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ABSTRACT
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset
neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different
proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which
functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor
and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance
of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted
to tackle this devastating disorder. In this review, we will summarize our current knowledge about
the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on
transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant
TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and
rectifying the altered level of downstream transcripts represents a promising therapeutic approach
for the treatment of SCA17.
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SCA17 as a neurodegenerative disease caused by
polyQ expansion

The polyQ tract, encoded by a tandem repeat of CAG
trinucleotides, is a domain commonly found in many
human proteins. The exact number of glutamines
within a polyQ tract varies greatly among different
proteins and individuals. Once the glutamine number
within a polyQ protein reaches above certain thresh-
olds, the polyQ protein becomes misfolded and leads
to neurodegeneration in specific brain regions,
depending on the protein context.1 Thus far, 9 types
of polyQ diseases have been identified, and SCA17 is
the latest addition to this disease family. In 1999,
Koide et al. were the first to describe a Japanese patient
with unique neurologic symptoms that are associated
with the expansion of CAG repeat in the TBP gene.2

This disease was later named SCA17.3 In human TBP,
the normal range of polyQ number is between 25 and
42,4 whereas disease onset could occur in patients
with as few as 47 repeats.3 SCA17 is late-onset,

meaning that the disease symptoms in patients nor-
mally start to appear in the middle age. Nonetheless,
similar to other polyQ diseases, an inverse correlation
between polyQ number and age of onset was found.5

SCA17 patients normally display diffused cortical
and brain stem atrophy, as well as subcortical white
matter lesions, revealed by brain magnetic resonance
imaging (MRI).3,6 However, the most prominent degen-
eration occurs in the cerebellum, especially the Purkinje
neurons within the cerebellum are the most vulnerable.7

The distinct brain pathology explains the wide spec-
trum of disease symptoms in SCA17 patients, which
typically include motor defects, such as ataxia, dystonia
and parkinsonism, as well as non-motor defects, includ-
ing dementia, psychiatric abnormalities and seizures.2,3,8

It is noteworthy that SCA17 is alternatively named
Huntington’s disease-like 4, as its clinical features such
as rapidly progressive dementia followed by concurrent
chorea are also characteristic in Huntington’s dis-
ease.9,10 To date, most SCA17 cases were reported
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from China, Japan, Korea, Italy and England.2,3,11-13

Although the scarcity of reported cases makes it difficult
to predict the prevalence of SCA17, it is possible that
expanded polyQ repeats can affect the vital function of
TBP and early embryonic development such that very
few live SCA17 patients were reported.

Transcriptional dysregulations in SCA17

Unlike most polyQ proteins, whose biological functions
remain elusive, the functions of TBP is well understood.
TBP is a general transcription factor that is involved in
transcription by all 3 nuclear RNApolymerases.14 During
mRNA transcritpion, TBP directly binds TATA-box,
which is a highly conserved DNA sequence (TATAAA)
typically locates about 25 to 30 nucleotide upstream of
the transcription start site in metazoans, and 40 to 100
nucleotide upstream of the transcription start site in the
yeast Saccharomyces cerevisiae. TBP then recruits
approximately 13 TBP-associated factors (TAFs) to form
TFIID complex, followed by coordinated accretion of
TFIIA, TFIIB, non-phosphorylated RNA polymerase II,
TFIIF, TFIIE and TFIIH to form the preinitiation com-
plex, which is a large protein complex essential for tran-
scription to occur.15,16 Homozygous TBP knockout
embryos do not survive beyond the blastocyst stage,
highlighting the critical functionsmediated by TBP.17

The fact that TBP functions as a general transcription
factor helped researchers to focus their attention on
potential transcriptional dysregulations during SCA17
pathogenesis. Indeed, in vitro electromobility shift assay
revealed that mutant TBP with polyQ expansion binds
less DNA containing TATA-box, compared with wild
type TBP.18 However, when tested in luciferase assays,
mutant TBP with polyQ expansion stimulated, rather
than suppressed, TATA-box dependent transcriptional
activities.18,19 This observation is in agreement with a
microarray analysis using brain samples from SCA17
mouse models, as only a few hundred transcripts were
down-regulated in the presence of mutant TBP with
polyQ expansion.20 Therefore, mutant TBP with polyQ
expansion might not disrupt global gene expression.
Considering TBP is involved in the formation of numer-
ous transcriptional complexes, it is likely that mutant
TBP affects the functions of some more specialized tran-
scription factors, which leads to impaired transcription
in certain restricted pathways.

This hypothesis has been confirmed by a plethora
of studies. In a cellular model of SCA17, expression of

mutant TBP with 105Q led to decreased cell viability
and defective neurite outgrowth. Moreover, mutant
TBP showed enhanced interaction with transcription
factor Sp1, which caused reduced occupancy of Sp1
on TrkA promoter and decreased TrkA expression.21

In a drosophila model of SCA17 expressing mutant
human TBP with 80Q, the function of Suppressor of
Hairless (Su(H)), a transcription factor that partici-
pates in Notch signaling, was impaired, which contrib-
utes to SCA17 like phenotypes including progressive
neurodegeneration, late-onset locomotor impairment
and early death.22 Interestingly, the number of gluta-
mines within TBP varies greatly among different spe-
cies: yeast TBP does not contain a polyQ region;
drosophila TBP has less than 10 glutamines within the
polyQ region; whereas rodent TBP has nearly 15 glu-
tamines in the polyQ region. This phenomenon indi-
cates that rodent models should be preferable in
faithfully recapitulating SCA17 disease conditions. To
date, several SCA17 rodent models have been estab-
lished, including transgenic mouse and rat models, as
well as conditional knock-in mouse models. These
models displayed SCA17 like phenotypes, such as
motor deficits and shortened life span. Moreover, pro-
nounced cerebellum degeneration, especially Purkinje
cell death, was found in all these models.20,23-27 Close
examination of these models revealed a handful of
transcription factors whose functions were affected by
mutant TBP with polyQ expansion. For example, the
function of transcription factor IIB (TFIIB), another
general transcription factor, was impaired by mutant
TBP, which resulted in a reduced level of the small
heat shock protein HSPB1 in a transgenic mouse
model expressing TBP105Q.20,28 Mutant TBP also
sequestered and impaired nuclear factor-Y (NFY), a
master regulator of the chaperone system, and
reduced the expression of several chaperones includ-
ing Hsp70, Hsp25 and HspA5 in a neuron-specific
knock-in mouse model.25,29 The toxicity of mutant
TBP is commonly assumed to be caused by certain
gain of function mechanisms, which means mutant
TBP shows enhanced interaction with certain proteins
and damages their endogenous functions. However, 2
recent studies indicate that some loss of function
mechanisms could also contribute to the pathogenesis
of SCA17. X-box binding protein 1 (XBP1), a tran-
scription factor involved in ER stress response, and
MyoD1, a muscle-specific transcription factor, were
found to bind less mutant TBP than wild type
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TBP.26,27 The decreased interactions suggest that
mutant TBP may not be as efficient as wild type TBP
in facilitating transcriptional activities mediated by
these transcription factors (Fig. 1). Moreover, these
findings suggest that a gain of toxic function or a loss
of function of mutant TBP is also dependent on the
length of the expanded polyQ repeat.27

It should be noted that mutant TBP does not have
to bind to the DNA sequence to impact gene tran-
scription. Some genes without TATA-box in their pro-
moter sequences can also be affected by mutant
TBP.26 Moreover, a truncated form of mutant TBP
without the DNA binding domain sequestered TFIIB
and inhibited TATA-box dependent transcriptional
activity in cultured cells. When the same construct
was used to generate a transgenic mouse model, the
mice showed even more severe pathological pheno-
types and died at the age of 3-8 weeks.18

Concluding remarks and future directions

SCA17 is a devastating neurodegenerative disease with-
out effective treatments. Nonetheless, our deep under-
standing about TBP and the availability of several good
animal models make SCA17 an ideal polyQ disease
model to study how polyQ expansion impairs endoge-
nous protein functions and induces neurodegeneration.

Although the effects of mutant TBP on gene transcrip-
tion have been well documented, it remains unclear
how SCA17 also shows selective pathology in specific
types of tissues or cells, a phenomenon that is well
known for other polyQ diseases. It is likely that polyQ
expansion confers toxicity in a cell-type dependent
manner, depending on the cell-type related expression
and posttranslational modulation polyQ proteins and
their partners. To address this issue, we have generated
floxed TBP105Q knock-in mouse model. By crossing
these mice with different lines of Cre transgenic mice,
we are able to control mutant TBP expression at
endogenous level in specific types of cells. Some of the
discoveries discussed above were done using this
approach.25-27 We are in the process of incorporating
more Cre lines to get a more comprehensive picture.
On the other hand, Purkinje cell specific transcriptome
analysis, achieved by laser capture microdissection30 or
Purkinje cell specific promoter,31 has been successfully
performed in SCA1, another polyQ disease. These tech-
niques could be readily transferred to SCA17 research,
and bring us much needed information about Purkinje
cell specific degeneration in SCA17. Given the well-
characterized functions of TBP and its associated pro-
teins, SCA17 would offer an ideal system to investigate
the mechanisms underlying the selective pathology in
polyQ diseases.

Figure 1. Transcriptional dysregulations in SCA17 A brief summary of our current understanding about the transcription factors and
their mediated cellular processes impaired by mutant TBP. Mutant TBP affects the activities of these transcription factors through 2 dis-
tinct mechanisms. One is gain of function, which means mutant TBP showed enhanced interactions with the transcription factors,
thereby sequestering them from their functional locations. The other one is loss of function, which means while wild type TBP is an
essential component of the transcriptional complexes, mutant TBP fails to carry out the same functions as wild type TBP.
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Despite impressive advances in understanding the
molecular mechanisms underlying SCA17 pathogenesis,
how to translate our current knowledge into therapeutic
strategies remains one of the greatest challenges. Gene
silencing techniques (such as antisense oligonucleotide,
microRNA and shRNA) are being actively pursued as an
option to treat polyQ diseases.32-35 Considering the
essential functions of TBP, it is highly desirable that
mutant allele-specific silencing is used when testing the
efficacy for SCA17 treatment. Alternatively, normalizing
the expression of transcripts disrupted in SCA17 could
also be tested for therapy. Mesencephalic astrocyte-
derived neurotrophic factor (MANF) is one of such pro-
teins whose expression was reduced by mutant TBP.
Increasing MANF level by genetic approaches in a
SCA17 knock-inmousemodel had robust improvements
in both behavioral performances and neuropathology.26

MANF is also neuroprotective in several other neurologic
disorders, including Parkinson disease and ischemic
stroke.36-38 Therefore, developing the MANF-based ther-
apeutic approach has the potential to alleviate or treat
multiple diseases. More efforts are needed to expand our
reservoir of potential therapeutic targets, and to validate
these targets for SCA17 treatment.
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