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Abstract

Infections are a serious health concern worldwide, particularly in vulnerable populations

such as the immunocompromised, elderly, and young. Advances in metagenomic sequenc-

ing availability, speed, and decreased cost offer the opportunity to supplement or even

replace culture-based identification of pathogens with DNA sequence-based diagnostics.

Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are

optimized and tested, including data analysis and computational time and resources. We

tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxo-

nomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenU-

niq. Binary mixtures of bacteria showed all three reliably identified organisms down to 1%

relative abundance, while only the relative abundance estimates of Centrifuge and CLARK

were accurate. All three classifiers identified the organisms present in their default data-

bases from a mock bacterial community of 20 organisms, but only Centrifuge had no false

positives. In addition, Centrifuge required far less computational resources and time for

analysis. Centrifuge analysis of metagenomes obtained from samples of VAP, infected

DFUs, and FN showed Centrifuge identified pathogenic bacteria and one virus that were

corroborated by culture or a clinical PCR assay. Importantly, in both diabetic foot ulcer

patients, metagenomic sequencing identified pathogens 4–6 weeks before culture. Finally,
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we show that Centrifuge results were minimally affected by elimination of time-consuming

read quality control and host screening steps.

Author summary

Currently, the gold standard for identifying pathogens that are causing infection is to

attempt growth in culture followed by identification based on physical characteristics

such as shape and metabolic profile. However, many organisms do not grow in culture or

are overgrown by faster growing organisms that out-compete them. Another method to

identify pathogens in infections is to sequence the DNA in the samples and use that DNA

sequence to identify the pathogens present—a process called metagenomic sequencing.

Analyzing clinical metagenomic data can be difficult given the amount of data generated,

high levels of human DNA contamination and a lack of well-defined bioinformatics meth-

ods. In this study, three leading software tools were compared for identification and quan-

titation of microbes in metagenomic data. One tool, called Centrifuge, reliably identified

microbes present at just 1% relative abundance while requiring less computer time and

resources than the others to which it was compared. Moreover, we found that Centrifuge

results changed minimally when time-consuming quality control and host-screening

steps were eliminated. We also examined Centrifuge’s performance in real-word clinical

data sets showing that Centrifuge identified the same pathogens as culture.

This is a PLOS Computational BiologyMethods paper.

Introduction

Intubated, diabetic, and neutropenic patients are susceptible to infections, yet current culture-

based methods for identifying pathogens from clinical samples often fail [1–5]. Without diag-

nostic information, clinicians rely on empiric antibiotic therapy assuming that the organism is

bacterial and susceptible to the selected antibiotic therapy. Metagenomic sequencing of clinical

samples offers an approach that bypasses and overcomes many drawbacks of culture, however,

mining the resulting metagenomic sequence can be slow and error-prone given the volume of

reads, host read contamination, and lack of well-defined bioinformatics methods. We hypoth-

esized that metagenomic sequencing and analysis with a recent k-mer based taxonomic classi-

fier would provide rapid results while accurately matching both the known profiles of

predefined samples and culture results from clinical samples. As such, the goal of our study

was to assess three leading tools for taxonomic classification and quantitation of metagenomic

data using clinically relevant datasets with an eye toward reducing computing time without

sacrificing accuracy.

The current gold standard for clinical diagnosis of infections relies on isolating organisms

by culture-based methods followed by microscopic and phenotypic identification combined

with drug resistance testing. Methods for identifying pathogens that rely on culture have sev-

eral drawbacks including fastidious bacteria, the time required for growth in culture, and the

difficulty targeting viruses, fungi, and parasites. Because of these problems, culture has a high

Identification of pathogens in clinical samples
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failure rate when rare, fastidious or non-bacterial organisms are responsible. For example, in a

study of neutropenic patients the efficiency of culture-based diagnosis of blood stream infec-

tions was found to be low, with only ~16% (609 of 3,756) of febrile neutropenic patients found

to be culture positive [4]. Compared to patients in whom no culture was taken, the hazard

ratio of dying was nearly four-fold higher in culture-negative patients and higher still for cul-

ture-positive patients. The higher hazard ratio of dying in culture-negative patients suggests

that many culture negative patients do indeed have an infection, and the high cost in lives

when cultures fail.

In contrast to culture, identifying pathogens directly from biological samples via DNA

sequencing can overcome many of the limitations of culture-based identification and may

improve the number and speed of diagnoses [2,6]. In such an analysis, both the identity and

relative abundance of the organisms present are important, as well as detecting the presence of

drug resistance genes. While k-mer based tools such as MASH, Libra, and SIMKA are useful

for comparing metagenomic content, they do not produce abundance estimates [7–9]. In con-

trast, read-by-read taxonomic classifiers such as Centrifuge, CLARK, and KrakenUniq can

both identify and quantitate the organisms present in a metagenome. When applied to clinical

samples, the rate of false positives and false negatives, as well as the speed and computational

requirements for analysis are critical. For these reasons, direct analysis of pathogens using

metagenomic methods, along with detection of drug resistance genes, has been referred to as

the holy grail of molecular methods of infection diagnosis [10].

Presently, there are two metagenomic sequencing methods: marker gene sequencing and

whole genome shotgun (WGS) sequencing [10,11]. Marker gene sequencing uses the 16S ribo-

somal RNA (16S rRNA) gene or other marker genes (e.g. the internal transcribed spacer region

for fungi) to differentiate between bacteria or other targeted organisms based on variations in

gene sequence. 16S rRNA sequencing and has been used extensively in microbiome surveys, as

well as in the particular milieu of diabetic foot ulcer (DFU), ventilator acquired pneumonia

(VAP), and bacteremia [12–16]. Because marker gene sequencing uses PCR to amplify the tar-

get gene sequences, it can detect organisms even when significant background is present, how-

ever, 16S rRNA sequencing has important drawbacks with respect to clinical applications.

Drawbacks include “blind spots” in identification (e.g. Escherichia coli versus Shigella flexneri)
due to sequence similarity between species and the inability to identify drug resistance (e.g.

methicillin resistant Staphylococcus aureus versus methicillin-sensitive S. Aureus) [17,18]. In

addition, detecting fungi requires different amplicons than bacteria, there are no universal

primers for detecting viruses, and drug resistance detection requires specifically targeting the

genes responsible with additional amplicons. Despite these limitations, 16S rRNA sequencing

has been used to identify pathogens in bacteremia with increasing frequency [12,19]. By com-

parison, metagenomic data can yield fundamental insight into complex mixtures of microbial

communities, their abundance and functional potential (including antibiotic resistance), and

representation across all domains of life, including viruses. However, because metagenomics

data can contain tens of millions of reads, efficient classification algorithms need to be

employed to ensure reasonable runtime and computational requirements.

The potential of metagenomic WGS in clinical settings has been demonstrated in a

broad range of infection scenarios including leptospirosis [20], nosocomial transmission

of a drug-resistant bacteria [21], foodborne illness [22], infectious disease outbreaks [23],

and recently in a prospective study of meningitis and encephalitis [24]. Despite successes

using metagenomic shotgun sequencing to identify pathogens, routine application in clini-

cal settings requires accurate, efficient classification, minimizing sample contamination,

and rapid sample analysis [11,25–27]. For example, while a small group of studies have

reported on high-throughput metagenomic sequencing for identifying pathogens from
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immunocompromised patients, the samples were not enriched for microbes, resulting in

less than 1% of reads being pathogen-specific [28,29] dramatically reducing the diagnostic

possibilities from the data [30]. To begin addressing these deficiencies, we developed a

molecular approach to increase the proportion of pathogen-derived reads in samples and

applied it to samples obtained from three groups of patients, those with: 1) ventilator

acquired pneumonia; 2) infected diabetic foot ulcers that eventually resulted in amputa-

tion and 3) febrile neutropenia (FN) during anti-tumor therapy.

While there are no standards for analyzing metagenomic WGS data obtained from clinical

samples, there have been recent innovations in taxonomic classification algorithms that make

it possible to rapidly quantify microbial species directly from reads in metagenomic datasets.

McIntyre et al. [31] evaluated the performance of three broad types of taxonomic classifiers

based on alignment method, marker gene identification, and k-mer matches. Results showed

that k-mer based algorithms, used in tools like CLARK [32] and Kraken [33], achieve high

accuracy and reduced computational time compared to the other two classes of algorithms.

These advantages make k-mer based classifiers particularly promising for the rapid identifica-

tion and quantitation of pathogens in patient samples. Since the McIntyre study, new tools

(Centrifuge [34]) and updates of previous tools (KrakenUniq and CLARK) were released. Cen-

trifuge implemented memory-efficient indexing based on the Burrows-Wheeler transform

[35,36] and a Ferragina-Manzini (FM) index [37] which allow storage of a large number of ref-

erence genome sequences without affecting Centrifuge’s memory requirements. KrakenUniq

[38] builds on the previously released Kraken by using the cardinality estimation algorithm

HyperLogLog for counting the number of unique k-mers identified for each taxon thus

enabling confirmation that a detected taxon has even coverage across its genome. Lastly,

CLARK was found by McIntyre et al. to have both higher accuracy and precision than other

state of the art classifiers while taking advantage of multi-core architectures. While these inno-

vations are promising for the detection of pathogens in clinical samples, to our knowledge, no

study has directly compared these new k-mer based classifiers or investigated their accuracy

with clinical samples.

Here we report the accuracy, sensitivity and computational requirements of three k-mer

based taxonomic classification tools (CLARK, Centrifuge, and KrakenUniq) using a series

of well-defined in silico and biological benchmark datasets [18,31,38]. We further report

Centrifuge’s performance relative to culture in samples obtained from normal blood and

patients. The clinical samples include (1) longitudinal ventilator exudate samples from two

patients that developed VAP, (2) longitudinal curettage and tissue samples from two

patients with infected DFUs that led to amputation, and (3) whole blood from three patients

with FN. The clinical datasets were selected to show the spectrum of potential clinical infec-

tions ranging from: no infection (normal blood), infection with a single well-defined clini-

cal microbe (VAP), polymicrobial infection (DFU), and infection with atypical pathogens

(FN). Lastly, we tested the effect of quality control and host-screening on the classification

of reads by Centrifuge. This work provides a foundation for analysis of metagenomic data

from clinical samples using open-source software that requires minimal computational

resources while providing rapid and accurate identification of pathogens. To promote reus-

ability and further benchmarking, Centrifuge was added as a free web-based App in iMic-

robe (http://iMicrobe.us, [39]) along with a benchmark dataset. In addition, singularity

containers and source code for KrakenUniq (https://github.com/hurwitzlab/krakenuniq)

and Centrifuge (https://github.com/hurwitzlab/centrifuge) were placed in GitHub under

the MIT open source license.

Identification of pathogens in clinical samples
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Results

Accuracy of classification and abundance estimates in controlled mixtures

of bacteria

Because closely related, clinically important bacteria can have diametric clinical consequences,

(e.g., E. coli is a normal commensal while S. flexneri causes dysentery), we used clinically rele-

vant bacterial sequence datasets to test each classifier’s accuracy and threshold for detection.

Classifiers were run using their default databases, settings, and abundance calculations. With

respect to abundance calculations, Centrifuge normalizes relative abundance by genome size

after calculating the percent of reads classified to each organism, while CLARK and KrakenU-

niq simply report relative abundance as percent of reads classified for each organism. Three

sets of binary bacterial mixtures were selected to represent taxonomic distances from the spe-

cies to phylum-level. The mixtures represent a three-log range of relative abundance with each

organism ranging from 0.1% to 99.9% of the mixture (Fig 1). Centrifuge, CLARK, and Krake-

nUniq correctly identified all four species present in the mixtures and misidentified a maxi-

mum of four percent of the reads in any of the 18 combinations sequenced (false positives, Fig

1). Centrifuge was sensitive to the lowest relative abundance (0.1%) in three out of six opportu-

nities, while CLARK and KrakenUniq identified the lowest relative abundance in two of six

opportunities. CLARK and Centrifuge were equivalent in their accuracy of relative abundance,

while KrakenUniq had particular difficulty estimating the relative abundances of S. flexneri
and E. coli due to its strategy of assigning reads that match closely related organisms to the

next highest shared taxonomic level. Reads matching phage present in the mixtures were clas-

sified and quantitated by Centrifuge, CLARK and KrakenUniq separately from their host

genomes and were not included in the relative abundance estimates of their hosts, thus reduc-

ing the number of reads assigned to their hosts. Despite the effect of phage matches and false

Fig 1. Accuracy of identification and abundance for three binary mixtures of bacteria using Centrifuge, CLARK, and KrakenUniq. After quality control, sequences

were analyzed by Centrifuge, CLARK, and KrakenUniq using default settings and databases. Abundance estimates were filtered to include only organisms classified at

the species or strain-level with at least 0.1% abundance. False positive abundance was calculated by summing the relative abundances of any organism identified by the

classifiers that was not part of the mixture. The relative abundance of organisms identified by each tool is represented by circle size with actual values displayed below;

values that are zero have no circle.

https://doi.org/10.1371/journal.pcbi.1006863.g001
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positive classifications, the coefficient of determination (R2) for the three mixtures quantitated

by Centrifuge was 0.99 for E. coli/S. flexneri, 0.99 for S. saprophyticus/S. pyogenes, and 0.96 for

E. coli/S. saprophyticus. Similarly, the coefficients of determination for CLARK were 0.99, 0.99,

and 0.995 while those of KrakenUniq were 0.43, 0.99, and 0.96. Importantly, Centrifuge and

CLARK were able to discriminate between organisms as difficult to separate as E. coli and S.
flexneri while KrakenUniq could not.

Accuracy of identification and abundance estimates in a staggered mock

bacterial community

The three classifiers were next compared using a more complex mock community of 20 bacte-

rium present in varying relative abundances. As the standard KrakenUniq and Centrifuge

databases did not contain Actinomyces odontolyticus and therefore could not detect this organ-

ism in the mock community, A. odontolyticus was removed from the analysis. All three classifi-

ers were able to detect the presence of the remaining 19 organisms, however, CLARK reported

five false positives (two Shigella sp., two Staphylococcus sp. and Corynebacterium pseudotuber-
culosis) while KrakenUniq reported 9 false positives (three Shigella sp., two Staphylococcus sp.,

Escherichia albertii, Salmonella enterica, Streptococcus troglodytae, and Klebsiella pneumoniae).
In contrast to CLARK and KrakenUniq, Centrifuge did not produce any false positives, and

only reported additional hits to phages that infect the organisms present in the mock commu-

nity. As with the binary bacterial mixtures, CLARK and Centrifuge had the most accurate rela-

tive abundance estimates, while KrakenUniq had a severe outlier (Streptococcus agalactiae)
estimated as 1.54% when expected was 0.030%). The relative abundance of the 19 organisms in

the mock community was graphed against their known abundance and R2 values calculated

(Fig 2). The R2 values were nearly identical: 0.97 for CLARK, 0.96 for Centrifuge, and 0.95 for

KrakenUniq. Overall, most estimated abundances made by Centrifuge and CLARK fell below

the perfect fit represented by the dotted line in Fig 2, indicating they tended to overestimate

relative abundance values, especially the lowest abundances. In contrast, KrakenUniq tended

to underestimate the abundance values. Importantly, all three classifiers were able to detect the

presence of all four organisms in the mock community with relative abundances of<0.03%.

Further benchmarking of Centrifuge and KrakenUniq using 31 additional

predefined datasets

Previously, McIntyre et al. [31] and Breitwieser et al. [38] reported on the performance of a

broad variety of taxonomic classifiers using 31 known, predefined datasets (“truth sets”) com-

posed of 21 in silico, and 10 biological, metagenomes obtained from several different sequenc-

ing platforms. To place Centrifuge within the context of this large dataset and the prior

analyses in the literature, we analyzed the 31 “truth sets” with Centrifuge and KrakenUniq.

CLARK was not included in these additional benchmarking analyses as the random access

memory (RAM) required became prohibitive for analysis. Overall, Centrifuge and KrakenU-

niq had similar F1 and recall scores at the species level (Table 1).

Comparison of the three classifiers based on computational resources used

and runtime

When computational RAM and runtime were compared, there was a striking difference

between Centrifuge and the other two classifiers. Relative to Centrifuge, CLARK and Krake-

nUniq required significantly more memory and time to analyze the staggered mock bacterial

community (Table 2). Given Centrifuge’s performance in terms of accuracy of identification

Identification of pathogens in clinical samples
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and quantitation, fewer false positives in the mock community, and lower memory and run-

time, further investigation was limited to Centrifuge.

Identification and relative abundance of pathogens in clinical samples. Human sam-

ples representing normal blood, endotracheal aspirate of intubated intensive care patients,

infected diabetic foot ulcers, and blood from febrile neutropenia patients were sequenced and

analyzed with Centrifuge. Table 3 shows the starting number of raw reads, and the percent of

total reads classified, unclassified, classified human, and classified non-human by Centrifuge

for the 28 samples sequenced.

Normal blood negative controls identify background false positives and set detection

thresholds for clinical samples. To provide a negative control for metagenomic sequencing

Fig 2. Centrifuge, CLARK, and KrakenUniq abundance estimates versus expected for a staggered abundance mock community.

After quality control, the staggered mock community sequence was analyzed with Centrifuge, CLARK and KrakenUniq using default

settings and databases. Abundance results were filtered to include only organisms classified at the species or strain-level with at least

0.1% abundance. The expected abundance of the organisms present in the community was plotted against the abundance reported by

each classifier and the R2 calculated. The black dotted line represents perfect correlation with known relative abundances.

https://doi.org/10.1371/journal.pcbi.1006863.g002

Table 1. Average F1 and recall scores for Centrifuge and KrakenUniq at the species level for 21 in silico and 10

biological datasets.

Biological datasets in silico datasets

F1 recall F1 recall

KrakenUniq 0.89 0.91 0.87 0.84

Centrifuge 0.82 0.92 0.90 0.89

https://doi.org/10.1371/journal.pcbi.1006863.t001
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of clinical samples, whole blood was obtained from two healthy donors once a week for six

weeks. When the samples were sequenced and analyzed using Centrifuge with a minimum rel-

ative abundance threshold of 1%, three skin commensal bacterium Streptococcus thermophilus,
Propionibacterium acnes, and Lactococcus lactis were detected along with a synthetic construct

(Fig 3A). Due to the extreme difference in genome size betweenH. sapiens and synthetic con-

struct, the synthetic construct had high relative abundance despite a low number of reads clas-

sified. Thus, whileH. sapiens accounted for 79–97% of the reads classified in the normal blood

Table 2. Comparison of computational resources and runtime required by Centrifuge, CLARK and KrakenUniq to analyze the bacterial staggered mock commu-

nity dataset. CPU, central processing unit; GB, gigabyte; RAM, random access memory; Mbp/m, megabase pairs per minute.

Program number of CPUs RAM (GB) Runtime (hr:min:sec) Classification Speed (Mbp/m)

Centrifuge 28 7 0:02:56 1538

CLARK 28 297 0:38:40 103

KrakenUniq 28 140 2:57:05 22

https://doi.org/10.1371/journal.pcbi.1006863.t002

Table 3. Total reads and percent of reads classified by Centrifuge in the human samples. NBD, normal blood donor; wk, week; VAP, ventilator acquire pneumonia;

pt, patient; d, day; DFU, diabetic foot ulcer; t, time point; FN, febrile neutropenia.

raw read number Centrifuge

Classified (%) Unclassified (%)

Total (%) Human (%) Other organisms (%)

NBD 1 wk1 9,207,771 58.1 53.7 4.4 41.9

NBD 1 wk2 2,914,313 31.7 24.9 6.8 68.3

NBD 1 wk3 4,504,277 49.9 43.8 6.2 50.1

NBD 1 wk4 5,254,026 57.3 54.0 3.3 42.7

NBD 1 wk5 2,168,503 67.1 64.4 2.7 32.9

NBD 1 wk6 5,269,404 51.2 47.1 4.1 48.8

NBD 2 wk1 7,834,015 63.5 60.3 3.2 36.5

NBD 2 wk2 5,490,202 30.9 25.5 5.4 69.1

NBD 2 wk3 6,705,429 69.1 67.0 2.1 30.9

NBD 2 wk4 4,120,356 40.4 35.9 4.5 59.6

NBD 2 wk5 2,328,842 61.9 58.8 3.1 38.1

NBD 2 wk6 18,302,321 57.0 54.3 2.7 43.0

VAP pt 1 d1 3,500,750 92.9 92.5 0.4 7.1

VAP pt 1 d3 6,663,668 92.9 92.3 0.6 7.1

VAP pt 2 d1 2,719,033 91.3 58.6 32.7 8.7

VAP pt 2 d3 2,345,230 92.6 91.8 0.8 7.4

DFU pt 1 t1 1,463,794 84.9 84.9 0.1 15.1

DFU pt 1 t2 2,753,318 83.1 83.0 0.1 16.9

DFU pt 1 t3 3,724,733 84.3 84.1 0.1 15.7

DFU pt 2 t1 3,591,666 83.5 82.5 1.0 16.5

DFU pt 2 t2 3,097,927 81.3 62.0 19.2 18.7

DFU pt 2 t3 2,314,199 89.1 69.7 19.4 10.9

DFU pt 2 t4 4,048,863 83.4 62.5 20.9 16.6

DFU pt 2 t5 3,225,850 83.5 80.8 2.7 16.5

DFU pt 2 t6 2,905,944 84.5 80.6 3.9 15.5

FN pt 1 3,497,123 78.8 52.2 26.6 21.2

FN pt 2 13,000,518 52.4 35.6 16.8 47.6

FN pt 3 18,839,275 64.6 61.1 3.5 35.4

https://doi.org/10.1371/journal.pcbi.1006863.t003
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datasets (Fig 3B), it was calculated to be less than 2% relative abundance by Centrifuge (Fig

3A). Conversely, synthetic construct never accounted for more than 20% of the reads classified

(Fig 3B) but had relative abundances of 87–99% after normalization by genome size in the rela-

tive abundance calculation (Fig 3A). An additional organism, Taylorella equigenitalis, was

detected when organisms representing 1% of reads classified were examined. T. equigenitalis
was considered a false positive due to either misclassification or laboratory/reagent contamina-

tion due to its appearance in both donors and no prior report of infection in humans. Syn-

thetic construct has been seen in previous metagenomic analyses [38], and the other three

bacterium are known to arise in whole blood cultures due to contamination with skin

Fig 3. Analysis of background false positives in WGS sequencing from six weekly blood samples of two normal donors. Blood from two normal donors was

collected over six weeks, sequenced, and analyzed. A) Results were filtered to include organisms classified at the species or strain-level representing at least 1% relative

abundance. Relative abundance of organisms is represented by circle size with actual values displayed below. B) Results were filtered to include organisms with at least

1% of total reads classified. Percent of classified reads is represented by circle size with actual values displayed below.

https://doi.org/10.1371/journal.pcbi.1006863.g003
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commensals during sample collection. Thus, when the four bacteria above along with the syn-

thetic construct were identified (in all cases as<1% of reads classified) in any subsequent clini-

cal samples, they were excluded. In addition, based on these results from the normal blood

samples, subsequent clinical sample results were filtered at 1% relative abundance and 0.01%

of total reads classified.

Identification of pathogens in ventilator acquired pneumonia. Intubated patients were

followed longitudinally from the first day of intubation, with samples collected every two days.

In contrast to the invasive bronchoalveolar lavage (BAL) used to collect culture samples, sam-

ples for WGS were collected from an endotracheal exudate trap attached to the ventilator. Two

patients that developed pneumonia were selected for WGS of their samples, and results were

compared to culture (Fig 4). On day one of intubation, Centrifuge identified only human

reads in the sample from Patient 1. On the third day of intubation, Patient 1 developed pneu-

monia and culture results from a BAL sample reported heavy growth of methicillin resistant

Staphylococcus aureus (MRSA). Similarly, S. aureus was detected in the WGS sample by

Centrifuge.

In contrast to Patient 1, Patient 2 was found to have both S. aureus and Klebsiella aerogenes
from day one of intubation by WGS (Fig 4 Patient 2). On day three of intubation, the patient

was diagnosed with pneumonia, and culture of a BAL sample was strongly positive for MRSA

and K. aerogenes. Both organisms were also detected by WGS in the day 3 endotracheal aspi-

rate sample.

Both VAP patients’ culture results identified not just S. aureus, but MRSA, raising the ques-

tion of whether WGS could identify the presence of themecA gene responsible for methicillin

resistance in S. aureus. The presence ofmecA was detected using the Comprehensive Antibi-

otic Resistance Database resistance gene identifier tool in the three WGS datasets in which S.
aureus was identified by Centrifuge. ThemecA gene was detected in only one sample (Patient

2 day 1) which contained 109 reads (of 619,389 reads classified as S. aureus from 2,719,033

total) that aligned tomecA. The 109 reads provided complete coverage ofmecA at a depth of 2-

17x (S1 Fig). The other two samples had too few reads classified as S. aureus to provide suffi-

cient coverage to detectmecA: Patient 1 day 3 had 962 reads classified as S. aureus with none

matchingmecA, while Patient 2 day 3 had 472 S. aureus reads with none matchingmecA.

Identification of pathogens in longitudinal samples of infected diabetic

foot ulcers

Patients seen for treatment of diabetic foot ulcers were followed longitudinally. Two patients

with infected ulcers that progressed (despite standard of care) to lower limb amputation were

selected for WGS analysis and results were compared to culture. DFU samples consisted of

curettage samples or necrotic tissue obtained during wound debridement. In three of the four

VAP samples analyzed above, human reads constituted >90% of the classified reads (Table 3).

In an attempt to reduce human reads in subsequent analyses, a simple sample processing pro-

tocol was employed: pathogens were enriched by low speed centrifugations followed by filter-

ing (described in methods). Despite pathogen enrichment steps, the first three DFU samples

yielded the lowest number of non-human organisms classified by Centrifuge (Table 3), possi-

bly because the human DNA contamination was not from intact human cells, but instead

arose from cell-free DNA released into the wound from necrotic tissue.

In the first time point for Patient 1, WGS detected a low prevalence of Corynebacterium
(1% relative abundance), while culture detected Corynebacterium (3+), Streptococcus sp. (1+),

Haemophilus influenzae (3+), and mixed flora (3+) (Fig 5). Based on the culture results and

clinical signs of infection, broad-spectrum antibiotic therapy was initiated. The wound
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continued to worsen despite antibiotic therapy, wound debridement, and proper wound care.

After six weeks of antibiotic therapy the wound was not healing, and another culture detected

only Corynebacterium (2+) and Staphylococcus simulans (1+). In contrast, WGS revealed a

complete conversion of the wound microbiome to 100% Enterobacter hormaechei, a member

of the E. cloacae complex [40] (Fig 5). Four weeks later the wound continued to worsen, and

the patient developed a fever, precipitating admission to hospital for impending sepsis and re-

initiation of antibiotic therapy. A third culture sample was taken upon admission to hospital,

this time detecting 3+ E. cloacae four weeks after WGS had detected it at time point 2. The

third WGS analysis at this time again identified E. hormaechei as the sole organism in the

wound (Fig 5). Despite antibiotic therapy, the wound continued to worsen resulting in an

amputation to save the patient.

Patient 2 was followed over six time points and presented at the first time point in septic

shock. A culture sample identified Enterococcus faecium (3+) and K. pneumoniae (1+), while

WGS identified only K. pneumoniae (Fig 5). Based on culture results, broad spectrum antibi-

otic therapy was initiated targeting E. faecium. Three weeks later, the wound had not healed so

antibiotic therapy was switched to target K. pneumoniae (no new culture was taken). The WGS

analysis of time point 2 again identified the wound as dominated by K. pneumoniae. After ten

Fig 4. WGS identification and relative abundance of pathogens in patients that developed VAP with comparison to culture. Circle size

indicates the relative abundance of the respective organism, with the actual values shown below. Organisms also detected by culture from a

BAL on the same day are shown in red and graphed above the horizontal black bar.

https://doi.org/10.1371/journal.pcbi.1006863.g004

Identification of pathogens in clinical samples

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006863 November 22, 2019 11 / 27

https://doi.org/10.1371/journal.pcbi.1006863.g004
https://doi.org/10.1371/journal.pcbi.1006863


days of the second antibiotic therapy, the wound continued to worsen and a second culture

identified only Corynebacterium sp. (3+) and Staphylococcus simulans (1+), while WGS of this

fourth time point indicated the wound microbiome had become completely dominated by

Pseudomonas aeruginosa (Fig 5). In addition to P. aeruginosa, two P. aeruginosa-specific

phages were detected by Centrifuge (Pseudomonas phage YMC11-02-R656 and Pseudomonas

phage vB_PaeP_Tr60_Ab31, data not shown). Over the next three weeks, cultures at time

point 4 and 5 continued to miss P. aeruginosa, reporting only mixed flora and Corynebacte-
rium, while WGS continued to indicate dominance by P. Aeruginosa and detected re-emer-

gence of K. pneumoniae (Fig 5). The wound continued to worsen despite a third round of

broad-spectrum antibiotics. Culture finally identified P. aeruginosa at the sixth time point, six

weeks after detection by WGS, by which point the patient was again septic and required an

amputation.

Identification of pathogens in whole blood from febrile neutropenia

patients

Three neutropenic leukemia/lymphoma patients self-reported to the University of Arizona

Cancer Center clinic with fever and were diagnosed with FN. Blood cultures were ordered, at

which time a whole blood sample was taken for WGS analysis. Three likely pathogens were

identified by Centrifuge: Pseudomonas sp. with a relative abundance of 41% in Patient 1,

human parvovirus B19 with a relative abundance of>99% in Patient 2, and Torque teno virus

with a relative abundance of 58% in Patient 3 (Fig 6). For the two viruses detected, the number

of reads classified to each was small relative to the total, however, as with the synthetic

Fig 5. WGS identification and relative abundance of pathogens in longitudinal samples of infected diabetic foot ulcers with comparison to culture. Circle size

indicates the relative abundance of the respective organism, with the actual values shown below. Organisms also detected by culture on the same day are shown in red

and graphed above the horizontal black bar.

https://doi.org/10.1371/journal.pcbi.1006863.g005
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construct in the normal blood controls, Centrifuge compensated for their small genome sizes

in the relative abundance estimates. Torque teno virus’s relative abundance was 51%, while

representing only 1.6% of the reads classified, while human parvovirus had a relative abun-

dance estimate of>99%, while representing only 13.9% of the reads classified.

Blood culture results for all three patients were negative, both at the time of WGS sample

collection and in two subsequent blood cultures of each patient. Thus, the sequencing results

could not be corroborated by culture. However, patient two was positive for human parvovirus

in a clinical PCR test in the month before and after the WGS sample was obtained, supporting

the WGS results. In FN Patient 1, the predominant Pseudomonas species identified was P.

fluorescens. Pseudomonas has been reported as a false positive in a prior study of laboratory

and reagent contaminants, and P. fluorescens is not generally considered a human pathogen.

However, the fact that P. fluorescens did not appear in the normal control blood samples that

used the same laboratory and reagents, and is known to infect immunocompromised individu-

als [41], suggests the finding in FN Patient 1 is not artifact.

Genome coverage of suspected pathogens in febrile neutropenic patients

Reads from the three FN samples were aligned to the respective reference genomes of the sus-

pected pathogens to determine average depth of coverage (Fig 7). When Patient 1 reads were

aligned to the Pseudomonas fluorescens genome, the average coverage was 7.0. Patient 2 reads

aligned to the human parvovirus B19 genome showed average coverage of 5,180. Finally,

Patient 3 reads aligned to the Torque teno virus (TTV) genome showed high coverage

(~8,000) for a ~500 base pair region of the genome.

Effect of quality control and to host read removal on taxonomic

assignment and relative abundance estimates

Quality control of sequence reads and removal of reads that align to the host genome are com-

monly done before taxonomic classification, adding to analysis time. We tested the effect of

not performing quality control of sequence reads before Centrifuge analysis on the staggered

mock bacterial community and the FN patient datasets. Eliminating quality control caused a

single, low abundance false positive classification in the mock community, while causing viral

reads to be preferentially removed (S1 File). Consequently, quality control was not performed

for clinical sample analyses.

We next compared three methods of removing host (human) reads on the taxonomic clas-

sification and relative abundance estimates of the FN samples (S2 File). All three resulted in

additional low abundance organisms being identified by Centrifuge. These organisms are

likely spurious due the fact that removal of human reads greatly affected the percent of total

reads that were classified to these organisms, and thus caused them to pass the filters set by the

normal blood negative controls. Consequently, host read removal was not performed for any

of the analyses reported.

Discussion

The first dataset used to assess the three classifiers was a series of binary bacterial mixtures cho-

sen for their phylogenetic distance, and mixed so that each pair was combined across three

logs of relative abundance. Centrifuge was able to discriminate the most closely related pair of

bacteria, E. coli and S. flexneri, even when one of the organisms was present as 0.1% of the mix-

ture while KrakenUniq and CLARK failed to detect the lowest relative abundance of S. flexneri.
As the proportion of E. coli decreased, the relative abundance estimates for all three classifiers

diverged from expected, so that the E. coli estimate was >1% when E. coli was only 0.1% of the
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mixture. The same inaccuracy did not occur as the S. flexneri relative abundance decreased to

0.1%, suggesting Centrifuge misidentified a portion of the S. flexneri genome as E. coli but not

the other way around, while KrakenUniq and CLARK failed altogether. The difficulty classify-

ing S. flexneri was further suggested by the fact that the false positive rate increased as S. flex-
neri relative abundance increased. One possible cause for more relative matches to E. coli than

S. flexneri is that E. coli strains and isolates represent the most substantial fraction of the refer-

ence database. Another possibility is false positive identification of reads as E. coli, for example,

McIntyre et al. [31] saw similar false positive identification of E. coli when using metagenomic

classifiers on negative control sequences not belonging to any known organism. Although

Centrifuge uses a modified FM-index to condense closely related genomes, the total file size of

base pairs maintained (unique + shared based on� 99% identity) exceeds the relative file size

Fig 6. WGS identification and relative abundance of pathogens in febrile neutropenia samples. Circle size indicates the relative abundance of

the respective organism, with the actual values shown below. Human parvovirus detected by a clinical PCR assay are shown in red and graphed

above the horizontal black bar. The relative abundances of the multiple strains of Torque teno virus and species of Pseudomonas classified by

Centrifuge were summed and reported as Torque teno virus and Pseudomonas sp., respectively.

https://doi.org/10.1371/journal.pcbi.1006863.g006
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of all other species [34] giving it a higher probability for matches. Centrifuge’s better perfor-

mance with the E. coli/S. flexnerimixture suggests that Centrifuge’s use of a modified FM-

index dampens the effect of multiple strains and isolate genomes, but the effect is still present

for highly abundant organisms such as E. coli. In contrast to Centrifuge and CLARK’s

Fig 7. Genome coverage of suspected pathogens identified in febrile neutropenia patients. For each patient, reads were aligned to the

reference genomes of the most likely pathogen identified by Centrifuge and read coverage at each base graphed relative to the position in the

respective genomes.

https://doi.org/10.1371/journal.pcbi.1006863.g007
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abundance estimates, KrakenUniq classified the majority of S. flexneri and E. coli reads to the

family (Enterbacteriacae) level, only estimating 11.6% relative abundance of S. flexneri when it

was in fact 99.9% of the sample. KrakenUniq’s assignment of the majority of the S. flexneri/E.

coli reads to a higher taxonomic level results from its strategy for taxonomic assignment of

reads. Specifically, reads from closely related organisms in which a read that could be assigned

to multiple species are instead assigned to the nearest common taxonomic level. Therefore, the

KrakenUniq abundance estimates are not strictly comparable to CLARK and Centrifuge with-

out further analysis and re-calibration.

Interestingly, phylogenetic distance did not predict the accuracy of Centrifuge and

CLARK’s relative abundance estimates. Both were capable of reliably detecting organisms

down to 1% abundance, regardless of phylogenetic distance. A reasonable assumption would

be that as phylogenetic distance increases, the number of discriminatory k-mers would also

increase and allow better classification of reads. Instead, both Centrifuge and CLARK had bet-

ter sensitivity to the lowest relative abundance in the most closely related pair (E. coli/S. flex-
neri) than the intermediate pair (S. pyogenes/S. saprophyticus) where both organisms only

shared the same phylogenetic class (Bacilli). Overall, while Centrifuge and CLARK out-per-

formed KrakenUniq in terms of relative abundance accuracy, CLARK proved the most accu-

rate due to Centrifuge’s difficulty with correctly estimating S. pyogenes in the most distant

phylogenetic pairing.

One drawback of using Centrifuge for clinical pathogen identification is that Centrifuge

separates strain-level counts, splitting reads among species strains, which required manually

summing strain level abundances for reporting. Future iterations of Centrifuge could address

this issue by re-analyzing the data with a reduced reference set of genomes based on the first

round of analysis or using a reduced reference database. Lastly, current reference databases do

not account for all of the extant microbial/viral diversity that may be present in patients as evi-

denced by A. odontolyticus’ absence from the default Centrifuge and KrakenUniq databases.

However, this issue can be addressed by database curation and the exponential growth in the

number of microbial draft genomes available [42].

In addition to KrakenUniq’s trouble separating clinically important bacteria, and KrakenU-

niq’s and CLARK’s reporting of false positives in the mock community, the processing time

and computational resources required by KrakenUniq and CLARK were far greater than Cen-

trifuge (Table 2). Therefore, we focused on Centrifuge in the subsequent clinical analyses. The

much larger RAM requirements for KrakenUniq and CLARK relative to Centrifuge (Table 2)

are consistent with a previous comparison of Kraken and Centrifuge (Kim et al. 2016), and the

study in which McIntyre et al. [31] reported CLARK’s RAM requirements were similar to Kra-

ken’s. Given the greatly reduced computer system requirements for Centrifuge, analyses could

run on a well-equipped personal computer (e.g. 18-core processors and 8GB RAM) compared

to CLARK and KrakenUniq that require a server (e.g. 28-core processors and> 256GB RAM)

to achieve comparable speeds to those reported in Table 2. Future adoption of WGS

approaches will be constrained by the total time from sample collection to delivery of results.

This time could be reduced to 6–12 hours with current technology, thus putting a premium on

the data analysis steps being as rapid as possible, preferably requiring only minutes to perform.

The reduction in time and resources achieved by Centrifuge relative to the other taxonomic

classifiers likely owes to its compression of the reference database [34]. Thus, despite Centri-

fuge’s drawbacks such as separation of results to strain level and reporting phages separately

from their hosts, Centrifuge’s lower false positives, greater speed, and lower memory require-

ments suggests it may be a good starting point for clinical applications.
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Normal whole blood for false positive detection and background thresholds

Six longitudinal whole blood samples from two donors were processed to deplete human cells

(and thus human sequence reads in the datasets) by centrifugation and filtration similar to an

approach that has been recently published [43]. Despite the efforts to reduce human reads, the

majority of classified reads were still human (normal blood donors, Table 3), presumably

because there was low biomass from other organisms in the normal blood as would be

expected from such a sterile site. Despite well-documented issues with spurious results arising

from reagent and laboratory contamination [27], when organisms with relative prevalence

below 1% were ignored, no credible organisms other thanHomo sapiens were detected in nor-

mal blood. In addition, the three organisms that were identified in the normal whole blood

(Fig 3A) are all recognized skin commensals that are also detected by culture as a result of sam-

ple collection. Despite the possible advantages WGS over culture, skin contaminants will con-

tinue to present themselves since the whole blood sample collection method is the same. The

approach of ignoring low prevalence organisms is a simple means of reducing spurious results,

while other physical and statistical approaches have been developed [44,45] and will be of

importance to developing reliable clinical tests in the future. Our results with normal blood

stand in contrast to a much larger study [46] in which normal blood was consistently found to

contain predominantly Sphingomonas bacterial DNA. We note, however, that Sphingomonas
was found to be a consistent and significant contaminant of PCR master mix [44], possibly

explaining the detection of Sphingomonas in so many normal blood samples. Suppression and

identification of spurious results, which appear to be much more likely when actual sample

pathogen biomass is low or negative, (e.g., a patient with a fever is suspected of bloodstream

infection but is actually febrile due to chemotherapy), will be a critical component of clinical

applications of metagenomic sequencing.

Pathogen detection in clinical samples

Sixteen samples from seven patients were sequenced by WGS and analyzed with Centrifuge.

In both VAP patients, culture samples were taken when pneumonia was diagnosed on day

three, and all three organisms identified by culture were identified by WGS, despite the sample

types being different (BAL versus endotracheal aspirate). The ability of WGS to detect the cul-

ture-identified pathogens from a non-invasive sample suggests the possibility of WGS-based

surveillance of intubated patients to detect emergence of infection before pneumonia symp-

toms arise.

In the first DFU patient, culture initially detected a number of specific organisms (Strepto-
coccus sp.,H. influenzae, Corynebacterium) and a vague number of others (“mixed flora”)

while WGS only detected Corynebacterium. Following a course of broad-spectrum antibiotics,

culture failed to identify the complete conversion of the wound to a single organism (E.Hor-
maechei, a member of the E. cloacae complex) that was detected by WGS. It was not until the

third time point that culture identified E. cloacae, by which time the wound had progressed to

the point that amputation was required. There was a similar conversion of the wound micro-

biome in Patient 2, in whom culture initially identified E. faecium and K. pneumoniae, while

WGS only identified K. pneumoniae. Following a course of antibiotics targeting E. Faecium,

the wound underwent a complete conversion to P. aeruginosa that was missed by culture until

six weeks later, by which point the patient required an amputation. While both wounds were

clinically infected from the start of observation, both underwent a profound change in their

microbiomes that was detected by WGS weeks before culture. The drastic changes in the

wound microbiomes were presumably a result of the antibiotic therapy initiated after the first

culture results, with the wounds in both cases becoming dominated by organisms that were
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not susceptible to the antibiotics used. The results from the two DFU patients point to the pos-

sibility of improved wound surveillance by WGS.

Lastly, Torque teno virus was identified in a cancer patient undergoing bone marrow abla-

tion in preparation for a hematopoietic stem cell transplant. This finding highlights the possi-

ble value of the metagenomic sequencing approach as Torque teno virus has been investigated

as a predictive marker for post-transplant complications [47]. In addition, Torque teno virus

was also reported recently in a prospective study of the utility of WGS analysis in cerebrospinal

fluid samples. The identification of Torque teno virus and human parvovirus (which was cor-

roborated by a clinical PCR assay) in the FN patients indicates that the sample preparation

methods used in this study can isolate and detect viruses.

Identification of a drug resistance gene in a clinical sample

Bacterial drug resistance is a serious worldwide human health problem [48]; and its detection

in clinical samples can be as important as a species-level identification. For example, detection

of “methicillin-resistant gram-positive cocci” by culture is more relevant to clinical decision

making than a detection of S. aureus by WGS that misses the presence ofmecA. To this end,

we attempted to identifymecA in the three samples that were positive for S. aureus by WGS

from the two VAP patients diagnosed with MRSA. Low coverage in two of the samples pre-

vented detectionmecA, but the sample from Patient 2 on day 1 of intubation had enough reads

that the entirety of themecA was covered. Interestingly, no culture sample was taken on day

one, as the patient was not diagnosed with pneumonia until day three. Thus, WGS identifica-

tion of MRSA on day one, two days before diagnosis of pneumonia, and from a non-invasive

sample, supports the potential for WGS surveillance of intubated patients before symptoms of

pneumonia arise. Also of note, was the ability of WGS to detect S. aureus even in the other two

samples with low numbers of S. aureus reads. For example, in the sample from whichmecA
was detected, the S. aureus relative abundance was 26% calculated from 619,389 reads classi-

fied as S. aureus out of a total of 2,719,033. In contrast, the day three relative abundance (when

pneumonia was diagnosed, and MRSA detected by culture) was 10% calculated from just 962

reads classified as S. aureus out a total of 2,345,230. A recent prospective study using WGS and

the same drug resistance identification tool used here was also successful in detecting drug

resistance genes in samples of cerebrospinal fluid [24]. Given the critical importance of drug

resistance to the success of antibiotic therapy, the interplay between total number of reads

obtained, number of reads classified to a pathogen, number of reads classified to the host

genome, and the relative genome sizes involved will need to be carefully explored for successful

clinical translation of WGS.

Genome coverage of presumptive pathogens identified in FN patient

samples

We examined the genome coverage of the pathogens identified in the FN patients with the

assumption that the genomes of the pathogens should be represented by consistent coverage,

whereas uneven coverage could indicate insufficient evidence of organism presence. Parize

et al. [29] took a similar approach in which even distribution of contigs was used as part of the

criteria to decide if a sample was deemed positive [29]. Interestingly, Torque teno virus

sequence found in Patient 3 had high coverage of only a ~500 base pair untranslated region of

the genome. This highly conserved region has been suggested to be critical for viral replication,

and may indicate an early replication event or the presence of sub-viral particles, a characteris-

tic that has previously observed in Torque teno virus [49]. The evidence for sub-viral particles

provided by the coverage analysis is the first from an in vivo sample.
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Host screening and quality control

Although quality control of raw reads is imperative for variant calling and genome assembly, it

takes considerable computing time and resources. In this study, we observed limited benefits

of quality control regarding accurately identifying and quantifying the abundance of the bacte-

ria in the staggered mock community (S1 File, Fig A). Although quality control of reads elimi-

nated a single false positive organism estimated at 2.3% relative abundance, quality control of

reads from the FN data showed a bias toward removing viral reads (S2 File, Table 1). The lim-

ited effect of quality control on Centrifuge’s performance likely stems from the overall high

quality of base calls on the Ion Torrent sequencer within the context of k-mer based classifiers.

Clinical development of a tool such as Centrifuge will have to weigh the limited benefits of

quality controlling data before analysis versus the bias toward the removal of viral reads and

the time required to perform quality control.

Despite efforts to enrich microbial/viral DNA by centrifugation and filtering, a large pro-

portion of reads were still classified as human in the clinical samples, especially in the DFU

samples where extracellular human DNA would be expected due to necrosis (Table 3). Screen-

ing host reads by alignment to the human reference genome appears to be unnecessary and

even detrimental as it caused additional likely spurious organisms to pass filtering (S2 File).

Given that reference genomes can contain sequences of mixed origin due to horizontal gene

transfer, endogenous and integrated microbes/viruses, prophage in bacterial genomes, as well

as library preparation and sequencing contamination, classifying reads without host screening

appears to be the best compromise between preserving accuracy and the reduced speed of

analysis.

Conclusion

In summary, our analyses suggest that Centrifuge, an open-source software for fast taxonomic

classification, provides accurate identification and abundance estimates in clinically relevant

metagenomes, while more efficiently using computational resources and time relative to com-

peting tools. Centrifuge’s ability to quickly assign taxonomy to reads, accurately represent the

abundance of organisms such as viruses, and sidestep read quality control and host-screening

make it a good candidate for classifying reads of clinically relevant organisms. Consequently,

we have made Centrifuge and the bubble plot software used in the study available as Apps in

iMicrobe (http://imicrobe.us) to provide public streamlined access.

Materials and methods

Reference datasets for taxonomic classification benchmarking and analysis

Binary bacterial mixtures. The binary mixtures were described previously [18]. Briefly,

four species of bacteria were used to create three binary mixtures representing: (1) difficult to

discriminate species with divergent clinical impact (Escherichia coli versus Shigella flexneri),
(2) Gram-positive species (Staphylococcus saprophyticus versus Streptococcus pyogenes), and

(3) Gram-positive versus Gram-negative species (E. coli versus S. saprophyticus). DNA from

the bacteria were purchased from the American Type Culture Collection (Manassas, VA,

USA) and mixed in pairs so that each species represented 99.9, 99, 90, 50, 10, 1, and 0.1% of

the total sample. Samples were sequenced as described below, and the sequence data deposited

to the NCBI Sequence Read Archive under accessions: SRX3154186-SRX3154219 in project

accession PRJNA401033.

Staggered mock bacterial community. The staggered mock bacterial community (BEI

Resources, Manassas, VA, USA, Microbial Mock Community B HM-277D) consists of 20
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bacterial species mixed to provide specific 16S rRNA gene copy numbers for each species.

Using the 16S rRNA gene copy numbers, along with the known 16S rRNA gene copy number

in each species’ genome, we calculated the number of genomes present for each species to pro-

vide an expected value for comparison to the relative abundance estimates of the classifiers.

The mock community was sequenced as described previously [8] and sequence data deposited

to the NCBI Sequence Read Archive under accession: SRP115095 in project accession

PRJNA397434.

Read quality control. To ensure that only high-quality reads were used to compare the

three classification tools, all reads from the binary bacterial mixtures and staggered mock com-

munity were converted to FASTQ format from raw BAM files with BEDtools’ bamtofastq

v2.17.0 [50]. FastX toolkit v.0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit), was used to per-

form quality control measures on FASTQ data including quality filtering (using parameters -q

17 -p 80), trimming and setting a minimum read length (using parameters -f 10 -l 175), and

removal of short reads (using parameter -l 50) and duplicate reads. The scripts to quality con-

trol data are available at: https://github.com/hurwitzlab/pathogens_in_clinically_relevant_

samples/tree/master/0_pre-processing_scripts

Benchmarking reference datasets

CLARK read classification. CLARK v1.1.3 [32] was used to classify reads to known taxa

using the default CLARK database (downloaded on March 3, 2016). Reads were classified

using the classify metagenome command, a mode of 1, and k-mer size of 31. Next, the abun-

dance of organisms was estimated using the estimate_abundance command with default set-

tings. Abundance reports were filtered to include only species with a minimum of 0.1%

abundance (bacterial mixtures) or 0.01% (staggered mock community) of the classified reads.

Centrifuge read classification. Centrifuge v1.0.3-beta [34] was used to classify reads to

known taxa. Each of the analyses below were run using default parameters.

Binary bacterial mixtures analysis: Centrifuge was run with the “p_compressed+h+v” data-

base at http://www.ccb.jhu.edu/software/centrifuge/ (last updated 12/06/2016).

Centrifuge abundance report results were filtered to include only organisms at the species

or strain-level with a minimum of 0.1% of total reads classified. False positives were calculated

by summing the relative abundances of any organism classified by Centrifuge that were not

part of the mixture.

Staggered mock bacterial community analysis: Because the staggered mock community

included Actinomyces odontolyticus, and this organism was not present in the recommended

default Centrifuge database (p_compressed+h+v), the mock community was analyzed using a

custom database generated from 23,276 complete archaeal, bacterial, and viral genomes. The

database was downloaded from Refseq on July 2017 using the centrifuge-download and centri-

fuge-build scripts respectively. The composition of the custom database is available at https://

github.com/hurwitzlab/pathogens_in_clinically_relevant_samples/tree/master/0_custom_

centDB. Centrifuge abundance report results were filtered to include only organisms at the

species or strain-level with a minimum of at least 0.01% abundance as calculated by Centrifuge

with no minimum number of reads. Classifications to strains or subspecies were summed at

the species level, while hits to phages were ignored.

KrakenUniq read classification. KrakenUniq v0.5.8 was used to build a reference data-

base using the default parameters (script available at https://github.com/hurwitzlab/

krakenuniq/blob/master/scripts/build-ocelote.sh). KrakenUniq was then run using default

parameters, at the “species level” (https://github.com/hurwitzlab/krakenuniq/blob/master/

scripts/run.sh) on the reference datasets. Abundance reports were filtered to include only
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species with a minimum of 0.1% abundance (bacterial mixtures) or 0.01% (staggered mock

community) of the classified reads.

Benchmarking. Centrifuge, CLARK and KrakenUniq computational requirements were

assessed on the staggered mock community after quality control (size of the file: 4 gigabytes).

CLARK and KrakenUniq were run on a high-performance computer cluster with exclusive

access to a high-memory node (total size 28 cores (Xeon Broadwell E5-2695 Dual 14-core pro-

cessors) and 2TB total memory); whereas Centrifuge was run on a standard node because of

the lesser memory requirements (total size 28 cores (Xeon Broadwell E5-2695 Dual 14-core

processors) and 192 GB total memory). Wall clock time was computed using the GNU ‘time‘-

command, memory consumed was reported by the distributed computing software PBS Pro

‘tracejob‘command.

Centrifuge and KrakenUniq benchmarking with 31 datasets. To place Centrifuge

within the context of the McIntyre and Breitwieser studies [31,38], Centrifuge and KrakenU-

niq were compared using 10 biological and 21 simulated datasets from Breitwieser et al. [38].

The performance of each classifier was measured by calculating the recall (true positives / (true

positives + false negatives)) and F1 score (2�(precision�recall)/(precision+recall)) for the detec-

tion of organisms at the species level. Results were filtered using the relative abundance thresh-

old reported as “minimum abundance threshold” in S1 Table.

Clinical datasets

Ethics statement. The Institutional Review Board at the University of Arizona approved

the human subjects research for the FN and DFU samples, and HonorHealth Scottsdale Insti-

tutional Review Board approved the human subjects research for the VAP samples. Informed

consent was obtained from FN and DFU patients, while the passive nature of the VAP sample

collection did not require informed consent.

Patient sample preparation and processing. Normal blood: whole blood was collected

and subjected to pathogen isolation and DNA isolation in the same manner as the FN samples

(see below), and the resulting DNA sequenced. Blood was obtained from two healthy donors

once a week for six weeks and processed immediately.

VAP: Endotracheal aspirate (~1–5 ml) was longitudinally collected every 48h starting from

time of intubation. Samples were placed in sterile 15 ml tubes and immediately frozen at –

80˚C until DNA isolation. DNA was isolated from the endotracheal aspirate obtained on days

one and three (when both patients were diagnosed with pneumonia and BAL samples were

taken for culture) of intubation with the QIAamp BiOstic Bacteremia DNA kit (Qiagen Inc.,

Germantown, MD, USA) and quantitated on a NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Technologies Inc., Santa Clara, CA, USA). DNA was diluted to one ng/ml,

and 10 ng used to prepare sequencing libraries.

DFU: Curettage or necrotic tissue samples were collected during wound debridement for

DFU patients during standard of care and placed in sterile sample collection containers. Sam-

ples were transferred to sterile 15 ml conical tubes (Fisher Scientific, Hampton, NH, USA),

and 1 ml of sterile PBS was added followed by vortexing for 30 s. The liquid portion of the sam-

ple was drawn off followed by a human cell depletion protocol including three low speed cen-

trifugations 50, 100, and 150 x g for 5 m, 5μm filtering, and a final 4000 x g centrifugation.

DNA was isolated from any material sedimented during the final 4000 x g centrifugation with

a UCP Pure Pathogen kit (Qiagen Inc., Germantown, MD, USA). Isolated DNA was quanti-

tated on a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Technologies Inc., Santa

Clara, CA, USA), diluted to one ng/μl, and 10 ng used to prepare sequencing libraries.

Identification of pathogens in clinical samples

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006863 November 22, 2019 21 / 27

https://doi.org/10.1371/journal.pcbi.1006863


FN: Approximately 5 mL of whole blood were collected (K2EDTA BD Vacutainer tubes,

catalog #367863 BD Biosciences, San Jose, CA, USA) when blood cultures were ordered for

each FN patient and transferred for processing within 2h of collection. Blood samples were

diluted with an equal volume of sterile phosphate buffered saline, layered on Ficoll-Paque (GE

HealthCare Life Sciences, Pittsburgh, PA, USA) and centrifuged for 20 minutes at 400 x g.

Plasma was carefully drawn off, sacrificing some yield to prevent drawing up monocytes, and

centrifuged three more times at 50, 100, and 150 x g for 5 minutes to further remove human

cells. The plasma was passed through a five-micron filter, and finally centrifuged at 4000 x g to

collect microbes. DNA was isolated from any material sedimented during the final 4000 x g

centrifugation with a UCP Pure Pathogen kit (Qiagen Inc., Germantown, MD, USA). Isolated

DNA was quantitated on a NanoDrop ND-1000 spectrophotometer, diluted to one ng/μl, and

10 ng used to prepare sequencing libraries.

DNA library preparation and sequencing. DNA libraries were prepared and sequenced

for all samples using Ion Torrent reagents and the Ion Torrent Proton sequencer (Thermo

Fisher Technologies Inc., Santa Clara, CA, USA). 10 ng of DNA was used as input to the Ion

Xpress Plus Fragment Library Kit (manual #MAN0009847, revC). DNA was sheared using the

Ion Shear enzymatic reaction for 12 min, and Ion Xpress barcode adapters were ligated follow-

ing end repair. Resulting libraries were amplified using the manufacturer supplied library

amplification primers and recommended conditions. Amplified libraries were size selected to

approximately 200 base pairs using E-gel SizeSelect Agarose cassettes (Invitrogen, Carlsbad,

CA, USA) as outlined in the Ion Xpress manual and quantitated with the Ion Universal Library

quantitation kit. Equimolar amounts of the library were templated with an Ion PI Template

OT2 200 kit V3. The resulting templated beads were enriched with the Ion OneTouch ES sys-

tem and quantitated with the Qubit Ion Sphere Quality Control kit on a Qubit 3.0 fluorimeter

(Qubit, NY, NY, USA). Enriched, templated beads were loaded onto an Ion PI V2 chip and

sequenced according to the manufacturer’s protocol using the Ion PI Sequencing 200 kit V3.

Data were processed with Ion Torrent Server software v4.4.3 to produce data files in BAM

format.

Clinical dataset availability. Sequence data for VAP, DFU, and FN patient samples were

deposited to the NCBI Sequence Read Archive in project accession numbers PRJNA555076,

PRJNA554856, PRJNA521396.

Analysis of clinical datasets using Centrifuge

The datasets were analyzed without quality control or human read removal using the Centri-

fuge “p_compressed+h+v” database provided at: http://www.ccb.jhu.edu/software/centrifuge/

(last updated 12/06/2016).

Centrifuge abundance report results were filtered to include only organisms at the species

or strain-level with a minimum of 0.01% of total reads classified and at least 1% relative abun-

dance. Classifications of synthetic constructs, phages, Streptococcus thermophilus, Lactococcus
lactis, Propionibacterium acnes and Tayorella equigenitallis identified in normal blood controls

were not included in results.

Effect of quality control and host read host sequence removal on taxonomic

assignment

The staggered mock community and FN samples were analyzed before or after quality control.

Centrifuge abundance report results were filtered to only include organisms with a minimum

of at least 0.01% relative abundance with no minimum percent of reads classified (Staggered

mock community) or 1% relative and 0.01% of classified reads (FN samples). Classifications to
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strains or sub-species were summed at the species level and phages were ignored. Scripts are

available at https://github.com/hurwitzlab/pathogens_in_clinically_relevant_samples/tree/

master/0_pre-processing_scripts.

The effect of host sequence removal was investigated using the FN samples. Three condi-

tions were tested: 1) alignment to the human genome and removal of aligned reads from the

dataset. To remove host (human) reads, FASTQ read files were mapped to HG38 (Genome

reference consortium human genome build38) using Bowtie2 [51] and the—very-sensitive

option (the script is available at https://github.com/hurwitzlab/pathogens_in_clinically_

relevant_samples/tree/master/0_pre-processing_scripts), (2) removing the human sequence

from the reference database, and (3) using the "exclude TaxID" function in Centrifuge to

exclude reads from classification whose best match was to the human genome. Centrifuge

results were filtered to include only organisms with at least 1% abundance and at least 0.01%

of classified read. Classifications to strains or sub-species were summed at the species level and

phages were ignored.

Detection and analysis of mecA gene in VAP patient samples

Reads were aligned to the human genome (GRCh37 with contigs) by the Ion Torrent Software

Suite (v5.4). Reads that did not align to the human genome in the three VAP BAM files were

extracted with samtools (v1.2) and FASTA sequences were analyzed using the Resistance Gene

Identifier (RGI) tool available online from the Comprehensive Antibiotic Resistance Database

(http://github.com/arpcard/rgi) using default parameters. WhenmecA was indicated by the

RGI tool in the Patient 2, day 1 sample, 109 reads matching themecA gene (NG_047936.1)

were identified with blastn (v2.7.1) with default parameters. The 109 reads were subsequently

aligned to themecA gene with BWA 0.7.17 and coverage data generated with the samtools

(v1.2) depth tool to generate coverage values that were graphed in R v3.1.1 (R scripts: https://

github.com/hurwitzlab/pathogens_in_clinically_relevant_samples/tree/master/S1_Fig).

Genome coverage of suspected pathogens from febrile neutropenia patient

samples

Reads from FN samples were quality controlled as described above for the bacterial mixtures

and staggered mock bacterial community. Following quality control, Bowtie2 [51] was used to

map FASTQ reads (with option—very-sensitive) to reference genomes for the organisms iden-

tified by Centrifuge (Pseudomonas fluorescens accession: NC_012660.1, human parvovirus B19

accession: NC_000883.2, Torque teno virus accession: NC_015783.1). Coverage data was gen-

erated with samtools (v1.3.1, [52]) depth tool from the resulting BAM files and visualized in R

v3.1.1 (R scripts are available at: https://github.com/hurwitzlab/pathogens_in_clinically_

relevant_samples/tree/master/7_depth_coverage).

Software availability

To improve access to Centrifuge and the bubble chart visualizations used in this manuscript,

both have been made available on iMicrobe (https://www.imicrobe.us). As a starting point,

researchers may run centrifuge-1.0.4u2 (https://www.imicrobe.us/#/apps/centrifuge) followed

by centrifuge-bubble-0.0.5u1 (https://www.imicrobe.us/#/apps/centrifuge-bubble). Source

code for running Centrifuge on a high-performance compute cluster, using a singularity

image and scripts for formatting the results are available at: https://github.com/hurwitzlab/

centrifuge.
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Source code for running KrakenUniq on a high-performance compute cluster, using a sin-

gularity image (KrakenUniq v0.5.8) and scripts for formatting the results are available at:

https://github.com/hurwitzlab/krakenuniq.

Analyses, scripts and visualizations shown in the manuscript are archived at: https://github.

com/hurwitzlab/pathogens_in_clinically_relevant_samples.

Supporting information

S1 Table. Centrifuge and KrakenUniq F1 and recall scores for 31 benchmarking datasets.

31 “truth sets” previously analyzed previously by McIntyre et al. [31] and Breitwieser et al. [38]

for evaluation of metagenomic classifiers were analyzed with KrakenUniq and Centrifuge to

place Centrifuge within the context of the prior studies. F1 and recall for the biological and in
silico datasets are shown at the species level.

(XLSX)

S1 Fig. The mecA gene coverage in a VAP patient with culture identified methicillin resis-

tance Staphylococcus aureus (MRSA). Coverage from 109 reads from Patient 2, time point 1

is shown for each base position of the 2.2 kilobasemecA gene.

(PDF)

S1 File. Effect of quality control on Centrifuge’s taxonomic assignment and relative abun-

dance estimates.

(DOCX)

S2 File. Effect of host sequence removal on taxonomic assignment in febrile neutropenia

samples.
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