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Monocytes (Mo) and macrophages (Mφ) are key components of the innate immune

system and are involved in regulation of the initiation, development, and resolution

of many inflammatory disorders. In addition, these cells also play important

immunoregulatory and tissue-repairing roles to decrease immune reactions and promote

tissue regeneration. Several lines of evidence have suggested a causal link between the

presence or activation of these cells and the development of autoimmune diseases. In

addition, Mo or Mφ infiltration in diseased tissues is a hallmark of several autoimmune

diseases. However, the detailed contributions of these cells, whether they actually initiate

disease or perpetuate disease progression, and whether their phenotype and functional

alteration are merely epiphenomena are still unclear in many autoimmune diseases.

Additionally, little is known about their heterogeneous populations in different autoimmune

diseases. Elucidating the relevance of Mo and Mφ in autoimmune diseases and the

associated mechanisms could lead to the identification of more effective therapeutic

strategies in the future.
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INTRODUCTION

Monocytes (Mo) and macrophages (Mφ) possess broad immuno-modulatory, inflammatory, and
tissue-repairing capabilities and actively participate in the development of many autoimmune
diseases (1). These cells can secrete a wide range of cytokines and chemokines, which stimulate and
recruit additional immune cells to diseased tissue (2). In many autoimmune diseases, the presence
of autoantibodies and autoreactive B and T cells indicates that adaptive immune system is critical
for pathogenesis, but this cannot fully account for the development of autoimmune diseases, and
the innate immune response may play a necessary and irreplaceable role as well (1, 3). In fact,
Mo or Mφ infiltration is generally observed in many autoimmune diseases (4–13). Additionally,
a change in the count or frequency of Mo/Mφ is a hallmark of several autoimmune diseases, i.e.,
systemic sclerosis (SSc), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), Sjögren’s
syndrome (SS), and inflammatory bowel disease (IBD) (4, 5, 10, 14–17). However, it should be
noted that Mo/Mφ frequency and count in the peripheral blood or afflicted tissues can be affected
by several factors including at least bleeding regimes (for instance time of bleeding) and status of
the patients (medical treatment, food intake, age, sex etc.). Thus, Mo/Mφ frequency and count and
their correlation with disease stage are usually controversial in different studies.
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Although the regulatory mechanism of Mo and Mφ in
the development of autoimmune diseases has not been fully
elucidated, consensus appears to suggest that their abnormal
activation plays a key role. Typically, M1-polarized Mφ are
pro-inflammatory and secrete interleukin (IL)-12 and tumor
necrosis factor (TNF)-α to contribute to local inflammation,
while M2-polarized Mφ produce IL-4 and IL-10 that mount
immunomodulatory, wound repair and tissue remodeling
functions [as reviewed by Funes et al. (18)]. However, the
M1/M2 dichotomy may oversimplify a more complex activation
mechanism. In fact, in certain autoimmune diseases, both M1-
andM2-polarizedMφ are detected simultaneously, and bothM1-
and M2-stimulating cytokines are present on a large scale (19–
22). Additionally, Mφ even exhibit an intermediate activation
status by co-expressing both M1- and M2-specific markers
in certain diseases (23, 24). Furthermore, in many cases, Mφ

polarization is a dynamic and reversible event that depends upon
the local environment and stage of disease (25).

In the present review, we will discuss our current
understanding of the properties of Mo/Mφ in certain
autoimmune diseases, highlighting the phenotypical, functional,
and activation properties of these cells in disease pathogenesis
and the relevant mechanisms (Summarized in Tables 1, 2).
Because there are very limited reports regarding the role of
Mo/Mφ in autoimmune Addison’s disease, autoimmune thyroid
disease, antiphospholipid syndrome, and myasthenia gravis,
these four diseases are not discussed in the present article.

MO AND Mφ IN AUTOIMMUNE DISEASES

Systemic Lupus Erythematosus (SLE)
Mo percentage and count have been analyzed in SLE patients,
but the findings vary among different studies. One group found
that although the absolute number of the whole Mo population
was similar between SLE patients and healthy controls, the rate
and absolute number of CD14+CD16+ Mo was significantly
higher in SLE patients, and steroid therapy could down-regulate
the percentage and number of these cells in a dose-dependent
manner (26). In contrast, a more recent study based on 205 SLE
patients and 74 healthy controls reported decreased absolute Mo
counts in SLE patients (27). However, there was no significant
difference in the proportions of various Mo subpopulations.
In addition, neither the absolute count nor the percentage of
various Mo subsets was associated with disease activity (27). It
appears that the reduction in Mo count in the latter study is
supported by an independent study, which showed that Mo and
Mφ are more fragile and likely to undergo apoptosis (analyzed
by flow cytometry with annexin V and propidium iodide) when
induced by the sera of SLE patients (199). Although the detailed
mechanism remains unclear, it appeared that C5a complement
was involved in this process while serum IgG autoantibody was
not involved, since Mo apoptosis profile correlated positively
with C5a level, and depletion of IgG did not affect such apoptosis.
In lupus mice, Mφ depletion leads to attenuated skin and kidney
disease severity, suggesting that these cells do play a critical role
in SLE pathogenesis (200).

One of the contributions of Mo/Mφ to SLE pathogenesis is
modulation of the adaptive immune system. The binding of
co-stimulatory molecule CD40 to its ligand CD40L is required
for the activation of humoral immune responses including B
cell activation, plasma cell differentiation, antibody secretion,
and isotype-switching (201). In patients with SLE, a significant
increase in the frequency of CD40L-expressing peripheral Mo
was observed compared with healthy controls (28). Consistent
with this finding, although B cells from SLE patients and normal
controls showed similar CD40 expression levels, recombinant
CD40L significantly stimulated the production of total IgG
by SLE B cells but not normal B cells (202). In addition,
data from murine studies showed that CD40L overexpression
could induce lupus-like autoimmune disease, while CD40L
neutralization prevented autoreactive B cell activation and
autoantibody production in lupus-prone mice (203, 204). Thus,
although direct evidence is still lacking, these data do suggest a
potential contribution of Mo to the observed B cell hyperactivity
in SLE patients through the CD40/CD40L signaling pathways.
Moreover, Mo from SLE patients tend to differentiate into
dendritic cells that express higher levels of CD86 when induced
by IFN-α in the serum, and this potentiates them with higher
abilities to present autoantigens to autoreactive T cells and B
cells (29, 30).

Overexpression of adhesion molecules may lead to aberrant
Mφ migration and activation. Mφ from active SLE patients
overexpress intercellular adhesion molecule (ICAM)-1, which is
associated with tissue recruitment and inflammatory cytokine
production, and this is partially offset by corticosteroid therapy
(31, 32). SLE Mφ also express increased levels of sialic acid–
binding Ig-like lectin 1 (Siglec-1, CD169), which could be
dramatically reduced by high-dose glucocorticoid treatment (33).
However, in view of the broadly anti-inflammatory effect of
glucocorticoid (205), it should be noted here that this study
could not rule out the possibility that the reduction in Siglec-
1 expression level might result from a bystander effect of
glucocorticoid treatment. Increased Mφ Siglec-1 expression may
constitute a potent inflammatory signal to promote the activation
of autoimmune CD4+ or CD8+ T cells (206). In fact, it was
suggested that Siglec-1 expression in Mφ could serve as a
potential biomarker for lupus activity, as the percentage of Siglec-
1-expressing Mφ was shown to positively correlate with SLE
Disease Activity Index and autoantibody levels (33).

Defective phagocytosis of Mφ has also been suggested to
contribute to autoimmunity in SLE. The phagocytic capacity
of Mφ is crucial for the clearance of dead cells and debris,
which otherwise can be important sources of autoantigens.
Accumulating data from in vitro studies and murine models
illustrate that ineffective clearance of apoptotic cells by Mφ

might be an important trigger of the autoimmune process in
SLE. Two decades ago, it was observed that non-inflammatory
phagocytosis of apoptotic cells by Mo-derived Mφ (MDMs)
was strikingly impaired in SLE patients (34). In addition,
apoptotic cells were found to accumulate in the germinal
centers of the lymph nodes in patients with SLE, and in vitro
uptake of autologous apoptotic cells into Mo-derived Mφ from
SLE patients was significantly impaired (35). Interestingly, the
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TABLE 1 | Characteristics of Mo and Mφ in autoimmune diseases.

Disease Percentage/count alterations Functional abnormalities Polarization profiles

SLE Similar to healthy controls in Mφ number (26);

Decreased Mφ count (27).

Increased CD14+CD16+ Mo number (26).

Increased expression levels of CD40 (28), CD86

(29, 30), ICAM-1 (31, 32), Siglec-1 (33);

Defective phagocytic ability (34–36).

M1 polarization:

Higher levels of IL-1β (37), IFN-γ (19), CXCL10 (38),

CCL2 (39), GM-CSF (40).

M2 polarization:

Higher levels of IL-10 (20, 21).

SSc Number:

Increased CD68+ Mφ (41);

Increased CD14+ Mo (42);

Increased CD16+ Mo in diffuse SSc (42).

Percentage:

Increased CD14+ Mo (43).

More profibrotic (44);

Increased expression of Siglec-1 (45).

M2 polarization:

Higher levels of IL-4, IL-10, IL-13, TGF-β, and PDGF

(46–48).

Increased expression of CD163 and CD204 (41, 43).

RA Increased number and percentage of Mφ (4, 5). Increased Mo CD80 (49), CD276 (49), and Siglec-1

expression (50).

M1 polarization:

Higher levels of TNF-α, IL-1, IL-6, and IL-12 (51–55).

Increased expression of CD50 and CD36 while

lower expression of CD163 and CD209 (56).

Higher M1/M2 Mo ratio (57).

MS Increased total mononuclear phagocyte number

(11, 12, 58, 59).

Increased expression of CD68, HLA and CD86 (60).

Abnormal metabolic changes (more glycolysis) (61).

An intermediate status:

Co-expression of CD40 and mannose receptor (24).

T1D Increased CD14+ Mo number (62).

Decreased CD16+ Mo number (62).

Decreased phagocytosis ability (63, 64).

Cytolytic to islet β-cells (65).

M1 polarization:

Higher levels of C-reactive protein (66), IFN-γ (67),

CXCL10 (68), CCL2 (68), IL-6 (66, 69), IL-1β

(66, 69), TNF-α (70, 71).

PBC Increased Kupffer cell number in stage 3 and 4

cases (10, 72).

Similar number of Kupffer cells at different stages

(73).

Increased liver CD14+ Mo number (73).

Increased circulating CD14highCD16+ and

CD14lowCD16+ Mo number (74).

More sensitive to TLR ligation (75).

Increased Siglec-1 expression (76).

Recognition of AMA-apotope complexes (77).

M1 polarization:

Higher levels of IL-1β, IL-6, IL-8, IL-12, and TNF-α

(75, 78).

Increased endotoxin production of biliary epithelial

cells (79).

Increased expression of CD40L (72).

SS Increased CD14highCD16+ and CD14lowCD16+

Mo number (15, 80).

Decreased phagocytosis ability (81). M1 polarization

Increased levels of IL-6 (82), IL-12 (83), IFN-γ (84),

TNF-α, IL-1β, IL-18, CXCL8, and CXCL10

(80, 85–87).

Activation of Mφ NFκB signaling pathway (88).

Celiac

disease

Increased CD68+ Mφ number (7). Decreased phagocytosis ability (7, 89).

Increased antigen-presenting ability (90, 91).

M1 polarization

Higher levels of IFN-γ, IL-1β, TNF-α, and IL-8

(22, 90).

Increased expression of CD80, CD86, and CD40

(88).

Activation of NFκB signaling pathway (88).

M2 polarization:

Higher levels of IL-4 and IL-10 (22).

Increased expression of arginase 1 and 2 after

stimulation (92, 93).

IBD Increased CD68+ Mφ number in UC and CD

(8, 9, 16).

Increased CD163+ Mφ number in CD (16).

Increased circulating CD14+CD16+ while

decreased CD14hiCD16− Mo in CD (94, 95).

Decreased retinoic acid synthesis ability in CD (8).

Abnormally accelerated lysosomal degradation of

cytokines in CD (96).

Defective GM-CSF receptor expression and

function in UC and CD (97).

M1 polarization:

Increased production of IL-23 and TNF-α in UC

(98, 99).

Suppressed IL-10 production in UC (98, 99).

Higher expression of CD16/32 in UC (98, 99).

M2 polarization:

Higher IL-13 level in CD (100).

Higher CD163 expression in CD (16).

Higher CD163 and CD206 expression in UC

(16, 101).

percentage of apoptotic polymorphonuclear neutrophils (PMN)
from SLE patients was significantly higher than that from healthy
controls, and this percentage correlated positively with SLE
Disease Activity Index and serum levels of autoantibodies (207).
In addition, the phagocytosis defect may be compounded by

the serum milieu of SLE patients because serum from these
patients had a strong capacity to accelerate the apoptosis rate
of PMN and Mφ, which might further contribute to the high
load of potential autoantigens (199, 207). Based on data from
murine models, it was found that Mφ with low expression of
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TABLE 2 | Mechanisms of Mo/Mφ activities in autoimmune diseases.

Diseases Triggers for Mo/Mφ recruitment and activation Molecular mechanisms of Mo/Mφ function Mo/Mφ-derived mediators in disease

progression

SLE TNF-α: Mo NF-κB inflammatory response (102).

Anti-dsDNA antibodies: NLRP3 inflammasome

activation in Mφ (103).

Microparticle-associated immune complexes:

activation of pro-inflammatory Mo (104).

IFN-α: B-lymphocyte stimulator expression in Mo

(105).

Anti-C1q autoantibodies: induction of a

pro-inflammatory phenotype in Mφ (106).

HMGB1: Mφ inflammatory responses (107).

Decreased PPAR-γ, KLF2 and KLF4 expressions:

Defective phagocytosis (108, 109).

Decreased PPAR-γ expression: pro-inflammatory

functions (110).

Increased IRF1 expression: enhanced

inflammasome activity (111).

IL-1β, IL-6, TNF-α and IL-10: mediating local and

systemic inflammation (112–115).

SSc CCL2: Mo/Mφ recruitment (116).

Type I IFN: Mφ activation (45).

PDGF-BB: dermal infiltration of Mo/Mφ (117).

CX3CL1: Mo/Mφ recruitment (118).

MIF: concentrating Mφ at inflammatory loci (119).

TLR/MyD88 signaling and the transcription factor

Fos-related antigen 2: TIMP1 production by Mo

(120, 121).

PDGF and TGF-β: fibrosis development

(44, 117, 122)

CCL4, CXCL8, and CXCL10: tissue inflammation

and fibrosis (123).

CXCL13: fibrosis development (124).

Versican and CCL2: Mo recruitment (125).

TIMP-1: fibrosis development (121, 126).

RA CCL2: Mo recruitment (13).

Activin A: generation of pro-inflammatory Mφ (56).

Neutrophil microvesicles: preventing inflammatory

activation of Mφ (127).

GM-CSF and osteopontin: Mo migration (128).

MicroRNA-155: survival of Mo (129, 130).

NFAT5: survival of activated Mφ (131).

Succinate/GPR91 signaling: IL-1β production from

Mφ (132).

Liver X receptor pathway: potentiating TLR-driven

cytokine production from Mφ (133).

IL-1, IL-6, IL-12, and TNF-α: mediating local and

systemic inflammation (134, 135).

IL-1, IL-6, and TNF-α: mediating cartilage

degradation (136).

MS CCL2: M1 macrophage recruitment (137).

GM-CSF: migration of Mo across the blood brain

barrier (138, 139).

IFN-γ and α-B-crystallin: activation of microglia/Mφ

of MS-affected brain tissue (140).

Acetylcholine-producing NK cells: kill and inactivate

CCR2+Ly6Chi Mo (141).

Decreased SHP1 signaling: enhanced inflammatory

activity of Mo (142).

KLF2: negatively regulate Mφ activation (143).

NLPR3 inflammasome: T cell recruitment (144).

IL-1β, IL-6, and IL-23: Th17 cell generation

(145–147).

TNF-α, IL-6, IL-12, IL-1β, Reactive oxygen, and

nitrogen species: mediating inflammatory responses

(140, 148, 149).

IL-6 and BAFF: B cell survival and

differentiation (150).

T1D CCL2: Mφ recruitment (151).

MIF: activating Mφ and driving Th1 cell response

(152–154).

GM-CSF: Mo activation (155).

Acetoacetate: IL-6 and ROS production from Mo

(156) and Mo adhesion to endothelial cells (157).

Myeloid-related proteins: adhesion of Mo to

fibronectin (158).

Increased expression of long-chain acyl-CoA

synthetase 1: enhanced inflammatory activity (159).

Increased LFA-1 expression: Adhesion to

endothelial cells (157).

Persistent activation of STAT5: aberrant

inflammatory gene expression (155).

IL-1 and IL-6: Th17 cell generation (69).

PBC CX3CL1: Mo recruitment (160).

MIF-3α, osteopontin and CCL2: MDM recruitment

(161–163).

TLR ligands: Mφ activation and production of

pro-inflammatory cytokines (75, 78).

AMA-apotope complexes: MDM activation (164).

TNF-α-induced protein 8-like-2: productions of

TNF-α, IL-1β, and IL-8 by Mo (165).

Exosomes: expression of co-stimulatory molecules

on Mo (166).

TNF-α-induced protein 8-like-2 signaling: inhibiting

Mo NF-κB pathways and Mo activation (165).

IL-12: differentiation of Th1 cells (74).

NLPR3 inflammasome: inducing IL-1β production

and promoting differentiation of Th17 cells (167).

IL-1β, IL-6, IL-8, IL-12, and TNF-α: promoting liver

inflammation and injury (75, 78)

SS CXCL9 and CXCL10: migration of CXCR3+ Mφ

(168).

MIF: local infiltration of Mφ (119).

Extranuclear accumulation of DNA: NLRP3

inflammasome activation (169).

MicroRNAs: targeting the canonical TGF-β signaling

pathway as opposed to pro-inflammatory IL-12 and

TLR/NF-κB pathways (170).

Activated NF-κB pathway: amplifying cytokine

production and inflammatory response (88).

CCL22: enhancing autoreactive T cell response and

recruitment (171).

IL-6, IL-18, type I IFN, and BAFF,: mediating

pro-inflammatory immune responses (87, 172, 173)

(Continued)
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TABLE 2 | Continued

Diseases Triggers for Mo/Mφ recruitment and activation Molecular mechanisms of Mo/Mφ function Mo/Mφ-derived mediators in disease

progression

Celiac

disease

Gliadin peptides: Mo production of pro-inflammatory

cytokines and chemokines (90, 90, 174)

IL-15: supporting Th17 and Th1 responses (175).

TLR/MyD88 signaling pathway: mediating

pro-inflammatory cytokine production (176–178).

NF-κB activation: Mo production of IL-8 and TNF-α

(174).

TLR4/MyD88/TRIF/MAPK/NF-κB signaling

pathway: production of IL-1β by Mφ (179)

lncRNA: facilitating Mφ inflammatory gene

expression (180).

Increased STAT3 signaling: Mo activation and IFN-γ

production (181).

Tissue transglutaminase: involved in processes

contributing to inflammation (182).

IL-1β, IL-23, TNF-α, IL-6, IFN-γ: tissue inflammation

(179, 181, 183, 184).

IBD IL-33: induction of Mφ with tissue-repairing ability

(185).

Luminal extracellular vesicles: Mφ migration (186).

Gut microbiota (Clostridium butyricum): induction of

IL-10-producing Mφ (187).

PPAR-γ mutation: generation of pro-inflammatory

M1 Mφ (188, 189).

Higher expression of Nuclear paraspeckle assembly

transcript 1: mediation of the inflammatory

responses through exosome-mediated polarization

of Mφ (190).

IL-1β, IL-6, IL-23, TNF-α and TNF-like protein 1A:

generation of Th1 and Th17 cells (191–194).

IL-23: promoting Th17 cell differentiation and NK

cell activation (195–197).

NLRP3 inflammasome: promoting experimental IBD

development (without detailed mechanisms) (198).

TLR9 and decreased TLR responsiveness to nucleic acids were
largely responsible for the immunologically silent clearance of
apoptotic cells (108), which was consistent with the finding
that TLR9 was required in SLE pathogenesis (208). In addition,
transcription factors Kruppel-like factors 2 (KLF2) and 4 (KLF4)
are also important regulators of apoptotic cell clearance in
SLE prone mice (108). Intriguingly, it appears that cues from
the tissue microenvironment dictated these characteristics of
Mφ, as removal of these cells from specific tissues resulted
in their inability to engulf apoptotic cells without generating
inflammatory responses (108). A second feature of the impaired
phagocytic capacity of SLE Mφ is the delayed clearance of
immune complexes (IC). Elegant work by Michael M. Frank
and coworkers examined the half-time of IgG-sensitized, 51Cr-
labeled erythrocytes as a measure of Fc receptor function (209).
They showed that Fc-specific clearance rates were strikingly
prolonged in 13 of 15 patients, and this correlated with elevated
levels of IC and with disease activity. Supporting this conclusion,
another study by Maria et al. has recently showed that decreased
Fc receptor function correlated positively with disease activity
and renal involvement (36). In addition, certain Fc receptor
polymorphisms appears to determine the clearance of IC in vivo,
and their heritage is associated with the course of SLE in some
ethnic populations (210, 211). Abnormal Mφ activation has also
been observed in SLE patients. Labonte et al. demonstrated that
higher activation profiles of Mφwere associated with more active
cases of SLE (212). In addition, Mφ activation syndrome, a rare
but usually very severe or even life-threatening complication has
been reported in SLE patients (213, 214).

Accumulating findings suggest the predominance of M1 Mφ

in SLE pathogenesis. Excessive pro-inflammatoryM1Mφ-related
cytokines are produced by Mφ from SLE patients, including
IL-1β (37), interferon (IFN)-γ (19), C-X-C motif chemokine
10 (CXCL10) (38), and C-C motif chemokine ligand 2 (CCL2)
(39). In addition, the pro-inflammatory serum milieu of SLE
patients also favors M1 polarization, including high levels of
IFN-γ, TNF-α, and granulocyte-Mφ colony-stimulating factor

(GM-CSF) (40, 112). M1 dominance may come at the expense
of insufficient anti-inflammatory M2 polarization. It was shown
that serum transforming growth factor (TGF)-β levels were
significantly reduced in lupus patients, and TGF-β levels showed
a reverse association with disease activity and organ damage
in SLE patients (215). In addition, antibodies against scavenger
receptors (an M2 Mφ marker) or scavenger receptor knockout
in lupus prone mice led to a compromised ability of Mφ to
engulf apoptotic cells and resulted in more aggravated SLE
symptoms (109).

Considering the pro-inflammatory nature of M1 Mφ and
that M2 Mφ are anti-inflammatory and are capable of engulfing
apoptotic cells during apoptosis, it is reasonable to assume that
M1 predominance and M2 insufficiency combine to worsen
SLE severity. Indeed, researchers are trying to cure SLE by
modulating Mφ polarization. In a murine model of SLE,
adoptive transfer of anti-inflammatory M2a Mφ induced by
IL-4 significantly decreased SLE activity (216). In patients
with SLE, pioglitazone treatment enhanced M2 polarization of
Mo-derived Mφ, increasing their anti-inflammatory capacity
while suppressing their production of various pro-inflammatory
cytokines (217).

Available online at: Intriguingly, large amounts of IL-10,
which is a hallmark of M2 Mφ, are commonly detected
in patients with SLE, and serum levels of IL-10 correlate
positively with disease activity (20, 21). Contrary to its canonical
anti-inflammatory functions, IL-10 in SLE acquires a pro-
inflammatory capacity. This is largely dependent on high
concentrations of type I IFNs, which confer a pro-inflammatory
gain of function upon IL-10 and lead to a positive feedback
loop of pro-inflammatory cytokine production (113). Priming
of primary human Mφ with IFN-α resulted in significantly
enhanced STAT1 activation in the presence of IL-10, leading to
activation of several STAT1-dependent genes such as CXCL9,
CXCL10, and IFN regulatory factor 1 (113). In addition, IL-10
can directly stimulate production of platelet-activating factor (a
phospholipid mediator of inflammation) of Mo of SLE patients
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(218). Indeed, IL-10 antagonist administration ameliorated SLE
severity effectively during a 6-month therapy, even though this
finding was limited by the small sample size of the study (219).

In addition to IL-10, SLE Mo or Mφ also produce copious
IL-6 and TNF-α. Elevated IL-6 levels are positively associated
with disease activity or autoantibody levels (114). The underlying
mechanism seems to be the stimulation of B cell hyperactivity
by IL-6 (220). Indeed, in an open-label phase I dosage-
escalation study, IL-6 receptor inhibition showed a significant
decrease in the frequency of circulating plasma cells, reduced
autoantibody levels in the serum, and significant disease
improvement (221). Another cytokine, TNF-α, is generally
reported to be elevated in SLE and positively associated with
disease activity (112). However, TNF-α blockade therapy in SLE
is controversial. Although this therapy was shown to reduce
disease severity, autoantibodies to double-stranded DNA and
cardiolipin increased during treatment (222). Furthermore, it
seems that TNF-α blockade is safe only for short-term treatment,
while long-term therapy would likely provoke severe adverse
effects such as lymphoma and Legionella pneumonia (223).

Intriguingly, in lupus prone NZB/W and NZW/BXSB mice,
nephritic resident CD11bhiF4/80hi Mφ exhibit little arginase-
or iNOS-producing ability even after stimulation with M1 or
M2 Mφ-inducing cytokines, irrespective of the clinical status of
the mice (224). Instead, these kidney residents show a mixed
pro- and anti-inflammatory phenotype during lupus nephritis
(224). In contrast, Mo-derived Mφ of the same mice were
readily responsive to cytokine stimulation and can be induced to
differentiate into the correspondingly M1 or M2 cells (224). In
addition to these phenotypic differences, differences, functional
analysis showed that nephritic resident Mφ had higher antigen-
presenting function and phagocytosis ability compared with
MDMs of the kidney (224).

Several molecules and pathways have been suggested to
be associated with controlling polarization and inflammatory
profiles of Mφ. For example, usingMDMs of normal subjects and
SLE patients, Saeed et al. found that epigenetic modification is
partly responsible for the Mφ polarization profile in SLE (225).
Their data showed that sodium valproate, an histone deacetylase
inhibitor, can potently induce the alternative activation of Mo-
Mφ ex vivo and inhibit the pro-inflammatory profile of these
cells when stimulated by apoptotic cells in vitro (225). The
same group also found that aryl hydrocarbon receptor (AhR)-
mediated signaling pathway is responsible for the secretion of
anti-inflammatory cytokines and expression of M2 markers from
MDMs of SLE patients, as AhR agonist treatment of these cells
led to a significant downregulation ofM1markers and expression
of pro-inflammatory cytokines, coincided with an upregulation
of M2 markers and expression of anti-inflammatory cytokines
(226). In addition, decreased peroxisome proliferator-activated
receptor gamma (PPAR-γ) expression has also been proposed
to be involved in the defective efferocytosis and abnormal pro-
inflammatory characteristics of MDMs from SLE patients (217).

SSc
More than two decades ago, Ishikawa et al. stained skin
specimens from patients with SSc and found that Mφ infiltration

was generally observed around skin adnexa and vessels as well
as between collagen bundles, while no close relationship with
disease duration was found (6). Later, another group showed that
the percentage of peripheral Mo in SSc is significantly higher
than that in healthy controls. Notably, this higher percentage
of Mo also correlated with worse prognosis and visceral disease
involvement (14). However, in this study, Mo were not detected
specifically through CD14 but instead were gated indirectly
through CD3+CD4−, weakening the general application of this
conclusion. Using a more specific Mφ marker, another group
showed that the number of CD68+ Mφ was significantly higher
in the skin of patients with localized SSc (41). The same group
also found that the percentage of CD14+ circulating Mo was
significantly greater in SSc patients than in healthy controls
(43). In a more recent study, Lescoat et al. found that SSc
patients had an elevated count of total peripheral Mo relative
to healthy controls (42). Notably, the CD16+ subpopulation
count was more significantly increased in diffuse SSc than in
limited SSc. In addition, the absolute count of CD16+ Mo
was significantly associated with the severity of skin fibrosis,
pulmonary fibrosis, restrictive ventilatory defect, and pulmonary
function impairment, suggesting a potential link between this
subpopulation of Mo and the pathogenesis of fibrosis in SSc
(42, 227). A potential mechanism underlying the increased Mφ

count may involve Mφ migration inhibitory factor (MIF), which
is capable of suppressing the random migration of Mφ to
concentrate them at inflammatory loci. Selvi et al. has reported
the detection of high levels of MIF in the basal and suprabasal
keratinocytes of SSc-affected skin (119). In addition, elevated
concentrations of MIF in the peripheral blood of patients with
diffuse cutaneous SSc were identified.

Several lines of evidence have implicated the functional
abnormality of SSc Mo/Mφ. It was reported that SSc Mo were
more pro-fibrotic, as they displayed increased differentiation
potential toward type-1 collagen- and α-smooth muscle actin
(SMA)-expressing cells after stimulation (44). In addition, the
production of tissue-inhibitor of metalloproteinase-1 (TIMP-1),
an important protein capable of inhibiting extracellular matrix
degradation, is significantly increased in SSc Mo mediated by
TLR/MyD88 signaling and the transcription factor Fos-related
antigen 2 (20, 21, 126). SSc Mo/Mφ also show abnormally
expressed markers that are associated with certain functions.
First, increased expression of Siglec-1 in tissue Mφ and
circulating Mo of SSc patients was identified, suggesting a
potential role for type 1 IFN-mediated Mo/Mφ activation in
SSc (45). In line with this finding, levels of IFN-α mRNA
were significantly increased in vascular and perivascular cells
in skin samples of SSc patients (228). However, how Siglec-1 is
induced and to what extent it contributes to the pathogenesis of
SSc need further verification. In a recent study, Moreno-Moral
et al. explored the contribution of MDMs in mediating genetic
susceptibility to SSc. By conducting genome-wide genotyping
and RNA-sequencing, their work shows that gene expression in
Mφ from SSc patients is altered, especially higher expression of
the GSDMA and GRB10 genes (229). However, the relevance
of these results at the protein level has yet to be examined in
the future.
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Mounting evidence suggests the predominantM2 polarization
of Mφ in SSc. The elegant work of Nobuyo et al. showed an
evident increase in the number of CD14brightCD163+CD204+

Mφ in the fibrotic areas of the SSc skin (41, 43), suggesting
that this cell subset may be potential a regulator of fibrosis in
SSc skin. Of note, CD204-deficient mice failed to develop silica-
induced fibrosis, suggesting a critical role for this scavenger
receptor in fibrosis (230). This finding was underpinned by
the works of several other groups, which reported that a
soluble form of CD163 (sCD163), released from the Mφ cell
surface, was increased in the sera of SSc patients relative to the
general population (231–233). Intriguingly, sCD163 secretion by
PBMCs ex vivo may serve as a biomarker of SSc progression,
as increased production of sCD163 by PBMCs was associated
with worse prognosis of SSc (233). In addition, urinary sCD163
concentrations were also higher in SSc patients, but the difference
was not statistically significant (232). In line with these findings,
several reports have shown elevated serum levels of M2-
inducing cytokines, i.e., IL-4, IL-13, and IL-10, in patients with
SSc (234–236).

A growing body of data has suggested that M2 Mφ play
crucial roles in the activation of resident fibroblasts and the
progression of fibrosis, mainly through the release of TGF-β,
vascular endothelial growth factor (VEGF), and platelet-derived
growth factor (PDGF) (237, 238). Indeed, high levels of TGF-
β and PDGF as well as their contribution to SSc have been
reported by several groups (46–48). Data from skin samples
of SSc patients and healthy control subjects showed that in
SSc, the production of TGF-β by Mφ was partly induced by
Cadherin11, which has been implicated in both pulmonary and
skin fibrosis (48). In murine studies, blockade of Cadherin11
led to fewer myofibroblasts and decreased dermal thickness in
established fibrosis (48). However, whether this treatment may
be therapeutically effective needs further verification.

Intriguingly, a recent study revealed that a considerable
number of M2 Mo (CD204+CD163+CD206+) co-expressed M1
markers (CD80 and CD86) in the PBMCs of SSc patients,
and this subset of cells constituted a significant feature that
characterized SSc (23). In addition, down-regulation of the IL-
6/signal transducer and activator of transcription 3 (STAT3)
signaling pathway was identified in SSc Mo-derived Mφ (239).
These data suggest a more complex activation profile of SSc
Mo/Mφ, consistent with the remarkable plasticity of these cells.
Further investigation into the polarization state of Mo/Mφ in
different stages of SSc is needed, and the exact role of these cells
should be clarified.

RA
Mφ infiltration in the synovia is one of the most important
hallmarks of RA. There is ample evidence that the frequency
and absolute number of Mφ are markedly increased in the
synovial tissues of patients with RA (4, 5). More importantly,
this phenomenon could serve as a reliable biomarker for disease
activity. Mulherin et al. showed that synovial Mφ number
correlated positively with articular destruction in RA (240). In
a study based on 66 patients with RA, it was found that local
disease activity in particular was positively associated with the

number of synovial Mφ as well as levels of IL-6 and TNF-α, two
major Mφ-derived cytokines (241). Accordingly, it was suggested
that synovial Mφ count may also reflect the therapeutic efficacy
of RA. An early study by Ghada et al. found that the number
of synovial CD68+ Mφ was significantly reduced 12 weeks after
treatment with sodium aurothiomalate (242). A further study
investigated synovial tissue biopsies from 88 patients with RA
participating in various clinical trials, and the authors found that
the number of synovial Mφ correlated significantly with disease
activity score, and that a decrease in this number was positively
correlated with clinical improvement of RA, independent of the
therapeutic strategies these patients received (243). In line with
these findings, it was important to find that sublining Mφ did not
change in response to placebo or ineffective treatment (243, 244).
These findings were corroborated by data from rodent models
of arthritis. It was recently shown that experimental arthritis
was accompanied by enhanced survival of synovial Mφ and
would be markedly improved in genetically modified mice in
which Mφ were more susceptible to apoptosis (131). In this
study, Mφ survival is induced by increased expression levels of
nuclear factor of activated T cells 5, the expression of which
is stimulated by the inflammatory tissue microenvironment
of the arthritic mice. Importantly, experimental arthritis was
significantly alleviated after local Mφ depletion by knee joint
clodronate liposome injection (245). Moreover, inhibition of Mφ

differentiation from Mo also ameliorated synovial inflammation
in experimental arthritis (246). These findings suggest that Mφ

play a key role in RA pathogenesis.
A growing number of studies have highlighted the central

role of Mφ activation in RA pathogenesis. To be specific,
unrestrained pro-inflammatory M1 polarization with incomplete
M2 polarization usually leads to more severe joint pathology,
and thus Mφ polarization modulation usually alters the outcome
of experimental arthritis. In a collagen II-induced arthritis
mouse model, it was found that cyclophilin A, a potent pro-
arthritic protein, aggravated the severity of arthritis through
the induction of pro-inflammatory M1 Mφ polarization and
cytokine production in the knee joint (247). On the other
hand, efficiently repressed M1 polarization or increased anti-
inflammatoryM2 polarization suppressed synovial inflammation
and held promising potential as a targeted therapy for RA. In
collagen II-induced murine arthritis and spontaneous arthritis in
Hes1-GFP/TNF-transgenic mice, inhibited M1 polarization and
simultaneously enhanced M2 polarization of Mφ significantly
reduced the inflammatory response in the knee joints (248, 249).
Likewise, collagen-induced arthritis was efficiently ameliorated
by the administration of mesenchymal stem cells, which have
potent immunomodulatory capabilities (250–252). In addition,
IL-10 was able to suppress the observed effects of pro-
inflammatory M1 Mφ in experimental arthritis, partly due to
inhibition of the inflammation-associated nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling
pathway or pro-inflammatory cytokine secretion from Mφ (253,
254). Data frommurinemodel of RA showed that synovial tissue-
resident Mφ and MDMs play different roles in experimental
RA. Misharin et al. found that Ly6C− Mo are recruited into
the synovial tissue and differentiate into pro-inflammatory M1
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Mφ during the effector phase of arthritis, thus driving initiation
and progression of joint inflammation. During the resolution
phase, these cells are polarized toward an alternatively activated
phenotype and contribute to the resolution of arthritis (13). In
comparison, synovial tissue-resident Mφ are anti-inflammatory
throughout the course of arthritis and inhibit joint inflammation
during the initiation phase (13).

ActivatedMφ are a potent source of various pro-inflammatory
cytokines, which are essential mediators of the effects of
Mφ during the development of RA (56, 132, 255). TNF-α
is a key cytokine that is produced by synovial Mφ and is
of critical importance in the pathogenesis of RA (51, 249,
256). This cytokine is present in most arthritis biopsies, and
its overexpression induces spontaneous inflammatory arthritis,
whereas its inhibition suppresses various rodent arthritis models
(134, 135). Accordingly, therapeutic targeting of TNF-α signaling
has yielded clinical efficacy in patients with established RA, which
has also been corroborated by a number of mouse model-based
results (257–259). Other Mφ-derived cytokines such as IL-1, IL-
6, and IL-12 are also abundantly present in the arthritic synovium
of patients with RA (134, 135). Similarly, they are indispensable
for the inflammatory responses in the synovia of patients with
RA, and blockade of their signaling pathways improves clinical
or experimental arthritis (52–55).

Multiple Sclerosis (MS)
In progressive MS, central nervous system (CNS) inflammation
is characterized by widespread activation of mononuclear
phagocytes (MPs), which include both Mo-derived Mφ and
resident microglia (58). These MPs are found in both gray and
white matter lesions, are close to degenerating areas, and are
associated with chronic tissue damage (11, 12). In addition, in
normal-appearing whitematter, MP infiltration is associated with
the formation of microglial nodules that lead to disease pathology
(260). It has been suggested that staging of MS lesions can be
determined based on the presence of CD68-positive Mφ and
human leukocyte antigens, together with the degree of myelin
loss (59). The detrimental role of MP-driven pathology in MS
is also supported by evidence from murine models, which has
shown that the overall burden of MPs correlates with brain
atrophy (261), impaired neuronal function (262), and decreased
regenerative responses (263). These findings are underpinned by
evidence from clinical trials, as induction of Mφ apoptosis by
IFN-β showed a significant benefit in MS (264). In addition, in
murine models, Mφ depletion showed significantly suppressed
CNS damage and clinical signs of experimental autoimmune
encephalomyelitis (265, 266).

Using brain autopsy tissue from patients with MS, Tobias
et al. found that the main functional changes in Mφ and
microglia are increased expression levels of molecules associated
with inflammation, including CD68 (phagocytosis), human
leukocyte antigen (HLA) and CD86 (antigen presentation and
co-stimulation), and inducible nitric oxide synthase (iNOS)
(microglia activation) (60). Another group, George et al. found
that Mφ of MS patients display deficient SHP-1 mRNA and
protein expression, leading to heightened activation of STAT1,
STAT6, and NF-κB signaling and a corresponding enhanced

inflammatory profile (142). In addition, data from experimental
autoimmune encephalomyelitis (EAE), an animal model of
MS, has shown a critical role for Mφ in triggering adaptive
immune responses. For example, Mφ NLPR3 inflammasome
plays a key role in inducing migration of autoreactive T
cells into the CNS in EAE (144). Mφ also produce several
key cytokines (i.e., IL-1β, IL-6, and IL-23) to promote the
generation and maintenance of Th17 cells, a key cell subset
mediating CNS autoimmunity in EAE (145–147). In addition,
TLR7-mediated productions of IL-6 and B cell-activating factor
(BAFF) are crucial cytokines for autoreactive B cell survival
and differentiation (150). In consistent with these findings, Mφ

depletion or anti-GM-CSF treatment inhibits the induction of
myelin antigen-specific Th17 cells and protects mice from clinical
symptoms of EAE (146, 267–269).

Ample evidence indicates that inflammatory Mφ in MS
show abnormal metabolic changes. Generally, Mφ activated
by inflammatory stimuli switch their core metabolism from
oxidative phosphorylation (OXPHOS) to glycolysis (61). Recent
evidence shows that inflammatory Mφ accumulate succinate,
which inhibits the function of prolyl hydroxylase enzymes during
this metabolic shift, thereby inducing the transcription and
secretion of IL-1β as an additional pro-inflammatory signal
(61). In line with this finding, Luca et al. recently showed that
inhibition of succinate release from MPs can reprogram their
metabolism back to OXPHOS, resulting in an anti-inflammatory
phenotype of Mφ and ameliorated experimental autoimmune
encephalomyelitis (270).

Many lines of evidence indicate that Mφ play divergent roles
in the pathogenesis of MS as they exacerbate tissue injury but
also show remarkable growth-promoting and neuroprotective
effects (271, 272). Obviously, this dual role of Mφ in MS can
be explained by their polarization state. In fact, both M1 and
M2 subsets are present in MS lesions. The pro-inflammatory
M1 response is rapidly induced and then maintained at sites
of CNS injury. In comparison, the immunoregulatory M2
response is comparatively weaker and more transient (271).
Thus, when inflammatory signals released by type 1 MPs
are suppressed by neural stem cell-derived immunoregulatory
factors, significantly ameliorated CNS inflammation can be
observed (270). On the contrary, sodium chloride treatment of
Mφ induced an enhanced pro-inflammatory activity of these cells
and aggravated CNS autoimmunity in EAE-diseased mice (273).
In addition, IL-33 treatment induced significantly ameliorated
EAE, accompanied by M2 polarization of Mφ. Of note, adoptive
transfer of IL-33-treated Mφ attenuated EAE development,
suggesting the importance of IL-33-mediated Mφ polarization in
the development of EAE (274). In consistent with this finding,
Miron et al. found that immunomodulatory M2 Mφ were
essential for oligodendrocyte differentiation through activin A
production (275). Notably, the dichotomy of Mφ polarization
in MS is not accurate, as the majority of Mφ in active MS
lesions show an intermediate activation status, characterized by
the co-expression of both M1- and M2-specific markers (24).
In addition to their polarization state, the dual role of Mφ in
MS pathogenesis can also be accounted by the origins of CNS
Mφ. In fact, resident microglia and Mo can both give rise to
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Mφ that exhibit distinct expression profiling in the CNS (276).
Yamasaki et al. found the distinct functional capacities of these
two Mφ in EAE. They showed that resident macroglia were
associated with debris clearance and demonstrated a signature
of globally suppressed cellular metabolism during disease
initiation, whereas Mo-derived Mφ were highly phagocytic
and inflammatory and actively participated in demyelination
demyelination initiation (277).

Type 1 Diabetes (T1D)
There are scant data describing correlations between Mo and
Mφ counts and T1D development. In one study, the absolute
count of circulating Mo was significantly increased in patients
with T1D, while the number of CD16+ Mo decreased in
patients with diabetic complications (62). Unfortunately, this
study did not analyze the correlation between Mo number and
T1D development. Another study found that decreased Mo
counts significantly correlated with insulin resistance in T1D,
although this study lacked data on healthy controls and thus
could not prove a relationship between Mo number and T1D
development (278).

Two independent studies showed that Mφ from diabetes-
prone non-obese diabetic (NOD) mice showed markedly
compromised phagocytosis relative to those from normal mice
(63, 64). Since Mφ engulfment of apoptotic cells is an important
mechanism of self-antigen clearance, it was thus suggested
that deficiencies in apoptotic cell clearance by Mφ represent a
potential factor in predisposition to T1D. In addition, Mφ from
NODmice were shown to be abnormally activated and exhibited
direct cytolytic activity toward islet β-cells (65). Accordingly,
in vivo depletion of Mφ by clodronate liposomes abolished
diabetes effectively.

In T1D, Mφ play a key role in triggering the adaptive
immune responses. Vomund et al. showed that islet beta cells
can transfer some of their secretory granules to resident Mφ. In
autoimmune diabetes, these Mφ present the transferred antigens
to autoreactive CD4+ T cells, resulting in the activation of these
cells and initiating the autoimmune diabetic process (279). Mφ

are also involved in the trafficking of autoreactive CD8+ T cells
into the islets. Marro and colleagues found that depletion of
Mφ or genetic ablation of ifnar on Mφ aborted lymphocytic
choriomeningitis infection-induced T1D (280). Mechanistically,
disrupted type-I IFN signaling in Mφ restricted trafficking
of CD8+ T cells into the islets, thus prohibiting the further
development of murine T1D (280).

In T1D, the abnormal activation of Mφ is exemplified by the
pro-inflammatory M1 phenotype of these cells, which play a
critical role in T1D pathogenesis. The pro-inflammatory serum
milieu of T1D patients that favors M1 Mφ polarization is
exemplified by excessive amounts of C-reactive protein (66), IFN-
γ (67), CXCL10 (68), and CCL2 (68). This M1 dominance of T1D
Mo is reflected in the elevated IL-6- and IL-1β-secreting ability
of these cells, regardless of whether they were in a resting state
or after lipopolysaccharide stimulation (66, 69). It was suggested
that a main function of these two cytokines is to induce the
generation of Th17 cells, which is another key cell population in
T1D pathogenesis (69). In addition to the aforementioned two

cytokines, several lines of evidence have shown elevated levels
of Mφ-derived TNF-α in T1D patients (70, 71). However, the
function of TNF-α in T1D pathogenesis seems controversial.
Although TNF-α blockade therapy showed clinical efficacy in
some cases, others showed disturbance of glycemic control after
treatment, and one study even reported induction of T1D during
anti-TNF-α therapy in a RA patient (281, 282).

While pro-inflammatory M1 Mφ promote T1D development,
adoptive transfer of immunosuppressive M2 Mφ reduces the
onset of T1D in NODmice (283). In fact, more than 80% of NOD
mice were protected against T1D for at least 3 months after a
single transfer of M2 Mφ, even if the treatment was conducted
just prior to clinical onset. Moreover, in vitro inducedM2Mφ can
also reduce hyperglycemia, kidney injury, and insulitis in diabetic
mice (284).

The pancreas contains both MDMs and resident Mφ that
exert different functional capacities. Bone marrow Mφ have
been found to prevent stem cell mobilization into peripheral
blood in diabetic mice (285). In contrast, the islet resident
Mφ exhibit an activation signature with higher expression of
various pro-inflammatory cytokines andmount an inflammatory
immune response in NOD mice (286). Consistent with these
findings, in a study conducted in C57BL/6 mice, islet Mφ express
genes and cell surface markers that categorize them as M1-
like and exhibited typically pro-inflammatory characteristics.
In contrast, the interacinar Mφ expressed M2-like transcripts
and exhibited anti-inflammatory and tissue-supportive functions
(287). Accordingly, depletion of islet resident Mφ through CSF-1
neutralization resulted in reduced CD4+ T cell infiltration in the
pancreatic islets, impaired presentation of insulin epitopes to T
cells and reduced severity of autoimmune diabetes (288).

PBC
In 1994, Mathew et al. found that while Kupffer cell counts were
not altered significantly in stage 1 and 2 PBC, increased Kupffer
cell numbers were clearly identified in periportal and periseptal
zones of stage 3 PBC and in the parenchymal areas of stage 3
and stage 4 cases (10). This finding was supported by another
independent study (72). In contrast to these findings, the work of
Leicester and colleagues showed that the total number of CD68+

Mφ in the liver remained constant at different stages of fibrosis
and did not differ significantly from that of controls (73). This
discrepancy may result from distinct disease staging strategies
or different hepatic Mφ immune-staining and quantification
methods. In addition to Mφ, several lines of evidence also
showed increased Mo counts in PBC patients. Leicester et al.
revealed that while few CD14+ Mo could be observed in
control livers, these cells were increased markedly in PBC livers,
especially in patients with advanced stage of fibrosis (73). The
work of Peng et al. showed that the frequencies of peripheral
blood CD14highCD16+ and CD14lowCD16+ subpopulations of
Mo were elevated in patients with PBC (74). Intriguingly, the
frequency of CD14lowCD16+ cells was positively associated
with disease progress. Consistent with these findings, increased
levels of Mo chemotactic proteins were also identified in PBC
livers (289). These findings are supported by data from murine
models of PBC. In dominant-negative TGF-β receptor type II
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transgenic mice, clusters of Mφ are observed in the parenchyma
and portal tracts of the liver (290). In another PBC mouse
model, the 2-octynoic acid-conjugated bovine serum albumin
immunization-induced autoimmune cholangitis, interestingly, it
was found that while MDMs (CD11bhiF4/80intCX3CR1hi) were
enriched around the portal triads, liver resident Kupffer cells
(CD11bintF4/80hiCX3CR1neg) were significantly reduced (161).
In this study, MDMs play a key role in the development of
experimental PBC, as inhibition of their recruitment either by
genetic deletion of CCR2 or by pharmacological antagonization
of CCR2 resulted in ameliorated autoimmune cholangitis (161).

The dysfunction of Mφ in PBC is reflected in several findings.
In 2005, Mao et al. showed that Mo isolated from the peripheral
blood of patients with PBC were more sensitive to toll-like
receptor (TLR) ligation and thus produced higher levels of
pro-inflammatory cytokines (75). This finding was supported
by another independent study, which demonstrated that the
expression of TLR4 and its negative regulator RP105 were
altered on PBC Mo, making them hyperreactive to LPS and
leading to increased production of various pro-inflammatory
cytokines (78). In an in vitro co-culture model using human
peripheral blood Mo and T cells, it was shown that circulating
CD14lowCD16+ Mo could promote Th1 cell proliferation by IL-
12 production and direct contact of CD4+ T cells (presumably
through HLA-DR-, CD80-, and CD86-mediated mechanisms).
In line with these findings, circulating CD14lowCD16+ Mo
were positively associated with Th1 cell frequency in PBC
patients (74). Other molecules, such as Siglec-1, were also
found to be abnormally overexpressed by PBC Mo (76). A
great breakthrough in the abnormally altered functions of Mo
and Mφ in PBC may be achieved in studies illustrating their
ability to recognize anti-mitochondrial antibody (AMA)-apotope
complexes (77, 164). Apoptotic biliary epithelial cell-derived
autoantigens might remain immunologically intact and can be
recognized by circulating AMAs in apoptotic bodies (164). Of
note, these AMA-apotope complexes are capable of activating
Mo-derived Mφ of the liver, thus stimulating the secretion of
various pro-inflammatory cytokines from these cells. This effect
leads to further biliary epithelial cell apoptosis, thus perpetuating
local inflammation and eventually causing bile duct damage (77).

Many lines of evidence indicate a pro-inflammatory M1
polarization of Mφ in PBC. These Mφ express high levels of
TLR4 and are highly sensitive to endotoxin stimulation, leading
to markedly increased secretion of several pro-inflammatory
cytokines, such as IL-1β, IL-6, IL-8, IL-12, and TNF-α (75, 78).
Interestingly, endotoxin, which is a strong stimulator of M1 Mφ

activation, is increased in biliary epithelial cells of patients with
PBC (79). In addition, levels of CD40L, which interacts with its
corresponding receptor CD40 andmediates potent inflammatory
signals, are significantly elevated in PBCMφ (72). The same study
also found that this increase in CD40L expression was mainly
stimulated by LPS and IFN-mediated signals.

SS
Increased levels of peripheral mature (CD14lowCD16+) Mo were
described in patients with SS (15), even though their direct
aetiopathogenic role remains undefined. Another Mo subset,

pro-inflammatory CD14brightCD16+ Mo, is also increased in the
salivary glands of SS patients, accompanied by overexpression
of IL-34, a cytokine that specifically stimulates the growth and
differentiation of Mo (80). In addition, the salivary profile of
CCL2, a potent Mo chemoattractant, is highly expressed in
patients with SS (85). Until now, there has been no direct
evidence concerning the association of Mφ or Mo numbers with
human SS disease activity, even though elevated expression of
Mφ-derived molecules (i.e., molecules of the chitinase family)
indeed corresponded tomore severe SS (291). In addition, a study
analyzing saliva proteomics showed that proteins associated with
Mφ differentiation represented one of the biomarker signatures
of SS (292). In mouse models, it has been shown that Mφ are
critical mediators of SS pathogenesis and have intimate crosstalks
with autoreactive T cells. Using autoimmune regulator-deficient
mice as an animal model of SS, Zhou et al. demonstrated that
Mφ infiltration the limbus, corneal stroma, and lacrimal glands
were mediated by autoreactive CD4+ T cells (293). Importantly,
local infiltration of Mφ correlates with ocular surface damage,
and Mφ depletion by clodronate liposomes led to significant
improvements in lacrimal gland pathology (293), indicating the
immunopathologic involvement of these cells in SS. In another
mouse model of SS wherein NFS/sld mice are thymectomized on
day 3 after birth, Ushio and colleagues found that tissue resident
Mφ of the salivary gland mediated CD4+ T cell recruitment
by effective production of CCL22 (171). Moreover, CCL22 was
found to enhance IFN-γ production from T cells in these mice
(171). Of note, numerous CCL22-producingMφ can be observed
in the salivary gland tissue specimens of SS patients (171).

Functional abnormalities of SS Mφ are exemplified by
impaired phagocytosis ability of them. Mφ isolated from an
SS mouse model showed defective phagocytosis of apoptotic
cells (294). This finding is in line with previous reports in SS
patients, as Mo from these patients showed reduced engulfment
of apoptotic epithelial cells and were unable to promote
an immunosuppressant cytokine profile (81). In addition,
elevated levels of MIF have been shown to be associated with
hypergammaglobulinemia in patients with SS (295).

There is a paucity of data on the polarization ofMφ in patients
with SS. Although Baban et al. reported the presence of M1
and M2 Mφ along with T and B cells in the salivary glands
of SS mouse model, the balance of M1 and M2 Mφ has not
been characterized (296). However, accumulating data indicate
that pro-inflammatory M1 polarization is the predominant
phenotype of SS Mφ. It has been reported that systemic and
local concentrations of IL-6 are significantly increased in SS
patients (82). In addition, serum IL-12 levels are associated
with more active disease, while an immunosuppressant cytokine,
IL-35, is associated with lower disease activity (83). It has
also been shown that peripheral IFN-γ levels are increased
in patients with SS (84), which is suggested to be stimulated
by the synergistic functions of IL-33, IL-12, and IL-23 (297).
Additionally, salivary levels of the pro-inflammatory cytokines
and chemokines TNF-α, IL-1β, IL-18, CXCL8, and CXCL10
are also significantly higher in SS patients than in non-
SS controls (80, 85–87). Notably, levels of pro-inflammatory
cytokines or chemokines that are directly secreted by Mo and
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Mφ, i.e., IL-6, IL-18, type I IFN and BAFF, are significantly
higher in SS patients (87, 172, 173). In accordance with the
increased pro-inflammatory cytokine levels of SS Mo, these cells
express reduced levels of NF-κB inhibitor (IκBα), indicating
the abnormal activation of the NFκB signaling pathway (88).
In addition, Adrienne et al. used freshly isolated peripheral
blood Mo and found that SS-associated microRNAs collectively
suppressed immunoregulatory TGF-β signaling as opposed to
the pro-inflammatory IL-12 andNF-κB signaling pathways (170).
Interestingly, in thymectomized NFS/sld mice, an animal model
of SS, tissue resident Mφ of the salivary gland contain two main
subsets (CD11blowF4/80+ and CD11bhighF4/80+) (171). These
two subsets of Mφ display different phenotypes and functions.
For example, CD11blowF4/80+ Mφ express higher levels of pro-
inflammatoryM1markers includingMHC-II, CD11c, and CD86,
while CD11bhighF4/80+ Mφ express higher levels of M2 markers
such as CD206 and CD204 (171). In addition, CD11bhighF4/80+

Mφ showed significantly higher phagocytic activity compared
with CD11blowF4/80+ ones (171).

Celiac Disease
Numerous CD68+ tissue Mφ were present in duodenal biopsies
from patients with celiac disease (7). Of note, these Mφ

showed strikingly impaired phagocytosis ability, as reduced
expression levels of Mφ-associated scavenger receptors, i.e.,
CD36, thrombospondin-1 and CD61, were identified in the
duodenal mucosae of patients with the active phase of celiac
disease, accompanied by the accumulation of apoptotic bodies in
these areas (89). However, direct evidence for the phagocytosis
ability of Mφ is lacking. In addition, Mφ from patients with
celiac disease exhibit greater antigen-presenting ability, which is
exemplified by the upregulated expression of the co-stimulatory
molecules CD80, CD86, and CD40, in concert with higher
CD40L expression and a more highly activated state of T cells
(90, 91). However, more direct evidence is warranted to support
this conclusion.

The cytokine milieu of patients with celiac disease implicates
a simultaneous M1- and M2-related profiles. For one thing,
significantly higher levels of M1-associated pro-inflammatory
cytokines, i.e., IFN-γ, IL-1β, TNF-α, and IL-8 have been
identified in celiac disease sera (22). More specifically, gliadin
peptides could induce significantly higher levels of IL-8 and
TNF-α production by Mo from patients with celiac disease
relative to those from healthy donors. This pro-inflammatory
cytokine secretion is accompanied by a more pro-inflammatory
activation state of Mo expressing higher levels of M1 markers,
i.e., CD80, CD86, and CD40, as well as higher activation of the
NF-κB signaling (90). In addition, it was shown that gliadin
fragments could induce RAW264.7 cells and mouse peritoneal
Mφ to secrete TNF-α and CCL5, and to produce increased
levels of nitric oxide in the presence of IFN-γ, which is also
associated with the activation of NF-κB signaling (298–300). The
interaction of gliadin with Mφ involved a myeloid differentiation
factor 88 (MyD88)-dependent pro-inflammatory cascade, while
this was neither TLR2- nor TLR4-dependent (176). Intriguingly,
even in patients with celiac disease on a gluten-free diet
whose duodenal biopsy specimens are histologically normal,

intraepithelial lymphocytes and intestinal epithelial cells exhibit
increased expression of TNF-α and MIF (301). This may help
explain the rapidity with which the celiac mucosa responds to
gliadin challenge.

Additionally, M2-associated immunosuppressive cytokines
are also frequently detected in celiac disease. For example,
IL-10 concentration is significantly higher in celiac disease
sera (22). Importantly, serum levels of IL-10 is significantly
correlated with levels of autoantibody titers (22). In addition,
IL-10 polymorphisms are correlated with more severe mucosal
damage and early-onset of celiac disease (302), even though IL-
10 secretion abnormalities are suggested to be more a cause than
a consequence of this disease (303). Using Mo from patients
with celiac disease or healthy subjects, Amelia et al. found that
gluten peptides induced the expression of arginase 1 and arginase
2, both of which are typical markers of M2 Mφ (92). This
finding was supported by data from the same group showing that
gliadin stimulation significantly activated the arginase pathway in
human Mo as well as in RAW264.7 cells (93).

IBD
In IBD, the intestinal mucosa is characterized by extensive
Mφ infiltration (8, 9). Elevated CD68+ Mφ count in the
colonic and ileal mucosae were observed in both Crohn’s
disease (CD) and ulcerative colitis (UC), while a CD163-positive
subset in the colon mucosa was increased only in CD but
not UC patients (16). In patients with CD, the mesenteric
fat tissue also exhibits considerable Mφ infiltration (9, 304).
Regarding circulating Mo, it was found that Mo with a
CD14+CD16+ phenotype are increased significantly and are
the main contributor to the inflammatory infiltrate in the
CD mucosa, while classical Mo (CD14hiCD16−) are decreased
(94, 95). A dramatic increase in peripheral CD14+CD16+

Mo was observed in patients with active CD, particularly in
those with colonic involvement and a high Disease Activity
Index (95). Intriguingly, a significant correlation between the
percentage of CD14+CD16+ Mo and clinical activity index
has been shown in both CD and UC patients, suggesting the
potential involvement of this cell subset in the inflammatory
drive of IBD (305). Of note, computational simulations
conducted by Wendelsdorf et al. identified that Mφ and
their mechanisms of plasticity are key reasons for mucosal
inflammation (188).

The expression level of aldehyde dehydrogenase (ALDH),
which is necessary for the synthesis of retinoic acid, is
significantly reduced in Mφ populations of the UC colon, both
in active disease and remission (8). Given that retinoic acid
has important immunoregulatory properties and is critical for
the generation of regulatory T cells (Tregs), local suppressive
failure due to a lack of retinoic acid may be involved in
driving UC. In line with this finding, Treg numbers in UC
patients were lower than that of healthy controls, and Treg
number was negatively associated with the clinical activity index
of UC (306). In comparison, the percent change in ALDH+

Mφ in CD is controversial, as one study showed that this
fraction is similar to that in controls, while another study
identified up-regulated ALDH activity in CD14+ Mφ from
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FIGURE 1 | Modulation of autoimmune diseases by Mo and Mφ. Mo and Mφ are key players in autoimmune diseases. During the development of autoimmune

diseases, pro-inflammatory M1 Mo or Mφ can secrete various chemokines to recruit additional immune cells (i.e., T cells, B cells, neutrophils, NK cells, and NKT cells)

to the affected tissues. Then, Mo or Mφ can activate these cells via the secretion of various pro-inflammatory cytokines (i.e., IL-1β, IL-6, IL-12, IL-23, IFN-γ, and

TNF-α) or through direct cell-cell contact (antigen presentation: MHC, co-stimulation: CD80, CD86 and CD40, and adhesion molecules: CD169). In addition, Mo or

Mφ can also exert direct tissue injury functions by producing matrix metalloproteinases (MMPs) and reactive oxygen species (ROS). Consequently, the activation of Mo

or Mφ and other immune cells synergistically leads to tissue damage. On the other hand, M2 Mo or Mφ mediate immunosuppressive or tissue-repairing effects during

this process, mainly by producing cytokines (i.e., IL-10 and TGF-β) and growth factors (i.e., PDGF and VEGF). M2 Mo or Mφ can also secrete various pro-fibrotic

factors, such as TGF-β, PDGF and VEGF, to activate myofibroblasts in certain tissues, leading to extracellular matrix deposition and fibrosis generation (i.e., cases in

PBC and SSc).

CD patients (8, 307). CD Mφ also showed an abnormally
accelerated breakdown of pro-inflammatory cytokines due to
faster lysosomal degradation, while cytokine messenger RNA
showed normal stability and levels (96). This was shown to
lead to impaired neutrophil attraction, causing defective bacterial
clearance and thereby boosting the formation of granulomas.
However, this case differs strikingly from UCMφ, which showed
similar or even significantly higher secretion of various cytokines
relative to healthy controls in the same study. In addition, there is
proof that IBD patients showed defective Mo GM-CSF receptor
(CD116) expression and function, which was more prominent
in UC than in CD patients, indicating a causal link between
the innate immune defect in IBD patients and Mo CD116
expression (97). Intriguingly, CD116 expression in IBD patients
was independent of current medications and was not influenced
by disease activity.

Several studies have reported the potential interactions
between colonic Mφ and lymphocytes in IBD. Abnormally
activated intestinal Mφ in CD patients produce various cytokines
(i.e., IL-1β, IL-6, IL-23, TNF-α, and TNF-like protein 1A)
necessary for T cell differentiation, specifically promoting the
generation of Th1 and Th17 cells (191–194). A subset of CD14

and CD209 dual positive Mφ in the lamina propria also possess
potent antigen-presenting ability and can strongly evoke the
differentiation of Th1 and Th17 cells (194). In addition, these
Mφ can induce the proliferation of naive CD4+ T cells (194).
Similarly, in UC patients, IL-23 from CD68+ Mφ promotes the
differentiation of Th17 cells, which are important contributors
to the pathogenesis of UC (195–197). In addition, Mφ-derived
IL-23 can strongly promote the activation and cytolytic activities
of intestinal NK cells crucially contributing to tissue pathology
of UC patients (195). Data from murine model-based studies
showed that adoptive transfer of M2a Mφ to IBD mice increased
Th17 and Treg generation, while M1 Mφ contributed to
the disruption of the intestinal epithelial barrier during IBD
development (308, 309).

The polarization profile of IBD Mφ is a complex issue. In
CD, Mφ are more polarized to an M2 profile, which is reflected
by several findings. First, CD163 is expressed on a substantial
percent of Mφ in the colonic mucosa as well as in the peripheral
blood of CD patients (16). In addition, sCD163 levels are
significantly increased in CD patients (310). Upon successful
treatment, serum sCD163 levels are dramatically decreased (310).
Second, large numbers of Mφ are found in fibrotic lesions of
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TABLE 3 | Pathogenic functions of Mo and Mφ in autoimmune diseases and the relevant treatment strategies.

Diseases Pathogenic functions Relevant strategies of disease treatment

SLE Enhanced ability to activate autoreactive T and B cells (28, 336, 337).

Higher antigen-presenting ability (29, 30).

Impaired clearance of apoptotic cells and immune complexes (34, 35).

Adoptive transfer of M2 Mφ in mouse model (216).

Induction of M2 polarization in patients (217).

Blockade of TNF-α (222).

SSc Contributing to skin fibrosis (44).

Mo count correlates with disease activity (42).

Potentially mediate genetic susceptibility to SSc (229).

Suppression of M2 Mφ by tocilizumab (338).

Blockade of TGF-β (339).

RA Mediation of local and systemic inflammation (56, 340).

Cartilage degradation (136).

Synovial Mφ count correlates with local disease activity (241).

Blockade of TNF-α (257).

Blockade of IL-1 (52).

Blockade of IL-6 (54).

MS Higher antigen-presenting ability (60).

Positively associated with disease pathology (260, 264).

Mediation of myelin damage through iNOS production (60).

Mediation of neurotoxicity (271).

IFN-β-induced Mφ apoptosis (264).

Gc protein-derived Mφ-activating factor treatment (341).

Induction of M2 Mφ (342).

T1D Impaired clearance of apoptotic cells (63, 64).

Mediates death of islet β-cells (65).

Production of reactive oxygen species (343).

TNF-α clearance from the circulation (281).

Adoptive transfer of M2 Mφ in mouse models (283, 284).

TGF-β-engineered mesenchymal stem cell treatment in

mouse model (344).

PBC Higher ability to produce pro-inflammatory cytokines (75, 78).

Promoting Th1 activation (74).

Apoptosis induction of biliary epithelial cells (77, 164).

Frequency of CD14lowCD16+ cells correlates with disease progression (74).

Induction of M2 Mφ by MSC transplantation (345, 346).

Blockade of TNF-α (347, 348).

Blockade of IL-12/IL-23 (349).

Blockade of CCR2/CCL2 signaling (161).

SS Impaired clearance of apoptotic cells (81).

Chitinase levels correlates with SS severity (291).

Mediation of local and systemic inflammation (87, 88, 170, 172, 173).

MIF concentration correlates with hypergammaglobulinemia (295).

Blockade of TNF-α (ineffective) (350, 351).

Celiac disease Enhanced ability to activate autoreactive T cells (90, 91). Parasitic helminth infection (352).

TNF-α blockade (353, 354).

IBD Mediation of local inflammation (94, 355).

Percentage of CD14+CD16+ Mo correlates with disease activity (305).

Boost the formation of granulomas in CD (96).

IL-6 blockade (356).

IL-12/IL-23 blockade (357).

IFN-γ blockade (358).

TNF-α blockade (359).

MMP9 blockade (360).

Allogeneic mesenchymal stem cell transplantation (361, 362).

CD patients, consistent with the potent tissue-repairing and pro-
fibrotic capacity of M2 Mφ (311, 312). Third, defective bacterial
clearance by Mφ is frequently observed in CD patients, which
is presumably due to the impaired pro-inflammatory cytokine
secretion of these cells (96). Fourth, IL-13, which is a potent M2
Mφ inducer, was dramatically upregulated in CD patients (100).
In comparison, the Mφ polarization profile seems much more
complex in UC patients. The fact that CD163+ Mφ numbers
and serum sCD163 levels are increased in UC patients, coupled
with the finding that CD206+ Mφ are enriched in the injured
mucosa of these patients, indicates an M2 polarization profile
for these Mφ (16, 101). However, the continuous excessive
inflammation in the gut mucosa of UC patients, as well as the
significant increase in pro-inflammatory M1 while decrease in
M2 Mφ accompanied by suppressed IL-10 production in mouse
models of UC also points to the evident M1 polarization of
these Mφ (98, 99). In various mouse models of IBD, inhibition
of the pro-inflammatory activities of M1 Mφ or induction of
tissue-repairing/immunomodulatory M2 Mφ usually results in
attenuated experimental IBD (185, 187, 313, 314).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In the present review, we mainly discussed the association
of Mo/Mφ with the development of certain autoimmune
diseases. It has been quite well elucidated that Mo/Mφ

are key component of the innate immune system and are
involved in both amplifying and suppressing inflammation
(2). Mounting evidence suggests that these cells participate
in the pathogenesis of autoimmune diseases, mainly through
their remarkably pro-inflammatory or fibrogenic properties (1,
2). As discussed above, in different autoimmune diseases, the
heterogeneity of Mo/Mφ subpopulations varies dramatically, and
their polarization profile usually plays a key role in disease
progression (Figure 1). However, in many autoimmune diseases,
the phenotypic and functional characteristics of Mo/Mφ have not

been classified unambiguously, as many pro-inflammatory M1-
polarized Mo/Mφ simultaneously express M2-related markers

or exhibit immunomodulatory functions (19–22). In addition,
in several cases, Mφ activation is a dynamic and reversible
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event in which pro-inflammatory Mφ can be re-programmed

into Mφ with immunosuppressive or tissue-repairing cells by

local microenvironment (13, 25). Thus, future investigation into
explaining the seemingly opposing phenotypic and functional
programs of Mo/Mφ and identifying the dynamic changes is
clearly needed.

Several possible mechanisms responsible for Mφ phenotype
in autoimmune diseases in general have been suggested by
recent findings. For example, genome-wide association studies
have identified several candidate genes responsible for the
pathogenesis of autoimmune diseases. Among the susceptibility
genes, HLA, which is closely with the antigen-presenting ability
of Mφ, has been suggested to be involved in the development of
SLE (315), SSc (316), RA (317), MS (318), T1D (319–322), SS
(323), Celiac disease (324), and IBD (325). In addition, protein
tyrosine phosphatase, non-receptor type 22 (PTPN22), which can
be expressed in Mφ and controls Mφ activation and polarization,
has been identified as a risk gene for RA (317) and IBD (17).
Interferon regulatory factor 5 (IRF5), which is mainly expressed
by myeloid cells and is a key regulator of Mφ activation and
polarization, has been identified as an important predisposed
factor in patients with SLE (326), SS (323), RA (327), PBC (328),
and IBD (329, 330). However, functional studies investigating
the actual function of these genes in Mφ should be done to
confirm whether they really play a critical role in controlling Mφ

activation in autoimmune diseases.
In recent years, mounting reports have overturned the long-

held knowledge that Mφ in the adult are merely replenished by
circulating Mo from bone marrow progenitors (331–333). The
new paradigm supports that some Mφ are embryo-derived and
are maintained by self-renewal independent of hematopoietic
contribution (332). Intriguingly, this heterogeneity of Mφ

results in distinct phenotypes and, more importantly, totally
different biologic functions (334, 335). Thus, it is necessary for
future studies to elucidate the roles of tissue-resident Mφ and
bone marrow-derived Mφ in the initiation, progression and
termination of different autoimmune diseases.

Although Mo and Mφ play a key role in the pathogenesis of
certain autoimmune diseases, the development of these diseases
is not solely Mo/Mφ-dependent, and this process involves the

interplay of these cells with other immune cells, i.e., autoreactive
T and B cells (2). However, most studies fail to explore
the interactions of Mo/Mφ with other immune cells in the
local microenvironment. Thus, future work is needed to better
determine the synergistic effects and related mechanisms of the
interactions between Mo/Mφ and other immune cells in the
development of autoimmune diseases.

To date, although the functions of Mo/Mφ in several
autoimmune diseases have been determined, the clinical
translation of this knowledge is still challenging. Certain
Mo- or Mφ-targeted therapies have been developed (see
Table 3), but whether they are more effective and safer than
traditional treatment remains to be verified, and some of
them have already proven disappointing (52, 54, 281, 282).
However, this does not rule out a potential effective role for
Mo/Mφ as an attractive therapeutic strategy for autoimmune
diseases. Thus, further studies are needed to elucidate a more
detailed and comprehensive mechanism of Mo/Mφ regulation
in autoimmune diseases; such work, coupled with a wider
understanding of the determinant factors of autoimmune
diseases (i.e., sex, age, genetics, and environmental factors),
which act together but differ between patients, will probably lead
to the development of more specific and effective therapies in
the future.
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