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Target decoupling in coupled 
systems resistant to random 
perturbation
Sunkyu Yu   , Xianji Piao    & Namkyoo Park   

To suppress unwanted crosstalks between nearby optical elements, the decoupling technique for 
integrated systems has been desired for the target control of light flows. Although cloaking methods 
have enabled complete decoupling of optical elements by manipulating electromagnetic waves 
microscopically, it is difficult to be applied rigorously to control each unit element in coupled systems 
due to severe restrictions on material parameters for cloaking. Here we develop the macroscopic 
approach to design crosstalk-free regions in coupled optical systems. By inversely designing the 
eigenstate which encompasses target elements, the stable decoupling of the elements from the 
coupled system is achieved, being completely independent from the random alteration of the 
decoupled region, and at the same time, allowing coherent and scattering-free wave transport with 
desired spatial profiles. We also demonstrate the decoupling in disordered systems, overcoming the 
transport blockade from Anderson localization. Our results provide an attractive solution for “target 
hiding” of elements inside coupled systems.

Invisibility cloaking is one of the most fascinating achievements in transformation optics1–3. The coordinate trans-
formation between virtual and physical spaces provides the rigorous design guidance of material parameters, per-
fectly separating the light flow in the cloaked region from that in the other part. Although transformation optics 
derived from full-vectorial Maxwell’s equations1 successfully provides an exact solution for omnidirectional and 
scattering-free perfect cloaking, at the same time, its strict demand on material designs has caused hardship to the 
practical implementation of the cloaking in spite of recent achievements in optical metamaterials4.

The stringent condition of rigorous transformation optics has also hindered the application of the cloaking 
to photonic integrated circuits which require the “decoupling” technique5, 6 between elements for crosstalk-free 
signal transport. Consider the ‘hiding’ (or ‘decoupling’) of some elements inside densely packed coupled optical 
systems5, 7–11. Transformation optics in this scenario provides the severely intricate solution even for the approx-
imated case12: the coating of target elements with spatially-varying, highly anisotropic metamaterials of extreme 
material parameters (effective permittivity ~0), which derives the ‘microscopic’ removal of the coupling to the 
target elements. We note that similar restrictions can also be found in other alternative cloaking methodolo-
gies. The cloaking using accidental degeneracy13 requires the well-defined crystalline structure to maintain the 
Dirac point, and thus cloaked elements should be separated by more than several lattice periods, prohibiting the 
integration. Although the concept of parity-time symmetry has been applied to the unidirectional invisibility in 
one-dimensional coupled structures14, 15 based on their singular scattering, the extension to multi-dimensional 
integrated systems encounters the similar difficulty with transformation optics: the coating of spatially varying 
gain-loss media16 for each element. The optical analogy of the adiabatic passage5, 17 has also been employed to 
hide the inner waveguide in tri-atomic designs, but its multi-dimensional or N-atomic realization still remains 
as a challenge.

Here, we propose the ‘macroscopic’ approach to the decoupling based on the eigenstate molding applicable to 
N-atomic coupled optical systems, instead of the microscopic material arrangement for each element1–3, 13, 16. We 
demonstrate that the scattering-free perfect transmission can be achieved through the system eigenstate which 
includes target decoupled elements, against the random perturbation of the self-energy inside the target region 
of the system. By controlling the self-energy of the system in a moderate range, the designer spatial profile of the 
wave flow can also be achieved around target elements, while preserving the scattering-free condition. Utilizing 
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the generality of our eigenstate decoupling method, we also show the stable decoupling in disordered systems for 
the first time, which resolves the blockade of wave transport from Anderson localizations18, 19.

Results
Concept of target decoupling.  We begin with an instructive example of a triatomic system where each 
element has the self-energy of ρi (e.g. resonant frequency f of an uncoupled resonator), and the coupling between 
the i-th and j-th elements is given as κij (Fig. 1a, κij ~ κji for the similar shape of elements20). The system then 
satisfies the following Hamiltonian equation5, 10, 21
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for the field amplitude at each element Ψ = [ψ1, ψ2, ψ3]T. We establish the decoupling of the 3rd element, calling 
for the invariant eigenstate for the random perturbation of ρ3 (Fig. 1a versus 1b, as ρ3a ≠ ρ3b). From the setting of 
ψ3 = 0 to remove the ρ3-dependency, i.e. ‘hiding’ of the 3rd element in the target eigenstate, Eq. (1) then derives 
the condition of κ31·ψ1 + κ32·ψ2 = 0 which corresponds to the destructive coupling interference in the 3rd element 
(Fig. 1a,b). This condition applied to Eq. (1) defines the necessary condition of the self-energy for decoupling 
the 3rd element as ρ1 − ρ2 = κ31·κ12/κ32 − κ32·κ21/κ31, and the corresponding eigenvalue of the target eigenstate 
can be controlled by ρ = ρ1 − κ31·κ12/κ32. Hence, by controlling the self-energy of the elements (ρ1,2) which have 
the given coupling network (fixed κij), we can “hide” some elements inside the coupled system at the desired 
eigenvalue ρ, for any networks even including irregular or symmetry-broken cases (e.g. κ23 ≠ κ31). We note that 
this approach can be easily extended to hiding m-elements inside N-atomic systems (Fig. 1c, Supplementary 
Note 1). Interestingly, although the nearby elements (blue and red elements in Fig. 1c) of the target region (2 dark 
gray elements in the center, Fig. 1c) should have the designed field distribution for the decoupling, the field at 
the rest elements (light gray elements in Fig. 1c) of the system can be controlled irrespective of the decoupling 
(Supplementary Note 1 and Fig. S1c,d), allowing the scattering-free designer wave flow around the decoupled 
region.

Target decoupling in coupled optical systems.  Based on the design methodology in Supplementary 
Note 1, we demonstrate the decoupling in coupled optical systems (Figs 2 and 3). Without loss of generality, we 
employ the system of coupled titanium oxide (TiO2) circular resonators embedded in an indium antimonide 
(InSb) crystalline compound, operating in the terahertz regime with transverse magnetic (TM) monopole res-
onances. We control the radii of resonators and their locations to adjust the resonant frequency f and coupling 
κ, respectively (see the detailed design in Supplementary Note 2). We investigate the 11 × 11 coupled resonator 
square lattice, encompassing the 3 × 3 decoupled region at the center of the system (the ‘decoupled’ region D 
in Fig. 2. Its surrounding ‘transport’ region is denoted as T). The binary random self-energy is applied to the 

Figure 1.  Schematics of the designer state for the decoupling in coupled optical systems. Tri-atomic examples 
for different self-energy at the 3rd element: (a) ρ3a and (b) ρ3b. ρ for self-energy of each element and κ for the 
coupling between elements in (a,b). (c) N-atomic example for two target decoupled elements at the center (dark 
gray). Coupling is denoted as the line between elements, and for clarity, coupling terms only around the target 
elements are presented.
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resonators in the region D for clarity; the elements inside the decoupled region have one of the two self-energy 
values (or resonant frequencies) f = f0 or f = 1.1·f0 with the same probability (f0: operating frequency). By following 
the methodology in Supplementary Note 1, the self-energy distribution of the region T is derived both for the 
decoupling of the region D, and for the designed spatial profile of wave transport which determines the shapes 
of input and output waves. To demonstrate the decoupling operation, we compare the results from the eigenstate 
decoupling environments (Figs 2b,e and 3b,e) with those from the ordinary crystal environments which have 
identical elements at the region T (Figs 2c,f and 3c,f).

Figure 2 shows the cases of planewave spatial profiles, demonstrating the decoupling wave transfer for the dif-
ferent sets of elements inside the target region D. In general, the detailed configuration of the self-energy distribu-
tion strongly affects the wave transport in a coupled optical system, because the self-energy determines not only 
the phase evolution inside each element but also the coupling efficiency between elements20. However, regardless 
of the configuration of the target region D (D ≠ D’ in Fig. 2a,d), the eigenstate decoupling systems provide the 
perfect planewave transfer (Fig. 2b,e) with the same transport region T configuration, in sharp contrast to strong 
scattering and spatial incoherence in the crystal platforms the light flow of which has also strong dependence on 
the configuration of the region D (D ≠ D’ in Fig. 2c,f). This result demonstrates that the decoupling eigenstate 
designed by the methodology in Supplementary Note 1 successfully neglects the self-energy perturbation inside 
the target region, realizing the “target decoupling” based on the form of the eigenstate. In Supplementary Notes 3 
and 4, we also investigate the stable operation regime of the proposed target decoupling, by analyzing the toler-
ance with respect to the perturbation in incident waveforms (Supplementary Note 3) and the fabrication errors 
exerted on the resonant frequency f and coupling κ which are determined by the radius of each resonator and the 
distance between resonators, respectively (Supplementary Note 4).

Target decoupling with functionalities.  As shown in the closed form of Eq. (S5) in Supplementary 
Note 1, the self-energy distribution is uniquely defined for ‘any’ nodeless eigenstate which satisfies the decoupling 
condition (ψ = 0) in the region D. Conversely, by controlling the self-energy of the environmental region T (T’ 
in Fig. 3a), the molding of the spatial form of wave flows becomes possible while preserving the scattering-free 
condition around the region D; as shown in the wave focusing example in Fig. 3b (compared to the random scat-
tering in the ordinary environment of Fig. 3c). We thus note that designer wave flows with optical functionalities, 
such as focusing, beam splitting, and mode conversion, can be achieved, regardless of the perturbation inside the 
target decoupled region D.

The main strength of the eigenstate decoupling is the high applicability to ‘any’ coupling networks which may 
not have the spatial symmetry, in contrast to the indispensable spatial symmetry in the Dirac point cloaking13 
or parity-time-symmetric invisibility14–16. The evidence is shown in Fig. 3d–f, demonstrating the decoupling in 
the system which has the off-diagonal disorder22, 23 from the random deformation of each resonator position 
(disordered coupling both in Dd and Td regions in Fig. 3d). Perfect coherent transmission (Fig. 3e) is achieved as 
same as the cases in the lattice structure, overcoming the incoherent blockade of wave transport from Anderson 
localization (35 dB enhancement from 0.03% transmission at Fig. 3f). Distinct from previous cloaking methods 
in crystals13–16 which necessitate the strict spatial symmetry for the position of each optical element, the eigenstate 
decoupling method allows for the decoupling inside randomly distributed resonator systems, surprisingly, com-
pensating the Anderson blockade from the off-diagonal disorder, as an example of the designer disorder24–28. We 

Figure 2.  Demonstration of eigenstate decoupling for planewave input and output waves through the crystal 
lattice. The different configurations in the decoupled region are compared for the cases of (a–c) and (d–f) (D 
≠ D’, red boxes in the right panels of (a,d)). The decoupling results in (b,e) are compared with the results of 
ordinary crystal systems in (c,f) composed of identical elements. λ0 is the free-space wavelength, and all of the 
design parameters are shown in Supplementary Note 2.
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Figure 4.  Statistical spectral analysis of eigenstate decoupling. (a) Transmission and (b) amplitude fluctuation 
spectra for the decoupling system (light blue thin lines) and the ordinary crystal system (orange thin lines), for 
the ensemble of 29 samples. The fluctuation σport in (b) is the standard deviation of output field amplitude for 
11 ports, normalized by the averaged amplitude (σport = 0 for ideal planewave). Blue and red thick lines in (a,b) 
denote the averaged results for 29 samples of each system. Black dashed line depicts the design frequency.

Figure 3.  Demonstration of eigenstate decoupling with functionalities of focusing and disorder-resistant 
transport. (a–c) The decoupling with wave focusing (T’): (a) a schematic, (b) the field profile in the eigenstate 
decoupling system, and (c) the field profile in the ordinary crystal system. (d–f) The decoupling in the disordered 
system (Dd, Td): (d) a schematic, (e) the field profile in the eigenstate decoupling system, and (f) the field 
profile in ordinary Anderson off-diagonal disorder system. The position of each resonator in (d–f) is randomly 
deformed for x and y axes, with the ±Λ0/10 maximum deformation for the original periodicity Λ0. The field 
amplitude in (f) is magnified (×100) for the presentation. All other parameters are the same as those in Fig. 2.
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Figure 5.  Spatial coherence of output flows through eigenstate cloaking. The amplitude (a,b) and phase (c,d) 
of the output field is plotted as a function of frequency and output positions, for an example of decoupling (a,c) 
and ordinary systems (b,d). Black lines denote the results at the operating frequency f0. (e,f) The amplitudes and 
(g,h) phases of the output field at each output port, for the (e,g) eigenstate decoupling and (f,h) ordinary crystal 
systems (at operating frequency f0). Each dot denotes a sample of a statistical ensemble (29 samples), and black 
dashed lines represent the averaged results of 29 samples.
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note that in spite of the requirement of the designed self-energy distribution, the decoupling without the spatial 
symmetry provides a novel route to ‘hiding’ elements in coupled systems.

Statistical analysis of target decoupling.  To illustrate the stability and spectral property of the eigen-
state decoupling method applied in Fig. 2, the statistical spectral analysis of the decoupling system is shown in 
Fig. 4. For 9 decoupled elements (region D in Fig. 2a,d) which have binary random resonant frequencies of f = f0 
and f = 1.1·f0, the statistical ensemble of 29 samples having the identical region T in Fig. 2a,d is realized to examine 
the coherence and transmission over the decoupling system (each thin lines in Fig. 4a,b). The spatial profile of 
the transmitted wave is quantified by measuring the standard deviation of output field amplitude σport for output 
ports (σport = 0 for ideal planewave). We note that about 94% of average transmission (Fig. 4a, blue thick line) 
with the almost uniform spatial profile (Fig. 4b) is achieved near the operating frequency, robust to the random 
alteration of the decoupled region (~0.040% standard deviation for the transmission): in sharp contrast to the 
performance of the ordinary crystal system (~16% transmission with 11% standard deviation).

The output flow through the decoupling system preserves excellent spatial coherence as well (Fig. 5). 
Compared to incoherent scattering with random phase and amplitude in the ordinary crystal system (Fig. 5b,d), 
the decoupling system of Fig. 2a,d derives the unity amplitude (Fig. 5a) and constant phase (Fig. 5c) at the out-
put, independent from the random alteration of the decoupled region. Figure 5e–h also demonstrates the spatial 
coherence of the output field at the operating frequency, for the statistical ensemble of 29 samples, by comparing 
the cases of the eigenstate decoupling system (Fig. 5e,g) and the ordinary crystal system (Fig. 5f,h). As shown in 
almost flat amplitude and phase distributions in the eigenstate decoupling system, the proposed system preserves 
all of the spatial information of the incident wave regardless of the detailed composition of the decoupled region, 
realizing the complete decoupling condition.

Discussion
In summary, we proposed a new class of decoupling techniques for photonic integrated circuits, the macroscopic 
‘decoupling’ of optical elements, by exploiting the system eigenstate with destructive interference regions. Based 
on the statistical analysis, we proved that the eigenstate decoupling method stably hides optical elements inside 
the coupled system, simultaneously allowing coherent wave transport with desired spatial profiles. Distinct from 
previous achievements in symmetry-based cloaking13–16, we also demonstrated the decoupling in disordered 
systems with the suppressed Anderson localization, as an example of the designer disorder24–31. Although we 
demonstrated the target decoupling in the THz platform utilizing subwavelength TiO2 resonators, the concept 
can be directly extended to visible or infrared regimes, when unit optical elements of the system satisfy the weak 
coupling condition20.

The eigenstate decoupling method provides excellent flexibility to the waveform molding in coupled optical 
systems, with the control of transport region elements. Likewise the global scattering increase in spectral domain 
as observed in most of cloaking structures32 (except few extreme cases such as diamagnetic and superconducting 
cloaks32), the bandwidth problem in our system is the engineering subject which can be improved by alleviating 
the strict decoupling condition. Our approach, separating target elements from the other region in coupling net-
works using moderate material/structural parameters, also possesses the link with the selective target control33–35 
in network theory. From the deterministic operation based on the designer eigenstate, the applications exploiting 
multimodal36, 37 or continuous38–40 non-Hermitian potentials can also be envisaged for the defect-resistant reali-
zation of lasers or absorbers.
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