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ABSTRACT

Motivation: Drug repositioning is the discovery of new indications for

compounds that have already been approved and used in a clinical

setting. Recently, some computational approaches have been sug-

gested to unveil new opportunities in a systematic fashion, by taking

into consideration gene expression signatures or chemical features for

instance. We present here a novel method based on knowledge inte-

gration using semantic technologies, to capture the functional role of

approved chemical compounds.

Results: In order to computationally generate repositioning hypotheses,

we used the Web Ontology Language to formally define the semantics of

over 20 000 terms with axioms to correctly denote various modes of

action (MoA). Based on an integration of public data, we have automat-

ically assigned over a thousand of approved drugs into these MoA cate-

gories. The resulting new resource is called the Functional Therapeutic

Chemical Classification System and was further evaluated against the

content of the traditional Anatomical Therapeutic Chemical Classification

System. We illustrate how the new classification can be used to generate

drug repurposing hypotheses, using Alzheimers disease as a use-case.

Availability: https://www.ebi.ac.uk/chembl/ftc; https://github.com/

loopasam/ftc.

Contact: croset@ebi.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 MOTIVATION

Drug repurposing is the use of known active compounds for new

therapeutic indications (Sanseau and Koehler, 2011). When ad-
ministered in a living organism, a compound can indeed play

various roles and affect different biological processes [called
mode of action (MoA)]; accurately identifying these different

functions helps to predict the potential side-effects a drug
could have and can also lead to interesting repurposing oppor-

tunities (Medina-Franco et al., 2008). For instance, ‘sildenafil’

was initially developed to relieve angina pectoris symptoms and
has been repurposed towards erectile dysfunction during the clin-

ical trials (Ashburn and Thor, 2004) when a new function of the
target enzyme was discovered. Approved compounds are attract-

ive because they have been extensively studied and have by def-
inition already successfully passed clinical trials, where most

drugs fail because of safety or efficacy issues. There is increasing

number of approaches to predict repurposing opportunities

using computational methods [see Dudley et al. (2011) or

Andronis et al. (2011) for recent reviews]. Most methods operate

on the profiles of physicochemical descriptors derived from mo-

lecular structures (Haupt and Schroeder, 2011). Other methods

characterize the drugs on more abstract levels, such as the gene

expression signature (Iorio et al., 2010) or via the reported side-

effects (Campillos et al., 2008). These approaches have in

common to look for similarities within existing drugs and for-

ward similar compounds as repurposing hypotheses.

A feature of particular interest to describe drugs is the MoA.

According to Wikipedia, the MoA describes ‘a functional or

anatomical change, at the cellular level, resulting from the expos-

ure of a living organism to a substance’. For instance terms such

as ‘transcriptional regulation agent’ or ‘anticoagulant’ define

MoAs and characterize the roles of a certain type of drugs.

The MoA abstracts over the relations between molecular func-

tions, protein targets and drug activities; it is the central concept

linking a chemical structure to a set of biological activities.

Intuitively, the indication of a drug logically depends on its

MoA. Despite its widespread use in drug discovery, the MoA

has not been used yet as a descriptor for repurposing analyses.

One reason for this might be the challenge of formally defining

MoAs. Indeed, MoAs are terms or categories, it is not possible to

represent them straightforwardly with values and numbers like

one can do for a 3D molecular structure or for a gene-expression

profile. Nonetheless, the meaning of a concept can be formalized

with controlled vocabularies and ontologies (Gruber, 1995); ori-

ginating from description logics, such frameworks help to for-

malize the semantics of symbols and strings of characters with

explicit axioms. In an ontology or knowledge base, ‘concepts’

(interchangeable with ‘category’, ‘term’ and ‘class’ in this article)

are organized and linked following the logical type of relation

they have among them. In the Gene Ontology (GO), for example

(Ashburner et al., 2000), biological processes and molecular func-

tions terms are manually curated and their meaning specified by

the relation types linking two GO terms. MoA definitions are

present in other classifications such as the Medical Subject

Headings (Nelson et al., 2004) or the Chemical Entities of

Biological Interest (Hastings et al., 2013) for example. The

Anatomical Therapeutic Chemical Classification System (ATC)

(WHO, 2000) also describes to some extent the action of drugs at

the anatomical level. All these resources are valuable for the

community as a source of carefully and manually curated infor-

mation. Moreover, the categories described in these classification

systems are sometimes used to annotate drugs. For instance, the

compound ‘sildenafil’ has been manually annotated as ‘vasodila-

tor agent’ (CHEBI:35620 or MeSH:D27.505.954.411.918). The*To whom correspondence should be addressed.
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classifications mentioned previously are not specially designed
for drug repurposing; they purposefully report only the well-
known and major MoAs of chemical compounds. The pharma-

cological spectrum of each drug is not necessarily well covered,
yet it would be the best way to predict new indications.
In our context, an ideal knowledge base would feature the

known MoAs of a drug as well as some predicted ones to be
tested in experiments. The MoA categories should derive and
scale over primary molecular evidences exposed in biomedical

databases, in an automated way. To address the lack of system-
atic MoA annotations, we have implemented the Functional
Therapeutic Chemical Classification System (FTC), presented

here in this article. The FTC is automatically built by leveraging
the content of various biomedical databases using description
logics and automated reasoning. Over 20 000 new MoA cate-

gories are defined in the resource and further populated with
approved drugs using the Web Ontology Language (OWL) in

combination with a reasoner. The population step takes in ac-
count the type of pharmacological action, the molecular targets
of the drugs and their involvement into biological processes.

Drugs can exhibit several MoAs, and the same MoA can be
reached through different mechanisms. Most of the drugs are
present in multiple FTC categories, reflecting the various roles

a compound can play inside a biological system which can serve
as starting point for repurposing. The resource was evaluated
against the ATC, traditional classification scheme introduced

before. We present as well some preliminary analyses over the
data, by looking at the relation between the MoA and the indi-
cation of a compound using semantic similarity. Finally, we

illustrate also how the FTC can be used as a pharmacological
toolbox to analyze drug repurposing for Alzheimers disease.

2 RESULTS

The knowledge base behind the FTC is built by integrating infor-

mation coming from various sources. The GO terms serve as tem-
plate to create the FTC categories describing theMoAs;DrugBank
(Knox et al., 2011) provides the known links between drugs and

their protein targets and Uniprot (The Uniprot Consortium, 2013)
maps targets to their respective GO annotations (Dimmer et al.,
2012).Drugs are further assigned intoMoAcategories according to

the OWL constructs and axioms defined in the FTC. A reasoner, a
program capable of understanding such axioms, performed this

task (see Section 5 for details). The process to build the FTC is
summarized in Figure 1 alongside an example. The core step is the
generation of axiomatic representations of MoAs by decomposing

GO types into positive and negative regulations of biomolecular
functions and processes. With the help of reasoning techniques, we
can further derive and assign MoA across the knowledge base to

given drugs. It requires a few seconds (four processing cores, 4-GB
RAM) to classify the knowledge base [ELK reasoner, (Kazakov
et al., 2011)]. Other OWL reasoners (e.g. Hermit, Pellet, etc.) dis-

qualified mainly due to long processing time (data not shown).
The FTC forms a taxonomic structure as illustrated on

Figure 2, which arises when the reasoner classifies the knowledge

base. In general, categories may have multiple parents and mul-
tiple children (see https://www.ebi.ac.uk/chembl/ftc for inter-
active use). In total there are 1280 FDA-approved DrugBank

compounds (chemical and biotherapeutics) associated with

1264 human protein targets, where each drug is acting on at

least one human protein target. The FTC introduces 23353

new categories describing the mode and mechanism of action

of therapeutic compounds. Of these categories, 4289 belong to

the biological processes in GO and 19064 to the molecular func-

tions. A summary of the metrics behind the latest build is avail-

able online at https://www.ebi.ac.uk/chembl/ftc/evaluation/. Out

of all FTC categories, 1432 categories (46%) directly contain at

least one approved drug. This number increases up to 2532

(411%) when direct and indirect drugs are considered. FTC

categories not containing drugs (e.g. FTC_A0001771 - Anti-im-

munological synapse formation agent) represent MoAs for which

no approved compounds has qualified yet or that have not been

identified as such in the FTC.

2.1 Evaluation

The content of the FTC has been evaluated against the drug

categorization of the ATC, which has been produced by

manual curation and serves as a gold standard. A priori, both

resources serve different purposes and as a consequence, the

evaluation has to take this into consideration (Section 3.2).

The full methodology behind the evaluation is described in the

Section 6 of the Supplementary Material.
Briefly, for 68 categories from the FTC, we can manually

identify a set of semantically equivalent categories in the ATC.

We call these equivalent categories the ‘evaluation points’ (see

Supplementary Material Section 6.1 for details). All drugs from

each evaluation point were then assessed to determine the quality

of the FTC against our gold standard, i.e. the ATC. For ex-

ample, the FTC category ‘Anti-hydrogen:potassium-exchanging

ATPase activity agent’ (FTC_A0008900) has been manually

asserted as equivalent to the ATC category ‘proton pump inhibi-

tors’ (A02BC). A summary of this evaluation point is further-

more available online at https://www.ebi.ac.uk/chembl/ftc/

evaluation/FTC_A0008900.

For 1280 DrugBank compounds in the FTC, 1134 are also

present in the ATC, therefore only those were considered. The

‘evaluation points’ cover a total of 471 DrugBank compounds

or around 41% of common drugs to both classifications. Out of

these, 275 compounds are true positives, i.e. they match both, the

FTC and ATC categories for a given evaluation point. The

‘proton pump inhibitor’ evaluation point is such a case where

all the drugs (omeprazole, esomeprazole, pantoprazole, lansopra-

zole, rabeprazole) are present both in the FTC category and in the

corresponding ATC category. The total number of compounds

from an ATC category but where we could not identify a corres-

ponding FTC category is 35 (false negatives). Finally, 280 com-

pounds are present in a FTC class but not in any corresponding

ATC category (false positives). Overall we derive a recall of 89%;

this percentage indicates that the automatic build of the FTC

covers a good portion of the content already present in the

ATC. The precision of 50% shows that the FTC contains for a

givenMoAmanymore drugs than the equivalentATC categories.

This result was expected and comes from the original idea behind

the FTC: Representing in a systematic fashion the implicit and

explicit MoAs of drugs, in particular the ones not already indexed

by current classification scheme.
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2.2 Exploration

The FTC was designed to assist drug repositioning analyses by

explicitly representing the polypharmacology of approved drugs.

In this section, we exemplify how the resource can be used to

perform different types of analysis.

2.2.1 Polypharmacology spectrum The more information on a
drugs molecular targets and their physiological roles, the more

opportunities exist to re-orient a drug into doing something new.

The therapeutic agents described in the FTC can have several

MoAs, i.e. may be acting on different biomolecular functions or

processes, which demonstrates the intrinsic polypharmacology of

the approved compounds. Figure 3 illustrates the polypharma-

cology spectrum by showing the distribution of number of MoAs

per compound. When only direct categories are considered, com-

pounds belong on average to 13.5 MoA categories. This number

increases to 61.2 when parent categories are taken into consid-

eration (super classes). Not all the MoAs are relevant to a dis-

ease, some FTC categories are particularly abstract (e.g. ‘Anti-

biological process agent’) yet they represent discrete categories to

which the drug belongs with an explicit and clear meaning. These

discrete MoAs are a good starting point to understand what a

compound can do when administered in a human system.

Compound’s polypharmacology is well represented in the FTC,

as shown by the numerous MoAs each approved drug can

exhibit.
We decided to further look at a well-known repositioning ex-

ample, in order to see whether the FTC was suitable to identify

the new uses of an old drug. We picked the ‘thalidomide’ for this

exercise (https://www.ebi.ac.uk/chembl/ftc/agent/DB01041). The

molecule was first indicated to treat morning sickness in preg-

nant women, but has been quickly abandoned after its develop-

mental toxicity has been discovered in newborns. The accepted

molecular mechanism behind the side effect is an impairment of

the angiogenic process responsible for the development of mem-

bers, affecting in particular the limbs (Therapontos et al., 2009).

We found that the ‘thalidomide’ was accurately classified as

Fig. 1. The diagram gives an overview of the integrated resources. (A) The name of FTC categories representing MoAs are directly derived from the GO

terms representing the molecular functions and biological processes. A prefix ‘anti’ or ‘pro’ is appended to the original GO term, as well as the word

‘agent’ as suffix (e.g. the GO term ‘blood coagulation’ serves as a template to create the ‘anti-blood coagulation agent’ and ‘Pro-blood coagulation agent’

categories). (B) Each of the new FTC class has a logical equivalent definition assigned to it (axiom), representing the necessary and sufficient conditions

for a drug to be classified in the correspondingMoA class. (C) The content of various databases is incorporated and linked using the FTC specific logical

properties. (D) Finally a reasoner classifies the knowledge base and assigns drugs to MoA classes based on whether or not a definition can be satisfied.

For example, the drug ‘ximelagatran’ will be assigned as member of the category ‘anti-blood coagulation agent’ because of the logical links ‘ximelagatran

negatively-perturbs prothrombin’ and ‘prothrombin involved-in positive regulation of blood coagulation’. The taxonomic structure of the FTC appears

also in the reasoning step, from the entailment of the equivalent definitions

Fig. 2. Parent categories to the FTC class ‘pro-fibrinolysis agent’

(FTC_P0042730). The classification is a direct acyclic graph where cate-

gories are describing increasingly specific concepts. Arrows entail subclass

relationships between the terms (‘is a’ relation)
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‘anti-cell migration involved in sprouting angiogenesis agent’ in

the FTC, capturing the known toxicity of the drug. Furthermore,

the ‘thalidomide’ is currently investigated for a multitude of new

usages, in particular for anti-cancer and immunomodulatory

activities among others (Teo et al., 2005). These new indications

are well represented in the FTC too, for example by the cate-

gories ‘anti-vascular endothelial growth factor production agent’

or ‘anti-cell division agent’ for antineoplastic activities, or by the

classes ‘anti-cytokine secretion agent’ and ‘anti-I-kappaB kinase/

NF-kappaB cascade agent’ for its effect on the immune system.

These observations demonstrate that the FTC can successfully

capture the molecular reasons behind the repositioning of an old

compound. Moreover, the classification can also provide valu-

able insight regarding potential toxicity too.

2.2.2 Drugs with similar MoAs have similar indications The list

of MoAs attributed to a drug can be exploited as a descriptor for

the therapeutic agent: the tree structure of the FTC can be used

to derive some similarity metrics over the MoAs. The underlying

heuristic is to assume that the closer two entities are in the tax-

onomy, the more similar they are. We used a straightforward

approach derived from the Jaccard index (see Supplementary

Material Section 7) in order to compare approved drugs based

on the similarity of their MoAs. For instance, the similarity

between two compounds present in the same FTC category is

1 (maximum). The similarity between an ‘anti-blood coagulant’

and ‘pro-blood coagulant’ is 0.29, reflecting the fact that such

compounds are dissimilar with regards to the outcome of their

biological effect. As the MoA is intuitively expected to be the

central concept leading to the indication of the drug, we expected

that on average, drugs with similar MoAs would be indicated

towards similar therapeutic areas.
The heat map presented in Figure 4 shows a pair-wise com-

parison of all the drugs of the FTC based on their relative MoA

similarity. The compounds are further grouped by therapeutic

indications as defined by the ATC. The heat map reveals some

square patches around the central diagonal; the overall similarity

appears higher when compounds from the same ATC group are

considered. A significance analysis (see Supplementart Material

Section 8) revealed that the average MoA similarity of com-

pounds belonging to the same ATC category is significantly

higher than when compounds belonging to different categories

are compared. Indeed, for each category, the P-value was inferior

to 0.05 based on 20 000 random permutations over the similarity

values. This result supports the idea that drugs with similar

MoAs have similar indications. Note that the mean of the simi-

larity values was considered for the statistical analysis; some out-

liers are also present in the map, which can be interpreted as

Fig. 3. Distribution of the direct (blue) and indirect (red) number of MoAs per drug. Means are indicated with a solid line. On average each compound

has 13.5 MoAs when only direct classes are considered. The number rises to 61.2 when indirect MoAs are included. Indirect MoAs are the ancestor

classes in the taxonomy as shown in Figure 2. The distribution range is wider when indirect MoAs are considered (range¼ 299; min¼ 7; max¼ 306)

versus direct MoAs only (range¼ 79; min¼ 3; max¼ 82). These results emphasize the fact that some drugs are well characterized in databases and could

be used for a variety of specific biological tasks. Finally, some compounds have been assigned to a small number of FTC categories; in such cases little is

known or reported about their pharmacology and repurposing opportunities might be limited
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repositioning hypotheses. These outliers have indeed similar

MoAs, yet they belong to totally different therapeutic areas

and are used for different purposes according to the ATC. We

are currently further analyzing such cases in a systematic fashion.

Hypotheses have to be manually examined and interpreted, as

ATC categories are only covering some of the legal usage of the

drugs. We expect to find off-label indications in the predictions

for instance, as well as false positives.
Supplementary Figure S3 present similar association behavior

when two levels of the ATC are considered (no statistical signifi-

cance performed). Supplementary Figure S4 re-uses the same

data as Figure 4 (one ATC level) but with a clustering function

apply to it (hierarchical clustering-manhattan distance) in order

to reveal functional clusters of drugs. Finally, Supplementary

Figure S5 shows the distribution when compounds are sorted

based on their identifiers; no patterns are identifiable in this

case. Taken together, these results emphasize that the MoAs as

defined in the FTC are indeed on average associated with the

therapeutic indication of a drug. This result supports the validity

of the resource and its potential to computationally address in-

dication discovery.

2.3 Drug repurposing hypotheses for Alzheimer’s disease

In this section, we provide examples how actual drug-repurpos-

ing hypotheses can be derived from the FTC. The approach

presented here makes use of the FTC categories as analogs to

compartments of a toolbox helping to find drugs to treat

Alzheimer’s disease. Five FTC categories containing drugs are

directly related to the biological processes of the neurodegenera-

tive condition: ‘anti-amyloid precursor protein-biosynthetic-pro-

cess agent’ (FTC_A0042983), ‘anti-Tau protein kinase-activity

agent’ (FTC_A0050321), ‘anti-Tau protein binding agent’

(FTC_A0048156), ‘anti-beta amyloid binding agent’

(FTC_A0001540) and finally ‘pro-beta amyloid binding agent’

(FTC_P0001540). We have then considered the drugs present

inside each of these classes as potential candidates. Figure 5

shows these drugs, which have been further manually grouped

based on the overall similarity of their actions (numbers on

Figure 5). The subgroups 1, 2 and 3 are inhibitors of the cholin-

ergic system and some of them, such as ‘galantamine’

(DB00674), are already investigated to treat Alzheimer’s disease

and other related dementias. This class of agent is in line with the

cholinergic hypothesis (Francis et al., 1999), stating that

Fig. 4. Pair-wise comparison of MoAs similarities. Therapeutic indications are represented by ATC categories which are the colors on the side. For

instance, the compound ‘reteplase’ (DB00015) has the ATC code B01AD07, which appears as B (dark orange) on the plot. Only the first ATC level is

considered. The reader can refer to Supplementary Figure S1A for a two ATC level granularity. The similarity descriptor ranges from 0 (not similar–

white) to 1 (identical–black). Some compounds belong to multiple ATC categories (‘multiple’) and some others do not have an ATC code

(‘NoCategory’). The average similarity of drugs present in the same therapeutic category is significantly higher on average when separately compared

to all other indications
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Alzheimer’s disease could be caused by dysfunctions in the pro-

cessing of the acetylcholine. The subgroup 4 is exclusively com-

posed of barbiturates (central nervous system depressants). The

presence of this pharmacological class of compounds as an

Alzheimer’s disease treatment is more surprising, as very little

literature reports on it. Further investigations reveal that the

neuronal acetylcholine receptor subunit alpha-7, a common

off-target of barbiturates, binds beta-amyloids with high affinity

(Wang et al., 2000). As beta-amyloids are themselves strongly

involved in the pathology, barbiturates could affect the state of

the condition, similarly to cholinergic inhibitors (Wang et al.,

2000). The group B contains four compounds; ‘nicotine’ and

‘varenicline’ have been further grouped together because of simi-

lar pharmacology (group 5). ‘Nicotine’ has been shown to im-

prove some of the symptoms of Alzheimer’s disease (Jones et al.,

1992), it is therefore expected to find this molecule in the predic-

tions. ‘Varenicline’ possesses a pharmacology related to that of

‘nicotine’, which would explain the presence of the drug in this

category. The two remaining drugs of group F are, respectively,

‘pralidoxime’ and ‘dipivefrin’; little information is available re-

garding their potential action against the condition, yet these

compounds seem linked to the cholinergic hypothesis and

could be considered for experimental testing. The groups C

and D contain, respectively, one molecule each. These com-

pounds have been classified as agents perturbing some of the

physiological function of the Tau protein, key actor in

Alzheimer’s disease (Grundke-Iqbal et al., 1986). ‘Vorinostat’

(group C) is currently indicated for the treatment of cutaneous

manifestations in patients with T-cell lymphoma, yet a study has

shown in vivo (mouse model) the potential of the drug and other

histone deacetylase inhibitors in regards to memory deficit

(Kilgore et al., 2010). The presence of the ‘lithium’ (group D)

was confirmed by a recent study demonstrating a long-term

protective effect for the ion in regards to Alzheimer’s disease

(Young, 2011). The last group E contains ‘ezetimibe’ and

‘hesperetin’. These two compounds are primarily used as choles-

terol lowering agents (statins). As cholesterol metabolism in the

brain appears to be related to dementia, statins are believed to

prevent or improve the symptoms of the patients. Although early

studies (Wolozin, 2004) have failed to clearly show a beneficial

effect, the investigation is still open. From the examples briefly

presented above, reported and confirmed by the literature, the

FTC appears to be suitable to identify real repurposing hypoth-

eses tailored to a disease. Correctly identifying MoAs of interest

helps to retrieve the compounds which might impact the treat-

ment of a condition.

3 DISCUSSION

The FTC is a novel classification for approved drugs, which

can be used as a starting point to generate drug repurposing

hypotheses. This classification leverages the information pre-

sent in various databases and ontologies, similarly to the

Open PHACTS initiative (Williams et al., 2012) and to

the work done by Hoehndorf et al. (2012). The FTC
mostly differentiates itself from these projects by providing a

whole set of new categories on the top of the integrated

information, dedicated to tackle a very specific problem:

drug repositioning.

3.1 Biological assumptions

An asset of the FTC is its ability to handle efficiently categorical

data: classes and relationships are accurately defined, in order to

classify compounds based on the semantics of their relations. The

properties linking drugs to their respective protein targets (‘posi-

tive’ and ‘negative perturbations’) are, however, simplistic. At the

time being, no consideration is given regarding the binding

strength between the drug and the proteins, yet it is a key

factor to derive potent and specific activities in the human

body. This is also the case for other types of numerical data,

such as the dosage; the FTC can predict a role for a drug, yet

it cannot provide any information about the concentration or the

administration route necessary to obtain the potential effects.

The current relations between targets and their involvement in

biological processes are also not a fully accurate representation

of the biological phenomenon. In a cell, specific domains of the

protein could mediate different functions. Only one of such ac-

tivity types can sometimes be inhibited by a drug (Kruger et al.,

2012), yet we are assuming in the FTC that as long as a drug

affects a protein, it can therefore alter all its known functions.

These limitations come from the semantics behind the axioms

structuring the classification themselves based on the informa-

tion available from the databases. Despite entailing not entirely

accurately the biochemical reality, the axioms help to generate a

larger number of hypotheses, the primary goal of the FTC. The

dosage issue is partially addressed by the ‘regulator pattern’ (see

Section 3.1 of Supplementary Material): it should be easier to

experimentally adjust the concentration of the compounds clas-

sified as ‘pro-’ or ‘anti-’ biological process agents in order to

modulate a physiological effect. The predictions generated by

the FTC depend on the resolution of the curated information

Fig. 5. FTC categories describe some of the modes of action that could

impact Alzheimer’s disease (letters on figure). The categories have been

manually picked on the basis that they could directly affect the dementia.

Drugs classified in these FTC categories further manually grouped based

on their MoAs similarities (numbers on figure)
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released by the original data providers. Erroneous or missing

information will lead to misclassification by the reasoner. Some

expected outcomes are also missing from the predictions; ‘silde-

nafil’ for instance was expected to be classified as ‘pro-penile

erection agent’ (FTC_A0043084), yet the lack of appropriate

GO annotation prevents it. After discussion with the GOA cur-

ation team, a manual annotation can only be asserted based on

published experimental results. No document was found to

support the involvement of the cGMP-specific 3’,5’-cyclic

phosphodiesterase (sildenafil’s main target) in the ‘negative regu-

lation of penile erection’ (GO:0060407), therefore no annotation

can be made. Further work could be done in this direction, by

trying to automatically infer more annotations or by using the

electronically generated ones, in order to generate broader yet

potentially less plausible repurposing hypotheses.

3.2 Interpreting the evaluation

Out of the evaluation, the high recall value (89%) supports the

idea behind the automated build of the FTC: the data from

different repositories funded and curated in parallel, can be

integrated to automatically create a new resource. This new

classification (FTC) contains most of the known information

present in an external gold standard (ATC) and relies on de-

scription logics to leverage the native information. In the con-

text of this work, we have compared the content of the FTC

against the ATC, knowing that these two taxonomies have

diverging goals. During the evaluation, equivalences have

been manually asserted between classes, which are assumed to

have fairly similar meaning and containing similar sets of com-

pounds. These manual assertions are however a weakness, as

they are themselves not evaluated (free parameter). The pres-

ence or absence of a link was determined only by one curator

and any mistake can influence consequently the recall and pre-

cision values. The precision of 50% tells that the FTC tends to

over-assigns compounds to MoA categories. The low precision

value is acceptable in our case, as one of the underlying mo-

tivation of the FTC is to broadly represent polypharmacology,

specially the one not present in gold standards such as the

ATC, referencing only legal usage. In this regards, the evalu-

ation should be considered more as a safety control rather than

a formal assessment of a predictive method. The false positives

derived from the evaluation can also be considered as drug

repurposing hypotheses: these drugs can indeed be interpreted

as suitable for the ATC category, yet not indexed as such.

However, these predictions should be interpreted with caution,

as it is currently impossible to distinguish a false positive from

a reprofiling opportunity. These considerations do not interfere

with the repurposing predictions generated based on semantic

similarities or discrete categories as presented in the Section 2.2.

Finally, note that the ATC/FTC equivalences are open and

editable online, any modification will be automatically incorpo-

rated in the next release of the resource. It is also possible to

evaluate the FTC against a different taxonomy, like the

Medical Subject Headings for example, which can be subject

to future work.

4 CONCLUSION

The FTC is public resource, which should assist drug repurpos-
ing initiatives or enhance computational studies that judge drugs

according to their ‘mode of action’. The resource attributes bio-
molecular functions and processes to drugs, the same way as GO
types have been assigned to gene products. The construction of

FTC relies on axiomatic representations of MoA as the core
means to attribute and derive the MoA for approved drugs.
We shown the validity of the approach by comparing the content

of the FTC to a well-established gold standard, the ATC. We
further illustrate the tight relationship between the MoA and the
indication of a drug and demonstrate using Alzheimer’s disease

as an example how the resource helps to formulate drug repos-
itioning hypotheses. The work leverages the semantics of distinct
databases, working in parallel on different thematics. The plat-

form will be further used to generate predictions in a systematic
fashion, which can then be experimentally tested in the labora-
tory for validation.

5 AVAILABILITY AND IMPLEMENTATION

The code behind the creation of the resource is entirely open and
available at https://github.com/loopasam/ftc. The web applica-

tion and the FTC are built using the Brain library (Croset et al.,
2013) and can be find at https://www.ebi.ac.uk/chembl/ftc. The
documentation can be accessed at https://github.com/loopasam/

ftc/wiki. The full description of the methodology used to gener-
ate the classification is available as Supplementary Material.
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