisspeptin neurons. As the frequency
and temporal structure of firing can determine the
differential release of neurotransmitters (Dutton & Dyball,
1979; Liu et al. 2011; Schone et al. 2014; Qiu et al. 2016), the
level of Kv4 expressed in each cell can favour the release of
different neuropeptides or amino acid neurotransmitters.

However, it is still unclear if these cells can actively
change their firing properties by altering the total level
of somatic ggvs. The gating kinetics of Kv4 channels
are known to be modulated by accessory proteins (K*
channels interacting proteins, KChIPs) and membrane
lipids (Birnbaum et al 2004; Oliver et al. 2004),
while some neuromodulators, like endocannabinoids and
cholecystokinin, have been shown to modify Kv4-type
current amplitude (Burdakov & Ashcroft, 2002; Amords
et al. 2010). We tested the effect of perfusing three
different neuromodulators, neurokinin-B (10 uM, n = 7)
and dynorphin-A (50 uM, n = 5), known to affect the
excitability of kisspeptin neurons, and cholecystokinin
(100 pM, n=3;40 pM, n=3;50 pM, n=2; 100 nM, n=1)
which hasbeen reported to increase A-type conductance in
arcuate cells (Burdakov & Ashcroft, 2002). These peptides
produced no noticeable acute effects on gxy4 in kisspeptin
neurons (data not shown), but it is still possible that other
neuromodulators are capable of doing so. It is also possible
that gi4 1s not subject to significant neuromodulation in
Kiss1%™ neurons, but that variation in g4 density may be
determined by connectivity and particular role of a neuron
within the circuit, and by stochastic gene expression and
trafficking of the channel protein.

In summary, we propose that the density of Kv4, pre-
dominantly Kv4.2, channels in arcuate kisspeptin neurons

© 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



898 P. R. F. Mendonca and others

is an important factor that regulates their firing pattern
and excitation of GnRH neurons and other kisspeptin
neurons. When Kv4 is strongly expressed, Kiss1#Re
neurons fire at very low frequency and asynchronously,
likely contributing to the release of amino-acid neuro-
transmitters. However, when Kv4 channels are down-
regulated or inhibited, these cells are capable of delivering
a more reliable stimulation at a higher firing frequency,
favouring the release of neuropeptides and effectively
recruiting other kisspeptin neurons and GnRH neurons.
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