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ABSTRACT Many biological contaminants are disseminated through water, and their
occurrence has potential detrimental impacts on public and environmental health. Con-
ventional monitoring tools rely on cultivation and are not robust in addressing modern
water quality concerns. This review proposes metagenomics as a means to provide a
rapid, nontargeted assessment of biological contaminants in water. When further cou-
pled with appropriate methods (e.g., quantitative PCR and flow cytometry) and bioinfor-
matic tools, metagenomics can provide information concerning both the abundance
and diversity of biological contaminants in reclaimed waters. Further correlation be-
tween the metagenomic-derived data of selected contaminants and the measurable pa-
rameters of water quality can also aid in devising strategies to alleviate undesirable wa-
ter quality. Here, we review metagenomic approaches (i.e., both sequencing platforms
and bioinformatic tools) and studies that demonstrated their use for reclaimed-water
quality monitoring. We also provide recommendations on areas of improvement that
will allow metagenomics to significantly impact how the water industry performs
reclaimed-water quality monitoring in the future.
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Water scarcity in the Middle East and North Africa regions as well as in countries
such as Singapore, Australia, and the Maldives has necessitated the use of

reclaimed water to alleviate the depletion of nonrenewable freshwater supplies. Re-
claimed water is increasingly used in landscape irrigation to maintain green living
spaces and for agricultural irrigation to produce food. Reclaimed water is also injected
into aquifers to replenish depleting groundwater and used as an energy exchange
medium in cooling towers. In some places, reclaimed water further undergoes ad-
vanced treatment processes, typically involving reverse-osmosis membrane filtration,
to become a potable water source. Depending on the intended reuse purpose, different
wastewater treatment technologies are used to provide the reclaimed water with
quality that abides by either World Health Organization (WHO) guidelines or standards
inspired by the U.S. Environmental Protection Agency (EPA) and the International
Organization for Standardization (ISO).

Current regulations stipulated by the WHO, U.S. EPA, and ISO require only the
enumeration of fecal indicators (e.g., total and fecal coliforms) to indicate reclaimed-
water quality. The standard methods used to determine these fecal indicators can be
prone to false-negative results if viable bacteria are stressed or injured. Culture-based
methods also require time (typically 24 h to 48 h) for the microbial targets to grow to
levels that facilitate enumeration. This process impedes the ability for a rapid response.
Furthermore, fecal indicators do not occur at frequencies that correlate well with
waterborne pathogens in reclaimed water (1); hence, they cannot predict accurately the
presence of pathogens. Considering these limitations, standard methods have become
increasingly obsolete in addressing modern water quality concerns, especially because
emerging contaminants are found in reclaimed waters intended for agriculture and
landscape irrigation and can potentially affect public health. These contaminants
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include bacterial pathogens (particularly those related to antibiotic-resistant ones), viral
pathogens, protozoal hosts for intracellular pathogens, and extracellular DNA (e.g.,
antibiotic resistance genes [ARGs]) (2, 3). Many of these pathogens are fastidious, slow
growing, and difficult to culture for routine monitoring.

Besides culture-based approaches, molecular methods such as quantitative PCR
(qPCR) can determine the presence of pathogens or antibiotic resistance genes. How-
ever, qPCR is a targeted approach that detects only the marker genes that hybridize to
the designed primers or probes. Hence, this targeted approach would not provide
insights into unknown gene targets that do not have any available primer sets. Given
the wide spectrum of contaminants that are present, nontargeted methods that can
provide information on both the phylogenetic and functional diversities of emerging
contaminants simultaneously would be preferred. Additionally, the method should
preferably provide quantitative estimates of those targets of interest to facilitate
evidence-based decision-making. Some of the key questions to be asked when evalu-
ating reclaimed water quality include the following. Is the wastewater treatment system
functioning well to provide reclaimed water of the required quality? Is the reclaimed
water biologically stable, and would it not change much in its quality along the
distribution network? Are contaminants present in the reclaimed water that would
affect the environment and consumers’ health at the point of use? Can we infer the
presence of nutrients or chemical contaminants in the reclaimed water based on the
presence of some of the microbial contaminants?

In this minireview, we argue that metagenomics is suitable to address the above-
mentioned questions, hence facilitating reclaimed-water quality monitoring. We de-
rived this proposition based on the following evidence gathered from the current
literature: (i) advances in sequencing technologies have rapidly decreased the associ-
ated costs while increasing the number of raw reads available, (ii) the availability of
bioinformatic tools to facilitate the analysis of metagenomic data allows the collection
of massive data sets that reveal gene and functional diversities in a nontargeted
manner, and (iii) the continuous improvement of both sequencing technologies and
analytical tools is shortening the time required to perform metagenomics and analysis.
However, its ability to provide quantitative measurements, good accuracy, and fine
resolution of phylogenetic and functional classifications in mixed-community samples
will need to be further improved to fully address the needs of reclaimed-water quality
monitoring.

(This review was written based on the content presented by P.-Y. Hong at the 2018
Singapore International Water Week.)

Definition of metagenomics. Metagenomics, being DNA based, can provide infor-

mation on only who is there (i.e., taxonomic and phylogenetic information) and what
is there (i.e., functional gene diversity). Depending on the type of microbial target (i.e.,
viruses, bacteria, or protozoa), different sample preparation measures and extraction
protocols would have to be used to maximize the yield of DNA from these microor-
ganisms before metagenomics is performed. However, because the microbial popula-
tions and genes detected by metagenomics are derived from DNA, they may be from
nonviable cells or genes that are not being expressed. This approach contrasts with
metatranscriptomics (RNA-based sequencing) or metaproteomics (peptide sequenc-
ing), which provides information on which microbial populations are alive, actively
transcribing their genes, and translating the mRNA into proteins. Metagenomics should
not be confused with amplicon-based high-throughput sequencing, which typically
involves only a targeted gene (e.g., 16S rRNA or 18S rRNA genes) (4–6). Metagenomics
should not be confused with whole-genome sequencing, which refers to single-
genome sequencing. The number of papers related to the keywords “metagenomics”
and various types of water matrices demonstrates that metagenomics is more widely
utilized for surface waters than for reclaimed water (Fig. 1). However, the number of
papers related to the use of metagenomics also experienced a high rate of increment,
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particularly from the year 2013 onward, with the advent and accessibility of sequencing
technologies.

Functional metagenomics. Before metagenomics became more mainstream, an
earlier approach involved extracting a large amount (e.g., �10 �g) of high-molecular-
weight DNA from a sample (7), creating DNA fragments using endonucleases, and then
ligating these DNA fragments into artificial chromosome vectors. The size of these DNA
fragments can vary from a few kilobases to as long as more than 10 kb, depending on
the fragment size that can be efficiently inserted into the vector. For instance, phage
vectors accept inserts of approximately 15 to 20 kb, while those of bacterial artificial
chromosomes can range from 150 to 350 kbp (8, 9). After gene insertion, the vectors
are transformed into Escherichia coli, and individual transformants are expressed and
screened for the intended functional traits. Transformants that express the intended
functional traits are then sequenced to denote the identities of the inserted genes.
Alternatively, all the transformants can be pooled and sequenced directly without
any prescreening. The depth of information derived from this approach of func-
tional metagenomics is limited by the number of transformants picked for screen-
ing and sequencing, but this limitation can be easily resolved using an automated
colony picker. However, because it involves cloning and incubating cells before
sequencing, this approach is subject to additional bias during cloning and takes a
longer time for completion. Due to the amount of time and effort required,
functional metagenomics does not facilitate efficient decision-making; hence, it has
not been widely used for reclaimed-water quality monitoring.

However, the advantage of functional metagenomics is that inserted genes can
express their enzymes, and subsequent biochemical characterization of these enzymes
may lead to useful products. For example, Song et al. extracted high-molecular-weight
DNA from the contents of the rumen and fragmented these DNAs to sizes ranging from
10 to 50 kbp before creating fosmid libraries. The clones were screened for cellulolytic
activity, and those with positive cellulolytic activity were pooled for DNA extraction and
sequencing (10). Further gene annotation revealed a novel glycosyl hydrolase family 5
cellulase gene with endo-�-1,4-glucanase. Although not demonstrated in that study,
because of its potential application, this approach can potentially result in enzymes that
can be applied to disrupt undesirable biofilms (11, 12).

Current sequencing platforms for modern metagenomic approaches. In daily
routine monitoring of reclaimed-water quality, utilities may assess the biological sta-
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bility of their reclaimed water. Biological stability is defined as the steady-state con-
centration of bacterial cells and composition in the water (13). A sudden increase in the
concentration of bacterial cells would infer either the growth of microorganisms, an
influx of microbial contaminants, or a failing distribution network, which might detri-
mentally impact operations and safety at the point of use. In addition to monitoring for
biologically stable reclaimed water, utilities may also be interested in determining the
performances of their treatment processes by tracking log removal values. This can be
done by enumerating the concentrations of contaminants before and after treatment.
Furthermore, to determine the risks associated with pathogens in our reclaimed-water
supplies, quantitative estimates of pathogens are needed to facilitate microbial risk
assessments. These questions require a timely response and modern metagenomic
approaches (also referred to as shotgun sequencing), bypassing the need for cloning
and cultivation and showing promise to address these questions.

A succession of sequencing platforms is available, from the now-defunct 454
pyrosequencing and Ion Torrent platforms to the current mainstream Illumina platform,
along with the Nanopore and PacBio platforms, which can generate longer reads than
Illumina reading chemistries depending on the quality and fragment size of the DNA
template. Regardless of the sequencing platform, the main distinguishing feature is the
ability to generate a large number of short reads (typically 100 to 300 bp per read) per
run (Table 1) at costs typically ranging from $1,000 to $3,000 per run. Most of these
sequencing platforms require significantly lower concentrations of DNA (typically 10 ng
to 1 �g of DNA) than the clone-based functional metagenomic approach. The DNA
amount required is small because modern sequencing platforms rely on solid-phase or
emulsion-based PCR to exponentially amplify the gene molecules so that the detection
sensitivity can be enhanced. However, this can also introduce amplification bias
incurred during PCR (14) and sequencing errors due to low-fidelity polymerase (15).

TABLE 1 Current sequencing platforms and their average read lengths and throughputs reported by either manufacturers or selected
service laboratories

Platform Directional read type Read length (bp) Throughput per lane Reference

NovaSeq 6000
SP flow cell Single reads 100 400 million–500 million 63

Paired reads 2 � 150 or 2 � 250 800 million
S1 flow cell Single reads 100 800 million

Paired reads 2 � 100 or 2 � 150 1.5 billion
S2 flow cell Single reads 100 1.5 billion
S4 flow cell Paired reads 2 � 150 5 billion–6 billion

HiSeq 4000
8-lane flow cell Single reads 50–150 300 million–400 million 63

Paired reads 50–150 650 million–800 million

HiSeq 2500
Rapid V2 flow cell Single reads 50–260 150 million–200 million 63

Paired reads 50–260 220 million–400 million

MiSeq
V3 flow cell Paired reads 300 10 million–30 million 63
V2 flow cell Paired reads 250 6 million–20 million
V2 nano flow cell Paired reads 250 500,000–2 million

Flongle Single reads Dependent on the quality and fragment
size of the DNA template

2 Gbp 64

MinION Mk and GridION Mk Single reads Dependent on the quality and fragment
size of the DNA template

50 Gbp 64

PromethION Single reads Dependent on the quality and fragment
size of the DNA template

220 Gbp 64

Sequel Single reads Dependent on the quality and fragment
size of the DNA template but reportedly �1,000

500,000 65

Sequel II Single reads Dependent on the quality and fragment
size of the DNA template but reportedly �1,000

4 million 65
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Shotgun sequencing also does not require DNA to be of a high molecular weight
because the library preparation steps require DNA to be fragmented to approximately
400 bp before ligation with the index adaptors. However, overly fragmenting DNA will
also impair the sequencing quality by generating reads with lengths shorter than the
norm. Therefore, the optimization of protocols is required to minimize associated error
rates and lapses in sequencing quality.

Availability of bioinformatic tools: genome-centric approach. Sequencing re-
sults can be analyzed using either a genome-centric or a gene-centric approach. A
genome-centric approach relies on assembling the short reads into contigs or scaffolds
(larger genomic fragments) and further assembling the contigs or scaffolds into draft or
complete genomes. Assembly can be performed with supervision, whereby reads are
aligned against reference genomes based on sequence similarity. Homologous regions
of the individual raw reads are also matched and linked together to form contigs in a
de novo manner and are then aligned against reference genomes. Alternatively, as-
sembly can be performed using an unsupervised approach that relies on discriminative
sequence composition and/or coabundance of reads (16). The unsupervised approach
groups contigs into bin clusters that are further differentiated based on the sequencing
coverage. Contigs associated with a particular bin cluster can be retrieved for further de
novo assembly to form draft population genomes. Several programs, including MetaBat
(17), Concoct (18), and MaxBin (19), facilitate the reconstruction of microbial genomes
from a metagenomic data set. The quality of the genome bins is further assessed using
CheckM (20) to derive the percentage of completeness and the contamination level. For
example, most draft genomes obtained via the unsupervised approach are classified as
being of acceptable quality based on a substantial level of completeness (�70%) and
a low level of contamination (�5%) (20, 21).

A genome-centric approach can potentially be used to identify the presence of
pathogens in reclaimed water although not without challenge. Assuming that typical
reclaimed water may have up to 2,000 unique species with an average genome size of
4 Mbp (22), each in equal relative abundances, 8 Gbp of reads would have to be
obtained per sample to achieve 1� sequencing coverage of all genomes in this sample.
An ecosystem with an equal distribution of species is unlikely, and a higher likelihood
of assembling a genome usually applies to microbial cells that are predominant and,
hence, overrepresented in terms of sequencing reads. This phenomenon does not
consider that the current sequencing platforms require PCR to amplify gene targets
before sequencing, thereby incurring a selective bias against those with a GC-rich
genome (and, hence, achieving lower sequencing coverage). In most instances, trying
to identify a unique genome confidently requires more than 5� sequencing coverage
(23). Even higher coverage is needed to discern the genomes arising from multiple
pathogenic strains of the same species that may coexist in the same mixed microbial
consortium (23). Considering the current throughput reported by the Illumina NovaSeq
6000 system, this would require at least 1 lane in an S2 flow cell per sample to achieve
the needed coverage (Table 1). Therefore, it is more likely to obtain only draft genomes
from metagenomic data. Draft genome databases are growing rapidly, and any new
microbiological resource deposited in a repository available to the community is
announced frequently online in the fully open-access journal Microbiology Resource
Announcements, published by the American Society for Microbiology. However, many
of the draft genomes are contaminated with fragments of sequences from other
species (24), and validation of these contigs and draft genomes remains a key essential
step (25). However, there is no good validation approach that can assess accuracy in the
metagenomic assembly unless a pure culture of that microbial target can be isolated
and propagated and whole-genome sequencing is performed, followed by verification
against the data derived from metagenomics.

An assembly of metagenomic data would be more useful to elucidate dominant
species present in reclaimed water, for example, nitrifying bacteria or heterotrophs that
correlate with the nutrient content of the water, because they are more likely to show
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higher sequencing coverage and, hence, more confident assembly results. However,
dominant taxa can be elucidated rapidly using amplicon-based sequencing and may
not require the use of metagenomics unless functional annotation is required. Al-
though it is assumed that metagenomics may achieve better resolution and accuracy
in taxonomic classifications because more genes associated with the microbial target
can be evaluated simultaneously, a recent study suggested the contrary. Tessler et al.
analyzed 49 samples from a floodplain system using both 16S rRNA gene-based
amplicon and shotgun sequencing (26). Those authors demonstrated that amplicon
sequencing could assign more reads at the phylum and family levels and could be
relatively more robust across both biodiversity and community ecology analyses than
metagenomics. This observation can be explained by the possibility that the taxonomic
resolution derived from metagenomics is detrimentally impacted by the coverage and
size of whole-genome databases because in instances where whole genomes of target
species are absent, many of the reads obtained from shotgun sequencing would be
mapped as unknown (26). This error would inherently reduce the number of taxonom-
ically applicable reads. Furthermore, horizontal gene transfer is a ubiquitous and
rampant phenomenon in microbial ecosystems (27, 28). Because shotgun sequencing
assigns taxonomic classifications based on genes across the entire genome, regardless
of whether they are core genes, this can lead to incidences of contradictory and
inaccurate identifications if those assigned genes were instead horizontally transferred
from another microbial species. In contrast, amplicon sequencing considers only one
type of gene at a time and by choosing a core gene (e.g., the 16S rRNA gene), which
is rarely transferred horizontally (29), to be sequenced, taxonomical classifications can
be assigned more accurately than with metagenomics.

Availability of bioinformatic tools: gene-centric approach. Considering the lim-
itations of the genome-centric approach, the alternative gene-centric approach can be
used to analyze metagenomic data derived for reclaimed-water quality monitoring. For
this approach, the raw reads are input into classifier or profiler programs to map both
the phylogenetic and functional profiles of the sample data. For example, interactive
toolboxes such as MEGAN (30) provide taxonomic analyses by mapping reads against
the NCBI or Silva database. MEGAN also provides functional analysis using various
protein databases (e.g., SEED and KEGG). Free public resources such as MG-RAST (31)
provide taxonomic and functional analyses similar to those of MEGAN. Additionally, it
serves as a public depository for metagenomic data where users interested in metadata
analysis can download open-access metagenomic data sets for further data mining.
Despite its ease of use, functional analyses with both MG-RAST and MEGAN tend to
provide classification of proteins only at the functional class level (e.g., proteins related
to biosynthesis, degradation, folding, processing, and modification) (32) and do not
facilitate downstream scientific inquiry on the annotated genes that are related to each
of these functional classes.

In addition to MEGAN and MG-RAST, in recent years, an increasing number of
classification tools (Table 2) have been developed (33). However, the databases asso-
ciated with each classification method may differ. Some classifiers match DNA se-
quences obtained from metagenomics to DNA databases, while others match DNA

TABLE 2 Tools and databases available for phylogenetic identification

Phylogenetic
identification
tool/database

Version used for
this review

Database
type Target collection(s)

Database
size (Gb)

Yr of
latest
update

Time required
to build database
at first use (h)

Time required
to generate
classification
resultsa Reference

Kraken2 v2.0.8-beta DNA RefSeq bacteria 103 2019 15 3 min 66
MiniKraken2 v2 DNA RefSeq bacteria, archaea, viruses,

GRCh38 human genome data set
8 2019 Not required 2 min 66

Kaiju v1.7.2 Protein Eukaryotes, bacteria, viral genomes 97 2019 4 2 h 67
MetaPhlAn2 0c3ed7b7718b Marker gene Eukaryotes, bacteria, archaea, viruses 1 2018 Not required 2 h 68
mOTUs2 v2.5.1 Marker gene Eukaryotes, bacteria, archaea 1.5 2018 Not required 40 min 69
aDenotes the time required to generate the classification results from a test data set generated from Illumina HiSeq 4000 paired-end sequencing. The data set
contains approximately 7 million trimmed paired reads of an average of 150 bp, with a 600-Mb fastq.gz file.
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sequences to protein or marker gene databases. To exemplify, common databases
include Silva, the Ribosomal Database Project (RDP), Greengenes, and the NCBI data-
base for taxonomic classification or FOAM and PFAM for protein sequences. Depending
on these databases, the numbers of taxa or functional genes classified back as output
data can differ (34, 35). Ye et al. evaluated the different classifier methods and noted a
wide variation in the total species abundances obtained by the different classifiers that
have their associated default databases for the same sample. However, if a common
database is constructed and used across the different classifier methods, the variation
in the total species identified becomes lower (34). Likewise, the antibiotic resistance
gene prediction potentials (including the ability to annotate correctly the number of
antibiotic resistance genes and associated classes) differ depending on the type of
antibiotic resistance database (e.g., ARDB, ARG-miner, CARD, and SARG) (36). These
observations are worth noting because companies (e.g., CosmosID, DNAsense, and
BaseClear) are now providing metagenomic and bioinformatic services for the gener-
ated data, making it particularly convenient for users without any experience handling
large data sets to utilize metagenomics as a routine monitoring tool. However, most of
these companies use their in-house-developed databases for genome-centric or gene-
centric analysis of metagenomic data, making protocol standardization and cross-
comparison of results particularly challenging. Therefore, each method or company can
provide classification results that differ, which would not facilitate interlaboratory
comparisons.

For some classification methods, particularly those that come with relatively large
databases, time is needed to install and build the databases in local servers for first-time
users. We performed an analysis to determine the time needed to classify a data set of
approximately 890,000 sequences and found that, depending on the method, the time
can range from 2 min to 2 h using a one-node CPU and 200 GB of RAM (Table 2). With
advances in computing power, the time needed to analyze a full metagenomic data set
is likely to shorten. However, there is a likelihood that most of the reads in environ-
mental surveys of reclaimed water can result in being unclassified or unable to be
identified confidently at the species/strain level with the profiling methods (37). The
collation of large genomic databases remains in its early stages compared with well-
curated 16S rRNA gene databases such as RDP, Silva, and Greengenes, particularly for
viruses and eukaryotes, for which the completeness of the existing databases may not
be as well developed as that for bacteria (38). Furthermore, the classification results
derived from shotgun sequencing reads, particularly those that are present at a relative
abundance of �0.1%, are likely to represent false-positive identifications (34). There-
fore, a bottleneck lies in collating well-curated databases to facilitate our ability to
generate meaningful data related to phylogenetic identification from metagenomic
data.

In addition to classification for the phylogenetic identities of the microbial commu-
nity, several databases are available to identify antibiotic resistance genes (ARGs), metal
resistance genes, and virulence factors (Table 3). Once the reads are classified accord-

TABLE 3 Tools and databases available for marker gene identificationa

Marker gene identification
tool/database

Latest version at
point of writing Target collection(s) Database size

Yr of latest
update Reference

CARD v3.0.4 ARGs 2,602 genes 2019 70
SARG v2.0 ARGs 12,307 genes 2018 39
BacMet v2.0 Antibacterial biocide and

metal resistance genes
753 genes (experimentally confirmed);

155,512 genes (predicted)
2018 71

VFDB Refreshed weekly VFs 3,220 genes (experimentally confirmed);
28,587 genes (predicted)

2019 72

PAIDB v2.0 PAIs and REIs 223 PAIs with 1,331 genes; 88 REIs with
108 genes

2015 73

PATRIC v3.5.43 VFs and ARGs 130,963 VFs; 257,681 ARGs 2019 74
ACLAME 0.4 MGEs 122,154 proteins from 2,326 MGEs 2009 75
aARGs, antibiotic resistance genes; PAIs, pathogenicity islands; REIs, antimicrobial resistance islands; VFs, virulence factors; MGEs, mobile genetic elements.
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ingly, the mapped reads across a constant can, in theory, be normalized as (i) the
number of target sequences per million sequence reads (i.e., counts per million [CPM]),
(ii) the number of target sequences per number of marker genes (e.g., the 16S rRNA
gene), (iii) the number of target sequences per cell number (39), or (iv) RPKM (reads per
kilobase per million mapped reads) (40) or FPKM (fragments per kilobase per million
mapped reads) (analogous to RPKM and used especially for paired-end shotgun
sequencing reads). CPM is usually more commonly used than RPKM or FPKM. Regard-
less of the normalization step used, such normalization is required to obtain relative
abundances from metagenomics that can be used in comparative analyses. Relative
abundances can also be used for correlation against metadata (e.g., water quality data
or operational data). For example, Hendriksen and coworkers utilized metagenomics to
monitor the occurrence and diversity of ARGs in urban sewage collected from 79 sites
in 60 different countries. They expressed the number of reads assigned to ARGs per
kilobase per million fragments (FPKM) across the different geographical regions and
found that Africa and South America have higher median numbers of ARG reads than
Asia, Europe, the Middle East, North America, and Oceania. They further correlated
these relative-abundance values with World Bank variables (e.g., extent of open defe-
cation practices, life expectancy, and infection and malnutrition rates) and observed a
strong correlation between the relative ARG abundance and socioeconomic, health,
and environmental factors (41). This corroborates the conclusion from another study
demonstrating a strong correlation between antimicrobial resistance indices (obtained
through nonmetagenomic methods) and improving sanitation and good governance
(42).

Alternatively, multivariate analysis can also be performed using the relative abun-
dances of all identified taxa/genes across the different samples. Changes in the alpha
diversity (a quantitative measure of community diversity) of these marker genes
identified from metagenomics can also be determined, although there is a need to
discern between technical variability (natural changes to a treatment due to the
stochastic nature of the system) and biological results (made in response to the
treatment) (43). Such an analysis was demonstrated in a recent study that monitored
the surface water quality at multiple locations in Haiti postearthquake. The authors of
that study determined that the relative abundance of bacteria was differentiated based
on the sampling locations, but the Chao1 alpha diversity values were not significantly
different among the sampling sites. Those authors further determined the relative
abundances of marker genes associated with known waterborne pathogens, such as E.
coli O157:H7 and Vibrio cholerae, as well as the presence of phages associated with
these pathogens in some of the sample replicates, indicating potential breaches in the
sanitation infrastructure after the earthquake (44).

Concerning the genome-centric and gene-centric approaches, see a recent review
by Lal Gupta et al., who illustrated a workflow to determine the scope and distribution
of resistomes in complex environments using both a read-based profiling approach and
a de novo assembly-based profiling approach on metagenomic data (36). The workflow
suggested by Lal Gupta et al. can potentially be applied to determine the classifications
of both taxonomy and other functional genes such as metal resistance genes and
virulence factors (Table 3). A large suite of tools for assembly and annotation is
available, and each one may generate different results. Choosing the most appropriate
or accurate metagenomic tool to facilitate reclaimed-water quality monitoring is not
easy because most of the existing tools utilize databases that are not initially developed
for this sample type. Several studies were conducted to identify accurate tools for
general environmental shotgun sequencing data, with one recent study concluding
that k-mer-based approaches (e.g., Kraken) may outperform other tools in terms of
accuracy (45) and speed (Table 2). Regardless of which metagenomic analytical pipeline
is chosen to be used to determine reclaimed-water quality, the same pipeline should be
used consistently across all samples to facilitate comparison.
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Improving pathogen detection capabilities. In cases of public health outbreaks
that may be due to the use of reclaimed water, there is a need to promptly identify the
causative microbial agent. However, the current state of metagenomics may not be
well poised to facilitate a rapid decision-making process because sample preparation,
sequencing, and bioinformatic analysis can consume a considerable amount of time. If
the time needed for DNA extraction, library preparation, and sequencing is considered,
the whole procedure would have taken approximately 39 to 55 h using an Illumina
sequencing platform. This process can be sped up using newer sequencing platforms
such as the Nanopore sequencing platforms, but it would still take approximately 18 h
to complete the entire preparation and sequencing (46). For example, Nanopore
MinION required approximately 24 h to determine the presence of Ebola virus in a
human clinical specimen (47). However, viral genomes are small (�1 Mbp) and do not
represent the average genome size of bacterial or protozoal pathogens. Hence, the
time needed to draft a complete genome of large prokaryotic or eukaryotic cells would
be significantly longer. Alternatively, instead of focusing on complete genomes, the
draft genomes of bacterial isolates can be obtained through metagenomics. The reads
are merged and assembled to obtain longer contigs or draft genomes before mapping
against bacterial pathogen databases. The contigs can then be identified for marker
genes associated with pathogenic species at a certain threshold confidence level. Using
this approach, bacterial pathogens such as Bacillus anthracis, Klebsiella pneumoniae, and
nontuberculous mycobacteria were detected in the effluent of a wastewater treatment
plant (WWTP) that utilized only a conventional activated sludge tank to decontaminate
the wastewater (48). This approach can be further sped up to provide a preliminary
analysis of the functional traits within 6 h of sequencing on the Nanopore platforms
(46).

Although metagenomics has demonstrated the huge potential to reveal novel
insights into gene functions, identifying pathogens through assembly may be chal-
lenging because waterborne pathogens are generally present in low abundances and
would theoretically show up with very low read counts. For example, with approxi-
mately 4 Gb per library, pathogenic E. coli isolates that tested positive using culture-
based methods were not detected by metagenomics (49). Brute-force ultradeep se-
quencing can be performed to obtain a high read coverage of those rare taxa, but this
approach can be costly. In recent years, within the field of clinical diagnostics, attempts
have been made to identify pathogens using a scoring system after metagenomics. To
do so, sequences are obtained from both background controls and test samples before
alignment and identification against a curated database (e.g., nucleotide or protein
databases of the NCBI). The number of reads that aligned positively to a known hit (e.g.,
target X) in the database is determined first in the background/control samples. This
would generate a mean number of reads assigned to target X along with the standard
deviation that is present in the background/control samples. Subsequently, the number
of reads assigned to target X in a separate test sample can also be obtained. A Z-score
can then be obtained (50), and one can then denote which target demonstrates the
highest Z-score regardless of its raw abundance and, hence, presumably is the caus-
ative agent of a clinical infection. This or similar scoring approaches have been tested
for clinical diagnostics, where samples are derived from blood, urine, or biopsy speci-
mens (50–53). However, no demonstration of this approach has yet been made on
reclaimed-water samples because it may be technically challenging to do so given the
more diverse microbial community in reclaimed water than in infected clinical speci-
mens.

Improving semiquantitative capabilities of metagenomics. Most of the studies
expressed marker genes as a relative abundance, calculated using the following
equation:

relative abundance of marker gene x �
�number of sequences assigned to gene x�

�total number of sequences�

However, this calculation does not consider the reference sequence length and how it
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would impact match hits (54). For example, in the SNC-ARDB database for ARGs,
reference sequences can range from 186 to 4,728 bp. The number of reads signifying
marker gene x that map positively to a reference sequence of 186 bp may be different
from the number of reads that map positively to a reference sequence of 4,728 bp
when using the same criteria of �90% sequence identity and an alignment length of
�25 amino acids. Hence, Li et al. demonstrated a correction factor that normalizes the
number of sequences assigned to gene x by the reference sequence length (54). In the
same study, they further expressed the reads in a way similar to those obtained from
quantitative PCR, whereby they normalized the marker gene x results to the total
number of reads that matched against the 16S rRNA reference sequence, using the
following formula:

relative abundance of marker gene x normalized against 16S rRNA genes

�
�number of sequences assigned to gene x��length of reads/length of gene x reference sequence�

�number of sequences assigned to 16S��length of reads/length of 16S reference sequence�

Alternatively, metagenomic data can also be assessed for the average coverage of a set
of approximately 30 essential single-copy marker genes that were found in nearly all
Bacteria and Archaea (39, 55). Because these are single-copy marker genes, the average
number of these genes can be interpreted to be similar to the numbers of bacterial and
archaeal cells. Subsequently, this value can be used as a normalization factor to
determine the number of reads of marker gene x per prokaryote cell.

The above-mentioned methods used for metagenomic data sets can achieve infor-
mation on relative abundance only and cannot provide quantitative measurements in
terms of the number of contaminants per liter of reclaimed water. The latter set of
values is usually needed for quantitative microbial risk assessment (QMRA). A possible
way to overcome this challenge would be to couple flow cytometry with metagenom-
ics for the same sample. For example, the total cell counts can be first estimated by
enumerating them using nucleic acid stains and flow cytometry. This would generate
a value associated with the number of cells per liter. This value can then be multiplied
by the normalized marker gene x count per prokaryote cell obtained via metagenomics
to derive the marker gene x count per liter. However, even with these estimated values,
dose-response models and transmission probabilities associated with emerging con-
taminants such as antibiotic-resistant bacteria (ARB) or ARGs are still unavailable to
facilitate QMRA, although recent efforts have been made to introduce dose-response
models that incorporate stochastic death dynamics between ARB and antibiotic-
susceptible bacteria (56), hence allowing the consideration of ARB in existing dose-
response models.

Applications of metagenomics to monitor reclaimed-water quality. Meta-
genomics is commonly used to conduct a baseline characterization of the diversity and
relative abundance of contaminants that are present in reclaimed water. For example,
Chopyk et al. collected water samples from tidal brackish rivers, freshwater ponds and
creeks, and water reclamation facilities and proceeded to process these samples for
shotgun metagenomics (57). The samples were evaluated for taxonomic and functional
differences. Although no apparent differences were found in the overall phylogenetic
distributions of the microbial communities among the samples, the diversity of ARGs in
at least one of the reclaimed-water samples was greater than that in the other water
samples. This outlier trend may be an anomaly arising from the small sample size or a
potential breach in the treatment process.

In addition to ARGs, the diversity of viruses that are present in reclaimed water can
also be elucidated by metagenomics. Most of the assigned reads obtained from
metagenomics were determined to be bacteriophages assigned to the families Myo-
viridae, Podoviridae, and Siphoviridae (58–60). In contrast, human enteric viruses ac-
count for �1% of the total sequences obtained from treated effluent after membrane
filtration (58). By matching against databases designed to annotate viral sequences
(e.g., MetaVir), viruses of potential public health relevance and belonging to the families
Herpesvirales, Adenoviridae, Polyomaviridae, and Parvoviridae are detectable in the
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post-membrane-filtrated effluents (58). Coincidentally, Polyomaviridae viruses were also
detected in the post-membrane-filtrated chlorinated effluent sampled from a WWTP at
another location (60). These earlier studies use a gene-centric approach to identify the
marker genes associated with potential viruses at the family level and, hence, cannot
describe the viral pathogens at the species level. Additionally, most of the detected
human enteric viruses are double-stranded DNA viruses and not single-stranded RNA
viruses that would need to first be recovered through RNA extraction and transcribed
to obtain cDNA before proceeding with shotgun metagenomic sequencing.

The above-mentioned studies characterized microbial contaminants that are pres-
ent in reclaimed water collected at the end of the wastewater treatment process. This
sampling point is typically defined as the point of entry before the reclaimed water is
transported or distributed to the point of use. Because reclaimed water typically still
contains organic carbon and other essential nutrients that can support microbial
regrowth, the reclaimed-water quality can potentially change within the distribution
network depending on factors such as the residual disinfectant concentration, hydraulic
retention time, distance of the network, and so on. To determine changes in water
quality and, hence, infer the extent of biological stability of reclaimed waters, metag-
enomics can be used to characterize the microbial community in the reclaimed water
at the point of use and compare it against that at the point of entry. Garner et al.
determined that in four of their studied reclaimed-water distribution networks, de-
creases were observed in the relative abundances and diversities of ARGs from the
point of entry to the point of use. However, the relative abundances of certain ARGs
correlate with the concentration of biological dissolved organic carbon, suggesting the
need to limit the amount of organic carbon in distribution systems (61). Similarly,
Zaouri et al. utilized a metagenomic approach to simultaneously monitor the taxo-
nomic profiles of bacterial and viral communities as well as the antibiotic resistome in
aquifers that were recharged with treated wastewater (62). The authors determined
that bacterial families such as Planctomycetes are present at a high relative abundance
in recharged aquifers compared to the upstream controls, likely because of the higher
organic carbon content in these waters upon exposure to treated wastewater. This
observation reiterates the above-mentioned observation that organic carbon can
change the microbial community, likely because of microbial regrowth. Additionally,
Zaouri et al. observed that the viral family Picornaviridae is present at a high relative
abundance in recharged aquifers compared with the controls (62), suggesting the
potential dissemination of human enteric viruses at the point of use due to reclaimed
water.

Collectively, these studies demonstrate the use of metagenomics to (i) identify
microbial populations and functional genes in water matrices, (ii) compare samples for
reclaimed-water quality on either a temporal or a spatial scale, and (iii) correlate data
from metagenomics to other metadata (e.g., organic content, residual disinfectants,
and temperature) to determine which variable to control to alleviate unwanted detri-
mental changes in reclaimed-water quality.

Perspectives. Metagenomics provides a nontargeted approach to simultaneously

examine both phylogenetic and functional profiles associated with water matrices.
However, to revamp the way in which the water industry is monitoring reclaimed-water
quality, continued development in metagenomics is needed in the following areas:

(i) Improving databases. There should be a continuous effort to perform whole-
genome sequencing of a wide consortium of biological pathogens relevant to re-
claimed water, particularly viruses and protozoa. These assembled genomes should be
made available in public depositories for further curation of databases, which would
improve the resolution of future information that we can obtain from metagenomics.

(ii) Standardized protocols for data analysis. Similar to other methods that are
endorsed by regulatory agencies for water quality monitoring, shotgun sequencing
protocols and bioinformatic pipelines should also be standardized so that metag-
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enomic data can be benchmarked against regulatory standards and cross-compared
across different laboratories.

(iii) Developing bioinformatic tools to identify rare taxa (e.g., low-abundance
pathogens). While brute-force ultradeep sequencing can help in identifying rare taxa,
this incurs a cost that can add up significantly if routinely adopted for reclaimed-water
quality monitoring. The huge amount of data would also need more time for analysis
to be completed. To circumvent this bottleneck, rapid bioinformatic tools need to be
developed to identify low-abundance pathogens and samples with poor water quality.
Potential tools include the Z-scoring system already demonstrated for clinical samples,
which would need to be fine-tuned for reclaimed-water quality monitoring, and data
mining or a machine-learning algorithm to identify trends and outliers that can isolate
aberrations in reclaimed-water quality.

(iv) Conducting more studies to demonstrate the use of metagenomics for
reclaimed-water quality monitoring. Developing metagenomics as a toolkit to de-
note and predict water quality would require more studies to provide a representative
sample size that can identify which biomarkers correlate with certain measurable water
quality data (e.g., pH, residual chlorine, and organic carbon concentration). Current
studies mainly focus on monitoring reclaimed water for the microbial community and
ARGs. Other functional genes, such as mobile genetic elements, virulence factors, and
metal resistance genes, also play a role equal to that of ARGs in affecting potential
safety concerns when reusing waters and should also be evaluated in future studies.

Conclusions. The advent of next-generation sequencing technologies and faster
computing capabilities and the availability of databases have facilitated the use of
metagenomics for reclaimed-water quality monitoring. Metagenomics can determine
changes in both the phylogenetic and functional diversities of emerging contaminants
in a nontargeted manner. Such information can be used to elucidate the removal
efficiency achieved by wastewater treatment technologies and to monitor changes in
reclaimed-water quality over a distribution network. The data derived from metag-
enomics are semiquantitative (i.e., in terms of relative abundance). However, when
complemented with other tools, for example, flow cytometry and quantitative PCR,
estimated abundance data can be derived, although more studies are required to
facilitate the use of these data in risk assessment or for comparison against regulatory
limits.
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