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Acute lymphoblastic leukemia (ALL) is the most common cancer in children. While survival 
rates for ALL have improved, central nervous system (CNS) relapse remains a significant 
cause of treatment failure and treatment-related morbidity. Accordingly, there is a need 
to identify more efficacious and less toxic CNS-directed leukemia therapies. Extensive 
research has demonstrated a critical role of the bone marrow (BM) microenvironment 
in leukemia development, maintenance, and chemoresistance. Moreover, therapies to 
disrupt mechanisms of BM microenvironment-mediated leukemia survival and chemo-
resistance represent new, promising approaches to cancer therapy. However, in direct 
contrast to the extensive knowledge of the BM microenvironment, the unique attributes 
of the CNS microenvironment that serve to make it a leukemia reservoir are not yet elu-
cidated. Recent work has begun to define both the mechanisms by which leukemia cells 
migrate into the CNS and how components of the CNS influence leukemia biology to 
enhance survival, chemoresistance, and ultimately relapse. In addition to providing new 
insight into CNS relapse and leukemia biology, this area of investigation will potentially 
identify targetable mechanisms of leukemia chemoresistance and self-renewal unique 
to the CNS environment that will enhance both the durability and quality of the cure for 
ALL patients.

Keywords: acute lymphoblastic leukemia, central nervous system, chemoresistance, migration, microenvironment, 
niche

inTRODUCTiOn

Acute lymphoblastic leukemia (ALL) represents ~25% of all pediatric cancer diagnoses and, despite 
significant advances in therapy, it is still a common cause of death in children with cancer (1). While 
leukemia arises in the bone marrow (BM), it is a systemic disease with a predilection for certain 
organs such as the central nervous system (CNS). Prior to the advent of CNS-directed leukemia 
therapies, CNS leukemia developed in over half of pediatric leukemia patients (2–4). Moreover, 
despite current CNS-directed therapies that often include high-dose systemic chemotherapy, 
intrathecal chemotherapy, and cranial irradiation in a subset of children, CNS relapse accounts for 
~30% of initial relapses in some clinical trials and occurs in ~2–8% of children with leukemia (5–7). 
Neither the factors that determine the site of leukemia relapse (CNS, BM, other extramedullary, or 
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combined sites) nor why BM relapse confers a significantly worse 
prognosis than CNS relapse is well understood (8).

Furthermore, sparing cranial irradiation from all but the most 
high-risk patients, or even all patients in some recent clinical 
trials (9, 10), requires intensification of the other CNS-directed 
therapies. Although the elimination of radiation negates the 
risk of secondary brain tumors and neuroendocrine failure, 
CNS-directed chemotherapy carries the risk of seizures, encepha-
lopathy, and neurocognitive toxicities that can include significant 
and persistent impairments in intelligence, processing speed, 
memory, academics, executive function, and attention (11–18). 
An extensive literature comprehensively reviews the clinical 
aspects of CNS leukemia, thus it will not be addressed in this 
mini-review (5–7, 19).

Rigorous basic science and clinical data demonstrate that 
leukemia cell-autonomous factors play a critical role in leukemia 
biology (20–23). The composition and organization of the BM 
is highly complex with multiple different cell types and soluble 
factors interacting with and influencing leukemia cells. These ele-
ments create distinct niches, which exert unique and functionally 
important effects on leukemia development, quiescence, mainte-
nance, and chemoresistance (24–33). Accordingly, strategies to 
disrupt mechanisms of BM microenvironment-mediated chem-
oresistance or quiescence represent new, promising approaches 
to cancer therapy (34).

The role of the CNS in regulating leukemia survival and chem-
oresistance is much less well understood than the BM microenvi-
ronment, but is also likely to be important for both understanding 
leukemia biology as well as developing more effective and less 
toxic therapies. As the BM and CNS are distinct environments, 
research investigating the role of the BM in leukemia is unlikely 
to uniformly translate to the CNS. In this mini-review, we will 
describe emerging evidence supporting a role for the CNS in 
regulating critical aspects of leukemia biology and highlight how 
this area of investigation may translate into more effective and less 
toxic therapies for patients.

APPROACHeS FOR STUDYinG  
CnS LeUKeMiA

Defining the role of the CNS microenvironment in leukemia 
requires experimental approaches for studying and character-
izing leukemia cells in the CNS. Fortunately, many previously 
developed approaches for studying the BM microenvironment 
in leukemia and normal hematopoiesis have been, or can be, 
adapted to the CNS microenvironment (Figure  1A). In vitro 
co-culture of leukemia cells with CNS-derived cells can be used 
to examine the effect of both direct cell–cell interactions as well 
as soluble factors on leukemia biology (35–37). Similarly, in vitro 
transwell assays that assess the migration of leukemia cells across 
endothelial or choroid plexus (CP) cells can be used to model 
the process of leukemia migration across the blood–brain or 
blood–cerebral spinal fluid (CSF) barriers, respectively (38–41). 
Cerebral organoids, three-dimensional in  vitro cultures that 
model brain organogenesis, represent a new and powerful model 
system that could also potentially be exploited for expanding our 
understanding of CNS leukemia (42). Genetically engineered 

mouse leukemia models and human leukemia xenografts develop 
CNS leukemia with a frequency and in anatomic patterns that 
recapitulate human CNS leukemia (43, 44). Accordingly, these 
in  vivo systems are powerful tools for biologic discovery as 
well as therapeutic drug testing. Finally, leukemia cells isolated 
from the CSF of leukemia patients can be used to confirm and 
extend knowledge gained in the laboratory. A significant, but not 
insurmountable, challenge is that only about ~15% of children 
have morphologic evidence of CNS leukemia at time of diagnosis  
(45, 46). Moreover, the number of leukemia cells that can be 
isolated from the typical volume of CSF obtained during a 
lumbar puncture may be limited. However, with cutting-edge 
technologies that require only a small number of cells, or single 
cells, one can envision increasingly sophisticated questions being 
addressed using primary leukemia cells obtained from CSF sam-
ples of newly diagnosed or relapsed patients.

TRAFFiCKinG OF LeUKeMiA CeLLS  
TO THe CnS

The CNS is an immunologically privileged site that is isolated 
from the blood system by blood–brain and blood–CSF barriers. 
Although the process by which normal leukocytes traffic into the 
CNS has been well studied and reviewed extensively (47–51), 
this process is less well understood in the context of leukemia. 
Additionally, tight junctions between epithelial, rather than 
endothelial, cells provide the blood–CSF barrier within the CP 
(52). It is not clear that principles governing trans-endothelial 
migration will apply to the CP. Based on patient autopsy reports 
and murine leukemia xenotransplantation studies, a rudimentary 
anatomical and temporal course of leukemia invasion of the CNS 
can be posited (2, 43). After transiting CP epithelial cells and/
or meningeal postcapillary venules, leukemia cells are initially 
localized to the leptomeninges on the surface of the brain and 
within the CSF. Leukemia cells then migrate into the deeper 
meningeal tissues surrounding vessels in the cortex and white 
matter (Virchow–Robin or perivascular spaces). Only late in the 
disease is the pial-glial membrane destroyed and leukemia cells 
identified within the brain parenchyma.

Leukemia Migration
The contributions of leukemia cell intrinsic and extrinsic factors 
to CNS trafficking remain incompletely understood (Figure 1B). 
Yet, an increasing number of leukemia genes and pathways, as 
well as leukemia cell autonomous factors, have been identified 
as playing a role in CNS trafficking (Table 1). Not surprisingly, 
factors implicated in trans-endothelial migration of leukemia 
cells and leukocytes outside of the CNS also appear to play a role 
in crossing the blood–brain or blood–CSF barriers. For example, 
myosin II, a cytoskeleton class II non-muscle myosin motor 
protein, has been shown to be important for T-cell extravasation 
(53, 54). Using a pre-B ALL murine leukemia model, Wigton 
et al. showed that myosin-IIA depletion or inhibition with either 
shRNA or blebbistatin, respectively, significantly decreased 
leukemia infiltration into the CNS as a result of impaired trans-
endothelial extravasation (55). Similarly, known inhibitors of 
T-cell leukemia migration diminished the ability of leukemia cells 
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FiGURe 1 | (A) Experimental approaches for studying central nervous system (CNS) leukemia. Complementary experimental approaches for studying CNS leukemia 
include (1) in vitro co-culture of leukemia and CNS-derived cells, such as meningeal, glial, or choroid plexus (CP) cells, (2) trans-well migration assays of leukemia 
cells across either endothelial cells or CP epithelial cells, (3) cerebral organoids that are grown in vitro from human induced pluripotent stem cells, (4) in vivo murine 
models that include either genetically engineered mouse models or xenotransplantation of human leukemia cells into immunodeficient mice, or (5) patient-derived 
leukemia samples isolated from either the bone marrow or cerebral spinal fluid (CSF). Leukemia cells are shown in blue and CNS-derived cells in green. (B) Overview 
of key aspects of the pathophysiology of CNS leukemia and relapse. Leukemia cells first breach the blood–brain and/or blood–CSF barriers, illustrated by the blue 
sphere (1). Leukemia cells must then persist in the CNS and escape the effects of chemotherapy and immune surveillance in order to lead to relapse (2). Identifying 
the leukemia cell extrinsic factors (soluble factors, cell–cell interactions) that mediate both of these processes as well as their effects on critical aspects of leukemia 
biology are active areas of investigation. (C) Approaches for targeting leukemia cells in the CNS niche. New therapeutic opportunities will be identified as studies to 
(i) define the influence of the CNS niche on critical aspects of leukemia biology, such as chemoresistance, self-renewal, and quiescence and (ii) identify CNS-derived 
factors that protect and maintain leukemia cells in the CNS niche. Directly targeting vulnerabilities unique to leukemia cells in the CNS niche (1) or disrupting the 
interactions between leukemia cells and the niche (2) represent novel approaches to leukemia therapy.
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TABLe 1 | Selected genes and pathways that have been associated with 
central nervous system (CnS) leukemia.

Gene/pathway/
molecule

Putative role Reference

lnterleukin-15 CNS trafficking Cario et al. (57)

Leukemia proliferation Williams et al. (60)

NK cell activation Frishman-Levy et al. (72)

CCR7/CCL19 CNS trafficking of T-cell acute 
lymphoblastic leukemia (ALL)

Buonamici et al. (44)

VE-cadherin and 
PECAM1

Adhesion and CNS trafficking Akers et al. (39)

Asparaginyl 
endopeptidase, 
intercellular adhesion 
molecule 1, ras-related 
C3 botulinum toxin 
substrate 2

CNS trafficking Holland et al. (56)

Mer tyrosine kinase Chemoresistance and 
quiescence

Krause et al. (37)

PBX1 Chemoresistance and self-
renewal t(1;19) translocation 
and CNS relapse

Gaynes et al. (36)

Jeha et al. (68)

VEGFA Leukemia survival in CNS Kato et al. (73)

Oxidative 
phosphorylation

Downregulated in ALL cells 
in CNS

Kato et al. (73)

SCD, SPP1 CNS trafficking and/or survival Van der Velden et al. (76)
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to cross CP epithelial cells in a transwell assay designed to mimic 
the blood–CSF barrier (38). Using similar in vitro co-culture and 
transwell assays, with brain-derived endothelial cells rather than 
CP cells, Akers et al. showed VE-cadherin expression by leukemia 
cells enhanced adhesion to endothelial cells while PECAM-1 
expression enhanced adhesion to, and migration through, 
endothelial cells (39). Together, these studies suggest that many of 
the cellular mechanisms governing the trans-endothelial migra-
tion of leukocytes and leukemia cells outside the CNS are likely to 
also apply to the transit of leukemia cells across the blood–brain 
and blood–CSF barriers.

Leukemia Genes and Pathways implicated 
in CnS Migration
Focusing more specifically on the trafficking of leukemia cells to 
the CNS, Buonamici et al. used murine T-cell leukemia models 
involving expression of the oncogenic, intracellular Notch1 
fragment in hematopoietic progenitors combined with gene 
expression profiling to identify the chemokine receptor CCR7 
as an essential adhesion molecule required for the infiltration 
of leukemic T-cells into the CNS (44). Silencing of CCR7 in 
leukemia cells, or one of its ligands CCL19 in mice, specifically 
diminished infiltration of the CNS, but not other tissues, in both 
murine and xenotransplantation leukemia models. The other 
ligand for CCR7, CCL21, was undetectable in mouse brain sec-
tions and presumed to be less important for leukemia migration 
into the CNS. Interestingly, deletion of CCR7 in two models of 
B-cell leukemia failed to inhibit CNS infiltration, suggesting 

that CCR7 function may be specific for Notch1-induced T-cell 
leukemia. Complementing this genomic approach, Holland et al. 
used semiquantitative proteomics to compare the plasma mem-
brane protein composition of an invasive pre-B ALL cell line that 
resulted in CNS leukemia when transplanted into NOD-SCID 
mice versus two pre-B ALL cell lines with less invasive behav-
iors (56). Proteins upregulated on the membrane of the more 
invasive leukemia cell line classified into a number of biological 
classes likely functionally relevant for leukemia trafficking to the 
CNS, including cytoskeletal organization, adhesion, migration, 
invasion, signaling, and endocytosis. Finally, further functional 
characterization of three of the differentially expressed proteins, 
asparaginyl endopeptidase, intercellular adhesion molecule 
1, and ras-related C3 botulinum toxin substrate 2, suggested a 
complex role for multiple proteins and cellular processes in the 
pathogenesis of CNS disease in pre-B-cell ALL.

Soluble Factors implicated  
in CnS Migration
Cytokines and chemokines also likely play a role in the traf-
ficking of leukemia cells to the CNS. Interleukin-15 (IL-15) 
single-nucleotide polymorphisms and/or mRNA levels have 
been implicated in leukemia chemoresistance as well as likeli-
hood of CNS disease in leukemia (57–59). While the role for 
IL-15 in leukemia proliferation and survival is discussed in 
the next section, IL-15 also upregulates p-selectin glycoprotein 
ligand-1 (PSGL-1) and CXCR3 levels in leukemia cells (60). Both 
PSGL-1 and CXCR3 have been implicated in the migration of 
leukocytes across the blood–CSF barrier and may play a similar 
role in leukemia (61, 62). However, it is worth noting that other 
xenotransplantation studies of primary pre-B ALL samples failed 
to identify a chemokine receptor signature that correlated with 
CNS invasiveness (43).

THe ROLe OF THe CnS 
MiCROenviROnMenT in  
LeUKeMiA BiOLOGY

While defining the mechanisms by which leukemia cells traffic 
from the blood to the CNS is important for understanding the 
biology and pathophysiology of leukemia, a number of obser-
vations may diminish its importance for understanding CNS 
relapse. First, ~15% of patients show evidence of CNS leukemia 
by morphological examinations of CSF (45, 46). However, more 
sensitive examinations of CSF using PCR or flow cytometry detect 
leukemia cells in up to ~40% of patients at diagnosis (63–66). 
Second, high rates (~50–75%) of CNS leukemia developed in 
patients prior to the development of adequate CNS-directed 
therapies (2–4). Third, ~80% of mice transplanted with human, 
primary B-cell precursor leukemia cells developed CNS leukemia 
despite the majority of leukemia samples coming from patients 
without morphological evidence of CNS leukemia (43). Fourth, 
clonal tracking of xenotransplanted leukemia cells demonstrated 
that the composition of leukemia cells in the CNS was polyclonal 
and similar in composition to the spleen or femur (43). Finally, 
CNS leukemia relapses occur despite cranial irradiation and/or 
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high-dose systemic and intrathecal chemotherapy that either 
overcome or bypass the blood–brain barrier, respectively (10). 
Together, these observations support a model in which the ability 
of leukemia cells to persist in the CNS and escape the effects of 
chemotherapy and immune surveillance may contribute more to 
relapse and therapy resistance than the ability of leukemia cells to 
migrate from the BM and blood to the CNS (Figure 1B). Further 
supporting this hypothesis, Akers et al. showed that co-culture 
of leukemia cells with astrocytes, CP epithelial cells, or menin-
geal cells enhanced leukemia cell resistance to dexamethasone, 
cytarabine, and methotrexate-induced cell death (35). Notably, 
these drugs play an important role in CNS leukemia therapy and 
prophylaxis. Their work also suggested that both soluble factors 
secreted by the CNS-derived cells and adhesion-mediated signal-
ing contributed to chemoresistance.

CnS Relapses in Pre-B ALL with t(1;19) 
Translocation
Mechanisms of leukemia chemoresistance in the CNS have 
also been studied in the context of leukemia bearing the t(1;19) 
translocation. This translocation occurs in ~5% of pre-B ALL, is 
associated with an increased risk for CNS relapse, and has been 
associated with increased expression of the Mer receptor kinase 
(37, 67, 68). Mer kinase is involved in multiple physiological pro-
cesses including cell survival, migration, and differentiation (69). 
Its overexpression or ectopic expression has also been implicated 
in a wide array of cancers. High Mer-expressing t(1;19) leukemia 
cells co-cultured with CNS-derived cells exhibit G0/G1 cell cycle 
arrest, suggestive of dormancy or quiescence, as well as metho-
trexate chemoresistance (37). Moreover, high Mer expression in 
t(1;19) leukemia cells increase CNS involvement in murine xeno-
grafts and correlated with CNS leukemia at diagnosis in leukemia 
patients. Finally, Mer kinase inhibitors have been developed and 
could represent a novel therapy in leukemia patients with the 
t(1;19) translocation and high Mer expression (69).

influence of iL-15 on CnS Leukemia
As described in the prior section, the cytokine IL-15 has been 
implicated in CNS leukemia. In addition to upregulating genes in 
leukemia cells implicated in CNS trafficking, IL-15 also enhances 
leukemia proliferation through an effect on the Raf/Ras/ERK 
signaling pathway (60). This stimulation of leukemia growth was 
maximal under conditions of low or no serum supplementation, 
which the authors speculate may mimic the low-protein compo-
sition of CSF (60). Further supporting this possibility, high levels 
of IL-15 have been detected in the CSF and serum of patients 
with neuro-inflammatory disorders (70). The ability of IL-15 
to regulate NK  cell development, survival, and activation may 
provide another, indirect mechanism by which IL-15 influences 
CNS leukemia. NK cells are a component of the innate immune 
system with an important role in cancer immune surveillance 
(71). Frishman-Levy et  al. used murine leukemia models and 
xenografts to show that expression of IL-15 by leukemia cells is 
associated with the activation of NK cells (72). However, while 
activated NK cells attenuated the growth of leukemia cells in the 
periphery via a NKG2D receptor-mediated mechanism, NK cells 

fail to effectively enter the CNS and, as a result, poorly control 
CNS leukemia. While this mechanism has yet to be demonstrated 
in patients, analysis of BM samples from pediatric leukemia 
patients showed high levels of the NKG2D receptor in infiltrating 
NK cells in patients with CNS leukemia (72).

The CnS niche influences Leukemia Gene 
expression Profiles
Further supporting an important role for the CNS microenviron-
ment in leukemia biology, it has recently been shown that the CNS 
niche imparts unique and functionally important gene expres-
sion changes in both leukemia cells lines and primary xenografts  
(36, 73). In these experiments, human pre-B leukemia cells 
isolated from the BM and CNS microenvironments of the same 
mice were subjected to gene expression profiling analyses. Gene 
set enrichment analyses and functional annotation of the differ-
entially expressed genes revealed that the genes were involved in 
multiple pathways important for cancer biology, including MAPK, 
RAS, apoptosis, as well as adaptation to hypoxia with enhanced 
quiescence and downregulation of oxidative phosphorylation. 
Additionally, genes dysregulated in leukemia cells isolated from 
the CNS were shown to be functionally important to leukemia 
biology. One study demonstrated that upregulation of the gene 
PBX1 in leukemia cells in the CNS microenvironment conferred 
enhanced leukemia chemoresistance and self-renewal properties 
(36). The other study showed that targeting VEGFA, one of the 
most upregulated genes in CNS-derived leukemia cells, with the 
VEGF neutralizing antibody bevacizumab reduced the extent of 
leukemia involvement in the CNS of mice (73). Furthermore, 
elevated CSF levels of VEGFA have been identified in patients 
with CNS leukemia (74). The authors speculate that VEGFA 
may further enhance migration of leukemia cells into the CNS 
through its effects on increasing endothelial, and potentially 
blood–brain, permeability. Together, these data support the 
proposition that the CNS provides a unique leukemia niche that 
influences leukemia biology.

Complementing these xenotransplantation approaches, gene 
expression profiling of leukemia cells isolated from the BM of 
high risk pediatric pre-B cell leukemia patients identified genes 
and pathways, including WNT, JAK, NF-κB, and B-cell receptor 
signaling, which distinguish patients with varying extents of 
CNS leukemia (CNS1-3) at the time of diagnosis (75). Although 
this work identifies genes and pathways that may either increase 
CNS homing or facilitate leukemia survival in the CNS, it does 
not identify the effects of the CNS niche on the leukemia tran-
scriptome, as it utilized BM samples. In an attempt to define the 
effects of the CNS niche on leukemia cells, van der Velden et al. 
recently described a unique gene expression pattern in pre-B cell 
precursor ALL cells isolated from the CSF of patients with isolated 
CNS relapse when compared with leukemia cells isolated from the 
BM of patients at diagnosis (76). Moreover, for 5/8 patients with 
isolated CNS relapse data, they also had gene expression data from 
the patients’ leukemia cells isolated from the BM at time of diag-
nosis. However, while the samples were paired for patients, they 
were obtained at different times (i.e., diagnosis and CNS relapse). 
Unsupervised clustering analysis showed that the CSF-derived 
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ALL samples were transcriptionally distinct from the BM ALL 
samples. Pathway analyses of the differentially expressed genes 
showed enrichment of genes involved in cellular development, 
cell death/survival, and several signaling pathways, including 
JAK/STAT and MAPK. Finally, a subpopulation of pre-B ALL cells 
with a “CNS leukemia profile” (SCD gene positive and increased 
SPP1 gene expression) was identified in the BM of patients that 
later developed an isolated CNS relapse. In contrast, this popula-
tion was low (<1%) or absent in all other patients. Moreover, the 
lack of a correlation between this leukemia subpopulation and 
morphologic CNS involvement at diagnosis raises the possibility 
that these leukemia genes and pathways may provide a survival 
advantage to the leukemia cells residing in the CNS niche rather 
than enhancing leukemia trafficking to the CNS. However, it is 
possible that more sensitive approaches for detecting CNS leuke-
mia (PCR, flow cytometry) would have detected CNS disease in 
patients with a “CNS leukemia profile” at diagnosis and that these 
genes are important for trafficking to the CNS as well.

COnCLUSiOn

Developing more effective therapies for CNS leukemia is crucial 
to long-term survival and quality of life for ALL patients. Given 
the importance of the microenvironment in many aspects of leu-
kemia biology, more effective and less toxic therapies will likely 
only be realized through a better understanding of the effects 
of the CNS on critical aspects of leukemia biology. Since the 
BM and CNS are unique niches, research from the BM will not 
uniformly translate to the CNS leukemia niche. Supporting this, 
it has been shown that the CNS niche, relative to the BM, imparts 
unique effects on the leukemia proteome and transcriptome 
that influence important aspects of leukemia biology including 
chemoresistance (35, 36, 73). Furthermore, the complex role of 
the BM niche in leukemia and hematopoiesis suggests that much 
remains to be learned about role of the CNS niche in leukemia. 
For example, distinct niches within the BM, such as the endosteal 

and perivascular, uniquely influence normal hematopoiesis 
as well as leukemia biology. Accordingly, further defining at a 
cellular and molecular level, the components of the CNS that 
harbor and support chemoresistant leukemia cells will provide a 
foundation for experiments aimed at understanding and target-
ing the mechanisms by which the CNS niche influences leukemia 
biology. Similarly, more comprehensive analyses of the leukemia 
transcriptome, genome, and proteome in the CNS microenviron-
ment will provide a more detailed understanding of the role of the 
CNS niche in leukemia as well as new insight into CNS relapse 
and leukemia biology. Finally, we anticipate this area of investiga-
tion will ultimately enhance both the durability and quality of the 
cure for ALL patients by identifying leukemia cell vulnerabilities 
unique to the CNS niche or approaches for disrupting the CNS 
niche (Figure 1C). For example, based on our current therapeutic 
arsenal and understanding of the genes, pathways, and molecules 
implicated in the pathophysiology of CNS leukemia (Table  1), 
potential approaches for augmenting CNS-directed therapy 
include (i) neutralizing or blocking antibodies directed against 
VEGF (bevacizumab), CCR7, or other adhesion molecules, (ii) 
Mer tyrosine kinase inhibitors in the setting of a t(1;19), or (iii) 
metabolic/mitochondrial modulation.
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