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Plant by-products obtained from agro-industrial processes require valorisation to

demonstrate their potential for enhancing animal health, meat production, and shelf

life extension. One example is the fast-growing hemp industry, which produces seeds,

leaves, seed oil, and cake. Studies on the nutritional value of hempseed cake have

shown it can be a valuable source of protein in ruminant diets. However, there is

limited documentation on the bioavailability and bioefficacy of hemp phytochemicals for

improving ruminant health, production, and extending meat shelf life. The current review

provides an overview of existing information on nutrient and phytochemical composition

of hemp by-products, their bioavailability, and bioefficacy, and explores current limitations

and prospects regarding their valorisation.
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INTRODUCTION

Research into novel and underutilized feed resources for ruminant production and shelf life
enhancement is paramount to sustainability of livestock and meat industries (1). Among the novel
alternatives to conventional feed resources are hemp (Cannabis sativa L.) by-products (i.e., seed,
oil, oilseed cake, hulls, and leaves) (2, 3). Growing legalization and demand are anticipated to
increase global production of hemp and its by-products (4, 5). As a consequence, the feed and
meat industries could benefit provided hemp by-products can be valorised as feed ingredients and
biopreservatives (Figure 1).

There are few reports on incorporation of hemp by-products into ruminant diets (6, 7). In
Europe, inclusion of hempseed cake (HSC) has been restricted to <50 g/kg DM in ruminant
diets (2). In other jurisdictions such as North America, feeding of hemp by-products awaits
approval and will be done based on applications for individual by-products (8, 9). This is partly
because of limited data on the bioavailability of dominant bioactive compounds of Cannabis
species (i.e., tetrahydrocannabinol, THC, and cannabidiol, CBD) in ruminant animals (2) and the
known psychoactive effects of THC in humans (10). In addition, there is limited knowledge on
the bio-efficacy of these and other bio-actives in a meat matrix (2). The present review explores
the composition, bioavailability and bioefficacy of hemp by-product nutrients and bioactives in
ruminant meat production and preservation. Challenges and opportunities for valorisation of
hemp by-products for meat production and shelf life extension are also discussed.
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FIGURE 1 | Valorisation of hemp by-products nutrients and bioactive compounds in ruminants.

TABLE 1 | Global production of hemp and its by-products.

Production (tons)

Country Area

harvested

(ha)

Seed Oil* Cake* Leaf meal**

France 16,511 125,362 43,877 81,485 170,063

Russian 4,691 2,117 741 1,376 48,317

China 4,342 11,822 4,138 7,684 44,723

Chile 2,660 1,533 537 996 27,398

Hungary 1,606 390 137 254 16,542

Ukraine 1,133 596 209 387 11,670

Romania 799 84 29 55 8,230

Iran 193 198 69 129 1,988

Spain 140 750 263 488 1,442

Poland 59 28 10 18 608

Turkey 6 3 1.05 1.95 61.8

*Oil was estimated at 35% seed content and resultant cake (11).

**Leaf meal was estimated at 10.3 tons/ha (12).

Source: (13).

GLOBAL HEMP PRODUCTION AND
UTILIZATION

Globally, the FAO estimates of 32 square kilometers (km2) of
hemp are harvested including 143 metric tons (MT) hempseed,

50 MT seed oil, 93 MT cake, and 331 MT leaves are produced
mainly from France, China, and Chile (Table 1), but this does
not include Canada or the USA, which are also major producers
with an estimated 315 km2 (23) and 1,160 km2 (24) under
cultivation, respectively. Overall, scant data exists on hemp or by-
products production, especially in Africa. Hemp is a multifaceted
plant commonly cultivated for fiber and oil, although other
components of the plant might have beneficial uses as medicine
(25, 26). Primary uses of hemp are determined by variety and
region of origin (4). The majority of hemp varieties are cultivated
for seed production, of which, hempseed oil is the primary
valuable output (14, 15). On average, hempseed has 30–35%
seed oil, that is extracted only by cold pressing (11), with HSC
being the main solid by-product of oil extraction. Cold-press
method preserves physical and chemical quality of oil (15). A
small proportion (i.e., 0.4–10%) of the oil is retained in HSC after
extraction (15). Hemp stems are utilized in the textile, livestock
(i.e., beddings), and automotive industries as they utilize a large
amount of fiber (11, 27). Hemp leaves and inflorescences are
sources of bioactive compounds used in pharmaceuticals and
human foods (11, 28).

Hemp varieties are rarely used for medicinal purposes
because they have low THC content (<0.2%) (11). Hemp
production is low as it is often confused with marijuana which
is illegal to cultivate in most countries (14, 15). However, many
countries have legalized the commercial production of hemp
and utilization of its by-products (26). For example, South
Africa recently passed a law to license cultivation and processing
of hempseed using varieties with <0.001% THC (29). The
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liberalization of hemp legalization by many countries is likely
to increase oil production, and consequent utilization of its by-
products (i.e., HSC and leaf meals). This increase in oil, HSC,
and leaf meal could potentially be beneficial to hemp processing,
animal feed and meat industries. Currently, hemp by-products
are not recognized as commercial livestock feed ingredients in
most countries, even though some have come up with inclusion
guidelines for livestock diets (2). Generally, limited literature
exists on the utilization of hemp by-products except for the oil
(11, 30). The value of hemp by-products as animal feed lies in the
nutritional and phytochemical contents of HSC, especially when
leaf production is limited.

NUTRIENT COMPOSITION OF HEMP
BY-PRODUCTS

Chemical composition of hemp by-products is largely influenced
by variety, pressing, and seed treatment methods (15, 31).
However, hemp by-product chemical composition is generally
similar to soybean meal (SBM) except for hurds, which contains
extremely low CP and ether extract (EE; Table 2). The CP
content of hemp by-products is greater than the endorsed dietary
requirements for maintenance (60–110 g/kg CP DM) and growth
(120–180 g/kg CP DM) of ruminants (32, 33, 36). Hemp by-
products have a well-balanced amino acid profile comparable
to SBM, with tryptophan as a limiting amino acid (Table 2).
However, hemp by-products are deficient in growth-limiting

amino acids including methionine (1.8 and 2.0% CP) and lysine
(6.4 and 6.8% CP) as per the body requirements for goats and
cattle, respectively (36, 37). The EE, neutral detergent fiber (NDF)
and acid detergent fiber (ADF) of hempseed, cake, and hulls are
greater than SBM (Table 2). The difference in EE content of hemp
by-products and SBM could be attributed to the oil extraction
method. Solvent extraction has greater oil extraction efficiency
than cold press which leaves about 7% of the oil in the cake (38).
The EE value of hempseed, cake and hulls is thus about 2.5 times
greater than the EE (<50 g/kg DM) recommended for optimal
ruminant production (39). This high EE content might affect the
inclusion level of hemp by-products in ruminant diets.

High inclusion levels of hemp by-products have been
recommended for ruminants based on NDF content (2). More
so, hemp by-products are within the recommended dietary NDF
content of 150–300 g/kg DM required for optimal ruminant
production (40, 41). Lignin content of whole hempseed and HSC
has been reported to be 112–117 g/kg DM (16, 42). NRC (36)
suggested that ruminant dietary lignin content above 40 g/kg DM
will probably decrease DM intake and digestibility. High lignin
content of HSC could be attributed to the hull (30–46% of seed)
remains in the cake during oil extraction (4, 34, 38). More so,
hulls contain the highest (65%) fiber portion of the hempseed
(5, 15). In hempseed, lignin is only found in the hulls (4).

Metabolisable energy (ME) of HSC ranges from 9.21 to 13.01
MJ/kg DM (6, 17). These values exceed the average requirements
for maintenance (i.e., 0.424, 0.401, and 0.497 MJ ME/kg BW0.75)
and growth (0.03, 0.015, and 0.016 MJ ME/g of weight gain) for

TABLE 2 | Chemical (g/kg DM, Mean ± SD) and amino acid (%, Mean ± SD) composition of hemp by-products.

Chemical composition Hemp by-product Soybean

meal

Seed Cake Hulls Hurds Leaves

DM 928 ± 16.52 929 ± 16.1 949 ± 18 963 931 906 ± 9.9

CP 260 ± 48.64 341 ± 50.4 127 ± 37 32.0 238 503 ± 18.4

EE 290 ± 111.24 116 ± 15.5 103 ± 58 0.08 200 40 ± 15.9

NDF 328 ± 28.92 395 ± 40.7 649 ± 93 900 – 125 ± 17.6

ADF 230 ± 15.72 275 ± 19.3 502 ± 61 789 – 89 ± 10.2

Ash 57 ± 10.85 68 ± 3.44 39 ± 60 – 112 69 ± 5.5

Amino acid

Arginine 2.42 ± 0.26 4.11 ± 0.69 0.94 ± 0.80 – 4.32 3.63 ± 0.21

Cystine 0.44 ± 0.06 0.74 ± 0.15 0.18 ± 0.06 – 0.79 0.71 ± 0.06

Histidine 0.58 ± 0.06 0.98 ± 0.19 0.25 ± 0.15 – 2.21 1.27 ± 0.08

Isoleucine 0.90 ± 0.11 1.52 ± 0.23 0.39 ± 0.14 – 3.23 2.47 ± 0.45

Leucine 1.58 ± 0.16 2.47 ± 0.23 0.71 ± 0.27 – 7.1 3.79 ± 0.18

Lysine 0.91 ± 0.09 1.39 ± 0.27 0.33 ± 0.16 – 3.84 3.11 ± 0.16

Methionine 0.60 ± 0.08 0.93 ± 0.25 0.18 ± 0.12 – 0.89 0.65 ± 0.06

Phenylalanine 1.09 ± 0.16 1.70 ± 0.30 0.53 ± 0.09 – 3.94 2.68 ± 0.46

Threonine 1.07 ± 0.22 1.42 ± 0.23 0.36 ± 0.13 – 2.26 1.96 ± 0.10

Tryptophan 0.24 ± 0.06 0.41 ± 0.10 0.06 ± 0.04 – – 0.71 ± 0.06

Valine 1.21 ± 0.14 2.01 ± 0.30 0.60 ± 0.31 – 3.91 2.46 ± 0.30

Sources: (2, 3, 6, 7, 14–22).
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goats, sheep, and cattle, respectively (32, 36) when HSC fed at 2%
BW, hence, HSC could serve well as a ruminant feedstuff. The
mineral elements of hemp by-products are lower than ruminant
maintenance requirements though the whole seed meets micro-
mineral requirements (Table 3). Although their mineral content
is not well-researched, all hemp by-products except hurds can be
used as potential feed ingredients in ruminant diets.

PHYTOCHEMICAL COMPOSITION OF
HEMP BY-PRODUCTS

Hemp has a total of 538 identified bioactive compounds
dominated by terpenoids (>120), cannabinoids (>70) and
polyphenols (11, 36, 43). Resin glands on trichomes or
head cells of glandular hair are major production sites for
terpenoids, cannabinoids, and polyphenols (26, 28). Terpenoids,
cannabinoids, polyphenols, and fatty acids (FA) comprise classes
of bioactive compounds of great interest in hempseed and its by-
products due to their plethora of health-promoting properties
(11, 43). Although cannabinoids including CBD and THC are
not synthesized in seeds, they are transferred from resins, leaves
and flowers into oil and oilseed cake during oil extraction
(11, 27). Hence, cleaning and de-hulling of seeds are executed
before oil extraction, to minimize cannabinoids transfer into
oilseed by-products (11). Palade et al. (44) found traces of
cannabinoids (i.e., 164.4mg catechin equivalents (CE)/100 g of
feed) in pig diets formulated with whole hempseed. Higher
content of cannabinoids in hemp seed extracts is, therefore, a sign
of contamination or use of medicinal cannabis varieties (27).

Other phytochemical constituents of hemp by-products
include condensed tannins (CT), alkaloids, phenols,
lignanamides, and tocopherols (35, 45). The CT are low in
hempseed and HSC (Table 4). Hemp leaves might contain higher
contents of CT since the concentration of bioactive compounds

in hemp plant chronologically decreases from flowers, leaves,
stems, seed to the roots (27). However, there is no available
literature on CT of hemp leaves. Turner et al. (55) suggested
that hempseed by-products contain alkaloids and this was
confirmed by Yan et al. (56), but their contents have not yet
been determined.

Hempseed is a good source of lignan (320mg/kg DM) (57, 58).
It is dominated by lignanamides (cannabisin A) while HSC and
inflorescences are dominated by flavanols (i.e., catechin;Table 4).
More so, 99% of lignans are found in hempseed hulls, hence,
dehulled hempseeds and the resultant cake have little lignan
(57, 59). Syringaresinol content of hempseed hull (280 mg/kg
DM) is the highest of any dietary source (57). Since HSC is
produced from hulled seeds, its lignan content is expected to be
low. However, there is limited literature on the lignan contents of
HSC and leaves.

The tocopherol profile of hemp by-products is dominated
by γ-tocopherol (Table 4), which is the tocopherol with the
strongest antioxidant activity, but α-tocopherol is regarded as
the most vital form (42, 60, 61). The α-tocopherol content of
hemp by-products exceed dietary requirements for physiological
function of growing small ruminants (10–20 mg/kg DM) and
cattle (15–60 mg/kg) (33, 62), but below values (270–287 mg/kg)
required to extend meat shelf life (63, 64).

Fatty acids in hempseed, oil, and cake contain 65–80% PUFA
with the major FAs being linoleic (18:2 n-6) followed by α-
linolenic acid (18:3 n-3) and oleic acid (C18:1 n-9; Table 4).
This makes hempseed and its by-products an excellent source
of essential fatty acids, with an omega 6 to omega 3 fatty acid
ratio of ∼3.3:1, which is similar to canola oil while providing
a more healthful balance than soybean oil (7:1). Phytate (22.5
mg/g) and glucosinolates (3.8 µmol/g) are the most abundant
anti-nutritional factors in HSC (18). However, at these low
concentrations, phytate, and glucosinolates are unlikely to have
adverse effects on ruminants (65, 66). Beneficial nutritional and

TABLE 3 | Hemp by-products mineral content and ruminant requirements (Mean ± SD).

Hempseed by-product Nutrient requirements

Minerals Seed Oil Cake Small ruminants Cattle

Macro (g/kg DM)

Na – 0.09 0.09 0.85 ± 0.12 1.00 ± 0.28

Ca 3.1 ± 2.3 0.05 1.91 4.20 ± 3.96 6.50 ± 6.36

P – – 28.0 1.95 ± 1.48 2.40 ± 1.98

Mg 3.6 ± 0.8 0.20 2.31 1.05 ± 0.21 1.75 ± 0.64

K 10.6 ± 6.6 0.02 5.06 5.00 ± 0.00 5.00 ± 0.00

Micro (mg/kg DM)

Fe 142 ± 22.0 0.002 0.152 40.0 ± 0.00 40.0 ± 0.00

Cu 11.4 ± 1.6 0.001 0.012 9.00 ± 7.07 9.00 ± 7.07

Zn 50.0 ± 7.0 0.0009 0.055 14.5 ± 7.78 14.5 ± 7.78

Mn 100 ± 8.0 0.0008 0.095 22.5 ± 3.54 22.5 ± 3.54

Co 0.00003 0.00006 0.00003 0.115 ± 0.05 0.115 ± 0.05

Sources: (16, 31–35).
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TABLE 4 | Bioactive compounds and in vitro bioactivity profile of hemp by-products (Means ± SD).

Hemp by-product

Seed Oil Cake Inflorescence

Phenolics (mg/kg DM)

Condensed tannins 1.10 ± 0.04 – 1.64 ± 1.87

Catechin – 498 ± 35.9 0.05 ± 0.03 51.1 ± 48.4

N-trans-caffeoyltyramine 490 ± 484 152 ± 11.2 – 38.2 ± 53.8

p-hydroxybenzoic acid 21.0 ± 12.7 78.6 ± 8.00 0.002 ± 0.001 –

Cannabisin A 1,051 ± 764 – – 1.44 ± 2.02

Cannabisin B – 64.9 ± 1.94 – 0.45 ± 0.07

Cannabisin C – – – 0.19 ± 0.27

ferulic acid – 47.4 ± 5.37 – 19.3 ± 23.1

Protocatechuic acid 10.0 ± 8.49 28.2 ± 2.47 – –

TPC (mg GAE/g) 26.2 ± 36.0 1.23 ± 0.69 1.35 ± 1.87 31.5 ± 29.7

Tocopherols (mg/100g)

γ-tocopherol 1,239 ± 1,076 516 ± 400 358 ± 28.9 –

α-tocopherol 44.1 ± 3.54 16.1 ± 5.33 29.7 ± 2.76 –

δ-tocopherol 281 ± 427 12.0 ± 4.00 11.3 ± 13.6 –

Fatty acid (% Total FA)

Palmitic acid 6.19 ± 2.12 6.44 ± 1.99 7.54 ± 1.02 –

Stearic acid 2.61 ± 0.89 2.75 ± 0.84 3.21 ± 0.55 –

Oleic acid 11.6 ± 4.49 12.2 ± 4.49 12.7 ± 0.39 –

Linoleic acid 48.8 ± 17.6 50.2 ± 17.0 54.6 ± 1.56 –

γ-linolenic 2.61 ± 1.14 2.60 ± 1.16 2.97 ± 0.19 –

α-linolenic 14.9 ± 6.35 15.2 ± 6.47 17.2 ± 2.33 –

Total polyunsaturated fatty acid 66.7 ± 24.5 68.3 ± 22.7 75.4 ± 6.61 –

Antioxidant capacity

DPPH (% inhibition) 45.8 ± 8.13 46.8 ± 0.00 31.1 ± 32.4 52.6 ± 35.4

ORAC (µmol TE/g) 127 ± 5.0 – 28.2 ± 6.19 –

TPC, total phenolic content; DPPH, 1,1-diphenyl-2-picrylhydrazyl; ORAC, oxygen radical absorbance capacity; GAE, gallic acid equivalent; TE, trolox equivalent.

Sources: (3, 18, 35, 45–54).

phytochemical profiles of hemp by-products highlighted above
provide a possible avenue for their inclusion in ruminant diets as
protein sources, antioxidants and antimicrobials.

IN VITRO BIOACTIVITY OF
PHYTOCHEMICALS IN HEMP
BY-PRODUCTS

Antioxidant Activity
Hemp by-products contain potent antioxidants (Table 4),
which decreases from flowers to leaves (27). The antioxidant
capacity of hemp by-products, as measured by 1,1-diphenyl-2-
picrylhydrazyl (DPPH) values (Table 4), are comparable to α-
tocopherol (33.3–70%), a potent natural antioxidant commonly
used commercially (67, 68). Hemp by-product oxygen radical
absorbance capacity (ORAC) values are, however, lower than α-
tocopherol (1,293µm TE/g) (69), and ORAC values are thought

to be more reflective of antioxidant capacity in biological
systems (70).

Phenol amides (i.e., N-trans-caffeoyl-tyramine), lignanamides
(i.e., cannabisin A, B, and C) (46, 71), tocopherols (42, 61)
and CBD (11) are the major elements contributing to the
antioxidant capacity of hempseed by-products. Chen et al. (71)
and Irakli et al. (46) narrowed this list to N-trans-caffeoyl-
tyramine, cannabisin A, B, and C as the major antioxidant
phenolic compounds of hemp. Furthermore, Izzo et al. (45)
confirmed that inflorescent extracts from hemp varieties with
a high content of N-trans-caffeoyl-tyramine, cannabisin A, and
B were more potent antioxidants. Overall, the current review
highlights that hemp by-products are a rich and diverse source
of potent antioxidants. However, there are still gaps in how this
antioxidant potential may influence animal production, meat
quality, shelf life, and sensory attributes. Further research is,
therefore, required to ascertain their potency and mechanism of
action during production, processing, storage/aging, display, and
cooking through to consumption.
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Antimicrobial Activity
Essential oil extracts from the whole hemp plant material exhibit
antimicrobial activity in most bacterial habitats from human,
animal, and food sources, but are active against fungi (25,
72). Hempseed extracts have antimicrobial inhibitory effect on
pathogenic bacterial strains of human origin (73). The highest
hemp antibacterial activity is found in inflorescences (26, 74).
Inflorescences are sites for the production of majority of bioactive
compounds of hemp as they have resin glands (26, 28). With
low THC and CBD contents in hempseed, antibacterial capacity
of hempseed by-products could be attributed to terpenes,
polyphenols and alkaloids. Terpinolene has been reported to be
the main bioactive compound responsible for bacterial inhibitory
activity of hemp inflorescence essential oil (74). Just like other
monoterpenes, terpinolene disrupts bacterial cell membrane
and wall integrity (75, 76). Generally, monoterpenes interact
with bacterial cell membrane phospholipids, which results in
increased permeability and leakage of cell content and ultimately
cell death (75, 76). More scientific research into additive,
synergic, and antagonistic antimicrobial effects of bioactive
compounds in hemp by-products will be important to promote
their use in the feed and meat industries.

Numerous studies have reported that polyphenols and
alkaloids exert antibacterial properties through binding to the
cell membrane hence inhibiting cell functions (77, 78). Overall,
current literature shows that hemp whole plant essential oil
extracts have good antimicrobial activity. However, to the
authors’ knowledge, no literature exists on the antimicrobial
properties of various bioactive compounds found in hemp by-
products and merits further investigation.

BIOAVAILABILITY OF BIOACTIVE
COMPOUNDS OF HEMP BY-PRODUCTS IN
RUMINANTS

Information on bioavailability of bioactive compounds is
paramount in understanding their intake, digestion, absorption,
metabolism, and excretion (80). That will, in turn, enable
traceability of bioactive compounds and their derivatives in
animal products (i.e., meat and milk). Bioavailability entails
describing or quantifying the specific nutrient or bioactive
available at a target organ/blood circulatory system level (81, 82).
Bioavailability is an integral process that has five steps which
include release from feed matrix in the gastrointestinal tract
(GIT) (i.e., liberation), absorption, distribution, metabolism,
and excretion.

To date, there is no literature on how digestion of hemp
by-products in ruminants affects bioavailability of terpenes,
cannabinoids, lignans, and polyphenols (Figure 1). Overall,
terpenes and CBD are volatile compounds easily released from
the feed matrix, absorbed and excreted unchanged (10, 83).
Terpenes digestion and absorption begins during mastication
and rumination and continues throughout the GIT (83).
Glucuride conjugates of CBD were detected in urine and feces
as the second most abundant component next to intact CBD
in animal studies (10). These findings could imply that their

metabolism during and/after uptake follows conjugation (phase
II) processing with hydrophilic compounds such as glycine and
glucuronic acid in the liver (28, 83). Less of phase II reaction
of substances might occur in the gut or blood, but the majority
occurs in the liver and bile due to abundance of enzymes involved
in this reaction (28).

Metabolism pathways for terpenes and CBD are believed to be
the same since the two compounds and their derivatives possess
similar physical and chemical properties (27, 84). Previous
studies demonstrated the transfer of dietary terpenes to ruminant
meat (85–87). Since terpenes are fat-soluble, adipose tissue is
the main depot assessed when studying between-diet effects
in ruminants (87, 88). Cannabinoid conjugates were observed
in major tissues of Large White pigs injected with THC (200
µg/kg) (84). Cannabinoids and their derivatives have also been
detected in milk, feces, and urine of lactating ewes injected with
THC as well as in fecal and urine samples of suckling lambs
(89). Some studies concluded that cannabinoids are eliminated
from the body after a short period (< 48 h), even with chronic
exposure (10, 84).

Kuhnle et al. (90) reported lignans in beef (6–16 µg/100 g
wet weight) and lamb (4–17 µg/100 g wet weight). Ruminal
biohydrogenation leads to the conversion of dietary lignans to
enterolactones, which are absorbed from the gut and deposited
in tissues including milk (91) and meat (90). Manipulation of
dietary phenolic compounds has been confirmed to change their
contents in meat (92, 93). However, not all phenolics found in
the diet are incorporated in similar amounts in meat. Moñino
et al. (92) observed that among the 11 major phenols identified in
rosemary containing diets fed to lambs, only 3 (rosmarinic acid,
carnosol, and carnosic acid) significantly increased with dietary
inclusion levels of rosemary. Some of the phenolics in the diet are
lost in feces or biotransformed before urinary excretion (92, 94).

The α-tocopherol content of meat from steers fed HSC
diets was reported to be 2.55 mg/100 g lipid (95). Dietary
α-tocopherols are non-degradable in the rumen (96), hence,
availed in the small intestines for absorption and assimilation
into adipose tissue and cell membranes to exert antioxidant
activities (97, 98). Overall, bioefficacy of bioactive compounds
is closely related to the amount released from the feed matrix,
absorbed, and assimilated into tissues (80, 99). In this case,
response/efficacy of bioactive compounds in meat derived
from ruminants fed hemp by-products diets is closely related
to their bioavailability. Understanding bioavailability of hemp
by-products bioactive compounds is, therefore, essential in
establishing their optimum inclusion levels in ruminant diets that
efficiently improve meat production and quality.

EFFECT OF HEMP BY-PRODUCTS ON
RUMINANT NUTRITION

Nutrient Intake
A survey by Bamikole and Ikhatua (100) indicates hemp leaves
have been fed as an appetite stimulant in small ruminants.
Feeding HSC either had neutral or positive effects on dry
matter intake (DMI; Table 5). For example, feeding 1 kg or 1.4
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TABLE 5 | Nutrient intake (Mean ± SD) of calves, steers and lambs fed hempseed cake, soybean, or canola meal diets.

Calves Steers Lambs

Nutrient intake (kg DM) HSC SBM SEM HSC SBM SEM HSC CM SEM

DM 5.00 4.55 0.11 11.2 10.6 0.25 1.46 1.34 0.7

NDF 1.68 1.28 0.02 4.17 3.7 0.09 – – –

Starch 1.43 1.55 0.02 3.36 3.47 0.09 0.38 0.39 0.02

CP 0.83 0.64 0.01 1.43 1.24 0.02 0.14 0.12 0.007

Fat 0.16 0.09 0 0.26 0.18 0.4 – – –

ME* 58.6 53.7 1.25 134 127 3.1 11.3 11.6 0.45

*MJ/kg DM; Calves, 6–8 weeks of age weighing 96 ± 21 kg; Steers, 13–15 months of age weighing 365 ± 28 kg; HSC, hempseed cake; SBM, soybean meal; CM, canola meal; DM,

dry matter; NDF, neutral detergent fiber; CP, crude protein; ME, metabolisable energy; SEM, Standard error of mean.

Source: (6, 7, 79).

kg/animal/day of HSC resulted in an increase in DMI for dairy
calves, but not for steers (Table 5). The DMI increase for the
dairy calves was attributed to reduced NDF rumen fill in HSC
compared to SBM. Mustafa et al. (7) reported no differences
in DMI of lambs fed diets containing 200 g HSC/kg DM, while
Karlsson et al. (17) and Karlsson and Martinsson (79) included
HSC in dairy cows (up to 320 g/kg DM) and lambs (218 g/kg DM)
diets and recorded an increase in DMI. These inconsistences in
DMI could be attributed to different inclusion levels, differences
in composition of basal diets and animal species used across
studies and deserve further investigation.

Inclusion of HSC (320 g/kg DM) in ruminant diets increased
NDF and CP intake (6, 7, 17). It is of importance to note (79)
reported that lambs fed HSC diet were able to attain required
CP intake of 127 g/d to attain an average daily gain (ADG) of
250 g/d (32). It is not immediately clear how HSC and other
hemp by-products influence nutrient intake when fed solely
or in combination with other protein sources. This creates an
opportunity for further studies on inclusion of hemp by-products
in ruminant diets.

Nutrient Digestibility
Hempseed cake has a low effective degradability of DM (EDDM)
when compared to canola meal and SBM (Table 6). Dry
matter digestibility is likely to be lesser for HSC vs. canola
meal and SBM. However, HSC has been reported to increase
rumen retention time and improve the rumen environment
for microbial degradation as evidenced by fecal consistency
scores (6). The CP solubility and degradability of HSC is low
compared to canola meal and/or SBM (Table 6). However,
potentially degradable protein portion of HSC is higher than
canola meal and SBM. The aforementioned aspects result in
increased ruminal passage of undegraded dietary protein (UDP).
The UDP of HSC is highly digestible in the duodenum as
compared to canola meal (7). Additionally, UDP and intestinal
digestibility of HSC can be increased by moist heat treatment up
to 130◦C (109).

Digestibility coefficients of HSC are comparable to SBM
and canola meal (Table 6). Hempseed cake has low NDF
degradability (in sacco) because of its high indigestible NDF
(iNDF; 409 g/kg DM) fraction (17, 110) which might be different

in vivo. Although HSC has high EE (Table 2), which contributes
to ME, fermentable energy to facilitate microbial growth is
derived from fermentable carbohydrates (111).

Overall, hempseed oil has lower ruminal fermentation
parameters compared to soybean and canola oil (Table 6).
Total volatile fatty acids (VFA) can be as high as 200mM
just after feeding or decrease as low as 30mM, however, its
normal range is 70–120mM (112). Low total VFA (37mM)
from hempseed oil could be an indicator of depressed rumen
formation. Hempseed oil has a high PUFA content (Table 4),
whichmay have an inhibitory effect on ruminal fibrolytic bacteria
(113, 114). Hempseed oil reduces ruminal acetate production,
which is generally an indicator of decreased fiber digestibility
(101). Unaffected propionate production is an indicator of little
or no influence on carbohydrate degradation (101). Hempseed
cake has potential to maintain nutrient digestibility when used
to replace other high-protein feedstuffs while hempseed oil
depresses ruminal fermentation when added at levels <3.0 g/kg
DM (101).

Nitrogen and Methane Emissions
To the authors’ knowledge, there are only two studies that
evaluated in vitro ruminal nitrogen and methane production
inhibition of hempseed by-products (101, 115). Findings of
these studies showed that both whole hempseed and oil had
neutral effects on ruminal ammonia-nitrogen production.Whole
hempseed was 8% more effective at reducing methane than
linseed but comparable to coconut oil (115). Embaby et al.
(101) recorded a 10% decrease in methane production for
hempseed oil compared to corn oil. Methane production
reduction is attributed to high PUFA content in hempseed
oil, which suppresses protozoa and acts as hydrogen sink
through biohydrogenation (115, 116), with α-linolenic acid
being a more potent anti-methanogen than linoleic acid (117).
Whole hempseed is, however, more effective than oil at
inhibiting methanogens since it has more terpenes, polyphenols
and lignans, which are more toxic to methanogens than
PUFA (118, 119). These compounds accumulate in cytoplasmic
membranes as they are lipophilic thus disrupting methanogen
cell membranes (118).
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TABLE 6 | Ruminal DM and CP degradation kinetics (Mean ± SD) of common oilseed by-products.

Hempseed cake Soybean meal Canola meal

Dry matter (DM)

Soluble (g/kg DM) 82.4 ± 3.36 307 ± 25.1 253 ± 34.6

Degradable (g/kg DM) 506 ± 6.21 684 ± 17.4 578 ± 21.9

Degradation rate (%/h) 2.40 ± 0.08 4.93 ± 1.91 5.13 ± 1.03

Effective degradability (g/kg)a 248 ± 2.81 665 ± 17.6 528 ± 49.6

Crude protein (CP)

Soluble (g/kg CP) 65.3 ± 6.28 206 ± 48.6 195 ± 72.3

Degradable (g/kg CP) 901 ± 3.33 783 ± 50.6 715 ± 155

Degradation rate (%/h) 2.90 ± 0.17 4.77 ± 1.83 5.13 ± 0.81

Effective degradability (g/kg)a 394 ± 6.26 610 ± 30.6 525 ± 43.6

Rumen-undegraded CP (g/kg CP) 774 ± 9.47 415 ± 22.3 500 ± 36.1

Intestinally available CP (g/kg CP) 654 ± 11.9 – 342 ± 11.9

Total available CP (g/kg CP) 863 ± 8.45 – 869 ± 8.45

Digestibility coefficient (g/kg)

Dry matter 640 ± 18.8 691 ± 6.35 683 ± 36.6

Organic matter 665 ± 18.3 707 ± 4.04 704 ± 28.2

Neutral detergent fiber 457 ± 21.2 460 ± 20.1 471 ± 28.7

Acid detergent fiber 330 ± 25.4 424 ± 28.3 352 ± 25.4

Crude protein 708 ± 8.61 689 ± 36.4 689 ± 0.71

Ruminal fermentation parameters Hempseed oil Soybean oil Canola oil

pH 6.06 ± 0.12 6.36 ± 0.62 6.82 ± 0.39

NH3-N (mg/dL) 7.96 ± 0.84 11.8 ± 1.41 11.0 ± 1.46

Total VFA (mM) 37.4 ± 2.70 70.0 ± 62.3 78.7 ± 0.37

Acetate (mM) 14.8 ± 1.04 43.2 ± 33.4 42.3 ± 4.74

Propionate (mM) 10.9 ± 0.86 16.7 ± 17.6 17.0 ± 6.53

Butyrate (mM) 9.16 ± 0.56 9.51 ± 10.7 4.96 ± 3.28

Acetate: propionate 0.76 ± 0.10 3.45 ± 1.48 2.90 ± 1.01

aCalculated at a rumen flow rate of 5%/h.

Sources: (7, 20, 101–108).

Although methane production is important in maintaining
ruminal environment redox balance by providing a pathway
for the excess pyruvate (112), it decreases the amount of ME
obtained from a diet (69), hence, increasing energy required
for meat production. The decrease in the concentration of
methane produced may reduce atmospheric greenhouse gases
and increase feed utilization efficiency as its emissions represent
about 10% of gross energy loss from feed intake (120). Thus,
reduction in methane emissions might maintain or improve
animal performance by conserving energy which is redirected
to animal growth (1). The limited available in vivo studies
on antimethogenic effects of hemp by-products on animal
performance warrants further research.

Nutritional Disorders and Gut Health
Terpenes in hemp by-products have antibacterial properties (74).
Specifically, terpinolene and oxygenated monoterpenes have
been reported to strongly suppress rumen microbial activity in in

vitro studies (121). Of importance, ruminal antimicrobial effects
of terpenes in vivo might be lower than in vitro as terpenes are
easily absorbed along the entire GIT reducing their concentration
(83). Inhibitory effect of terpenes on undesirable microbial
activity is useful in reducing the rate of ruminal fermentation and
degradation to avoid nutritional disorders such as bloat, acidosis,
and ruminal parakeratosis (120).

Levels of CT in hemp by-products are below recommended
(20–50 g CT/kg DM) values reported to prevent bloat, acidosis,
and parakeratosis (122, 123), except for leaves. CT bind to dietary
protein forming complexes thereby reducing protein solubility,
hence decreasing the chance of developing a stable rumen foam
(123, 124). Additionally, CT have a bactericidal effect on bloat
causing bacteria such as Streptococcus bovis, which produces a
dextran slime that increases rumen fluid viscosity, hence, bloating
(123, 124). CT exert bactericidal effects by binding to plant
protein, forming a CT-bacteria cell wall interaction, inhibiting
carbohydrate fermentation and proteolytic rumen bacteria (123).
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In turn, CT can also improve conditions for cellulolytic bacteria,
and avoid acidosis and parakeratosis (123, 125).

Condensed tannins in hempseed by-products have the
potential for suppressing gastrointestinal tract (GIT) nematodes
(123, 124, 126) by inhibiting development of helminth eggs,
reducing larvae, and adult motility as well as increasing the host
animal’s nutrient supply (123, 126). In that regard, hempseed
by-products have the potential of improving gut health and
preventing nutritional disorders among ruminants.

GROWTH PERFORMANCE, CARCASS AND
PHYSICOCHEMICAL MEAT QUALITY
ATTRIBUTES OF RUMINANTS FED HEMP
BY-PRODUCTS

Karlsson and Martinsson (79) observed low growth performance
of lambs fed HSC compared to canola meal. For this study,
lambs on the HSC diet had a high CP intake with a low ME
intake (Table 7). A ME and CP intake balance are required for
the animal to gain weight (33). Excess CP intake creates an
excretion burden, thereby affecting ADG and final live weight
(32, 33). However, feeding whole hempseed to steers (19) or
HSC to growing cattle (6), and dairy cows (17) did not affect
final live weight or ADG. Lack of differences in animal growth
when feeding HSC or SBM/canola meal to ruminants could be
attributed to their similarity in chemical composition, nutrient
intake and digestibility (Tables 2, 3).

Overall, feeding whole hempseed (14% as fed) and HSC (1.4
kg/animal/day) had neutral effects on carcass and meat quality
traits in feedlot steers (19, 95) and lambs (127). These findings are
consistent with nutrient intake, digestibility, and animal growth
data reported for the hempseed by-products in the current
review. Similarly, feeding HSC resulted in comparable FA profiles
with SBM and canola meal for beef and lamb meat, which was
dominated by MUFA (oleic acid; C18:1) (Table 8) and these
similarities are related to their dietary FA composition. Overall,
HSC has comparable effects compared to SBM on ruminant
growth performance, carcass, and physicochemical meat quality
attributes. However, no information is available on volatile
compounds or sensory attributes of meat from ruminants fed
hemp by-products, and this requires investigation.

AGING-PROTEOME CHANGES AND
SHELF LIFE OF MEAT FROM RUMINANTS
FED HEMP BY-PRODUCTS

Proteomics is a relatively new technique in meat science
that provides an avenue for understanding meat tenderness
and color stability with respect to proteins involved at a
molecular basis (128, 129). The technique does not only enable
identification of myofibrillar proteins, protein, and glycolyticc
enzymes involved in meat tenderness and color stability, but also
allows establishment of the relationship between these proteins
and bioefficacy of meat bioactive compounds (128, 129). Nassu
et al. (130), for example, found that high muscle α-tocopherol
content protects meat discoloration at longer aging days (21 d),
but does not affect meat tenderness. However, no proteomics
was done in this study. The relationships between major meat
bioactive compounds in hemp by-products and meat aging have
not been investigated. Understanding how these antioxidant
bioactive compounds interact with muscle protease system is
crucial in establishing their impact on meat quality during aging.

In vitro studies show that hemp has antimicrobial properties
(25, 74) due to its moderate contents of terpenes, CBD, α-
tocopherol, and polyphenols, which could be transferred into
ruminant meat (92, 93). Hempseed increases meat PUFA content
(19), which could make it susceptible to lipid oxidation. To
authors’ knowledge, no studies have evaluated the impact of
hemp by-products in ruminant diets on myoglobin, lipid,
and protein oxidation. However, feeding HSC increased total
antioxidant capacity of sheep milk (47) owing to the moderate
to high terpenes, CBD, α-tocopherol and polyphenol contents in
the diet, which are transferable to tissues. Thus, feeding hemp by-
products could have positive effects on meat oxidative stability,
and merits research.

FURTHER RESEARCH

Increasing consumer demand for hemp products is driving a
wave of regulatory changes allowing its commercial production
globally. Consumers generally perceive hemp products such as
fiber, seed, seed oil, CBD oil, and CBD fortified commodities as
organic and healthy, hence, are willing to pay a premium for them
(4). Hemp leaves, seed, hulls and HSC have potential as livestock

TABLE 7 | Growth performance of lambs and steers fed hempseed cake or other protein feed.

Lambs Steers

Attributes HSC CM SEM HS SBM SEM

Total gain (kg) 6.4 9.5 0.52 192.6 193.3 0.95

Average daily gain (kg/d) 119 175 9.6 1.16 1.16 0.00

Body condition score (1-5) 2.9 3 0.04 – –

Feed conversion (DM/gain) 7.9 5 0.37 0.133 0.133 0.00

HSC, hempseed cake; CM, canola meal; HS, hemp seed (full-fat); SBM, soybean meal; SEM, Standard error of mean. Inclusion levels: HSC−218 g/kg DM, CM−254 g/kg DM, and

HS−140 g/kg DM.

Source: (19, 79).
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TABLE 8 | Fatty acid profile (Mean ± SD) of longissimus dorsi from steers and lambs fed hempseed cake, canola, or soybean meal.

Steers Lambs

Fatty acids (% Total FA) HSC SBM HSC CM

Total fat content (g/100g) 10.6 ± 4.18 7.50 ± 2.14 3.70 ± 0.67 3.6 ± 0.67

Palmitic acid 28.3 ± 1.17 31.0 ± 2.65 23.0 ± 1.48 22.1 ± 1.48

Stearic acid 13.1 ± 0.71 12.8 ± 0.83 14.7 ± 1.24 13.8 ± 1.24

Oleic acid 44.9 ± 1.16 41.8 ± 2.78 37.4 ± 2.06 41.2 ± 2.06

Linoleic acid 1.20 ± 0.10 1.36 ± 0.48 4.49 ± 0.55 5.84 ± 0.55

γ-linolenic – – 0.04 ± 0.01 0.06 ± 0.01

α-linolenic 0.25 ± 0.03 0.21 ± 0.05 0.61 ± 0.09 0.78 ± 0.09

Total saturated fatty acids 44.6 ± 1.09 47.4 ± 3.46 41.3 ± 2.80 42.4 ± 2.80

Total monounsaturated fatty acids 51.4 ± 1.26 48.4 ± 2.75 48.2 ± 2.29 44.9 ± 2.29

Total n-6 fatty acids 1.52 ± 0.49 1.80 ± 0.70 5.79 ± 0.72 7.48 ± 0.72

Total n-3 fatty acids 0.37 ± 0.11 0.36 ± 0.15 1.26 ± 0.15 1.54 ± 0.15

Total polyunsaturated fatty acids 2.08 ± 0.56 2.28 ± 0.85 8.33 ± 0.85 10.59 ± 0.85

HSC, hempseed cake; SBM, soybean meal; CM, canola meal.

Source: (95, 127).

feed andmeat preservatives. In vitro studies suggest antimicrobial
and antioxidant properties of hemp bioactive compounds, which
are yet to be affirmed in vivo. Some studies have already included
hemp by-products as protein sources in finishing diets for goats,
sheep, cattle, and monogastrics (3, 6, 95, 127). Either neutral or
superior animal health and performance attributes for hemp by-
product fed animals compared to conventional oilseed cakes were
reported (6). However, there is still a gap in understanding the
impact of hemp by-products on nutrient digestibility, nitrogen,
and methane emissions, nutritional disorders, gut health, and
meat quality, thus more research is warranted.

Overall, nutrient and bioactive compounds in hemp by-
products are biologically accessible in the GIT and available in the
animal body system (109), but details on their bioavailability are
incomplete. These bioactive compounds have been identified in
the circulatory system, muscle, and brain tissue, feces and urine
in animal models (84). Retention of these bioactive compounds
in milk has been investigated (89), but for meat, it is yet to be
determined. If these bioactive compounds are retained in meat,
it would be important to determine their efficacy in enhancing
keeping and eating qualities of meat. Bioavailability of bioactive
compounds of hemp by-products could be determined using
in vitro digestion, in-vivo and/or ex-vivo using blood and organs,
respectively (80, 99). Various techniques have been developed

to assess ruminal degradability and intestinal digestibility of
feed ingredients in-vitro (131, 132). Distribution of hemp by-
products’ bioactive compounds among major tissues can also
be determined ex-vivo using the GC-MS procedure (133). The
overall challenge in ruminant production is estimating the
transfer of bioactive compounds from hemp by-products into
meat and establishing their bioefficacy in improving animal
health and production as well as keeping and eating qualities
of meat.
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