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We present a technical development in the dynamic causal modelling of electrophysiological responses that
combines qualitatively different neural mass models within a single network. This affords the option to couple
various cortical and subcortical nodes that differ in their form and dynamics. Moreover, it enables users to
implement new neural mass models in a straightforward and standardized way. This generic framework hence
supports flexibility and facilitates the exploration of increasingly plausible models. We illustrate this by coupling a
basal ganglia-thalamus model to a (previously validated) cortical model developed specifically for motor cortex.
The ensuing DCM is used to infer pathways that contribute to the suppression of beta oscillations induced by
dopaminergic medication in patients with Parkinson's disease. Experimental recordings were obtained from deep
brain stimulation electrodes (implanted in the subthalamic nucleus) and simultaneous magnetoencephalography.
In line with previous studies, our results indicate a reduction of synaptic efficacy within the circuit between the
subthalamic nucleus and external pallidum, as well as reduced efficacy in connections of the hyperdirect and
indirect pathway leading to this circuit. This work forms the foundation for a range of modelling studies of the
synaptic mechanisms (and pathophysiology) underlying event-related potentials and cross-spectral densities.
1. Introduction

One of the most challenging objectives in neuroscience is to translate
experimental observations into neuronal mechanisms. Computational
models – using plausible descriptions of neural dynamics – are crucial for
this purpose. Dynamic causal modelling (DCM) was originally developed
to infer effective connectivity within a distributed network of brain re-
gions generating task-based fMRI responses (Friston et al., 2003). This
was followed by an application to EEG/MEG responses (David et al.,
2006). Further developments enabled the use of DCM in task-free designs
(Moran et al., 2009; Friston et al., 2014). The core of each DCM is a set of
differential equations describing neural population responses to endog-
enous synaptic input, from within the brain, or exogenous stimuli. These
equations are combined with an observation function that maps unob-
served (i.e., hidden) neural states to data measurements.
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The type of information afforded by DCM depends on the generative
model used and the spatiotemporal resolution of the imaging modality.
For electrophysiological time series in particular, one could (in principle)
use a wide range of neural mass (or field) models that vary in their level
of biological detail (Deco et al., 2008). Accordingly, the suite of models
implemented in DCM has been continuously elaborated over the years
(Moran et al., 2013). Models for EEG and MEG have been inspired by the
laminar organization of neocortex and include separate populations for
spiny stellate cells, inhibitory interneurons, and pyramidal cells for each
source in a network (David et al., 2006). Within DCM, most model var-
iations are available in a convolution-based (Jansen and Rit, 1995) and a
conductance-based (Morris and Lecar, 1981) form, and have been
implemented as neural masses as well as fields (Pinotsis et al., 2012).
Furthermore, researchers have used bespoke DCMs that are adaptations
of these models (Youssofzadeh et al., 2015; Bhatt et al., 2016;
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Papadopoulou et al., 2016; Shaw et al., 2017) or have developed
subcortical models to address specific research questions (Moran et al.,
2011a; Marreiros et al., 2013).

In this paper, we present a generalization in the implementation of
DCM that accommodates a combination of different types of neural mass
models within a single network (see Fig. 1). This is an important step
towards the flexible use of DCM for studies in which individual regions
require a distinct dynamical description – due to differences in micro-
circuitry or laminar organization. This would, for example, apply to a
network containing cortical and subcortical regions, and/or the cere-
bellum. The new generic framework also provides a straightforward way
of implementing newmodels, thereby enabling users to add to a portfolio
of models for brain structures that have not yet been studied with DCM.
We illustrate this framework using a cortico-basal ganglia-thalamus cir-
cuit model to investigate the pathways involved in the suppression of
beta oscillations with dopaminergic medication in Parkinson's disease, as
seen in simultaneous MEG and LFP recordings. Although our example
application takes spectral densities as the to-be-predicted data features,
the methods described could also be readily applied to event-related
potentials.

2. Implementation

We developed generic DCM to finesse a number of restrictions in the
standard implementation. Specifically, the aim of this work was three-
fold: 1) to allow for coupling between sources that are described by
different (versions of) neural models; 2) to enable users to implement
new neural models and integrate them within the DCM framework; 3) to
give users full control over the specification of condition-specific effects
on intrinsic synaptic parameters. We note that the standard DCM
implementation is still available in unchanged form and is computa-
tionally optimized for networks, where each source is described with the
same type of model.
2.1. Standard DCM implementation

DCM is implemented in the Matlab-based open-source SPM (‘Statis-
tical Parametric Mapping’) software that can be downloaded from
http://www.fil.ion.ucl.ac.uk/spm/. It can be operated via a graphical
Fig. 1. Generic DCM supports different types of neural mass models within
the same network. Depicted is a hypothetical network between some of the
currently implemented neural mass models ('CMC', 'MMC', 'BGT') and a to-be-
constructed model in the cerebellum.
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user interface, in batch mode, or by calling the relevant Matlab functions
directly in a script. In this section, we describe the standard imple-
mentation before detailing our changes in the next section. The DCM
pipeline is largely independent of neuroimaging modality, data feature,
and choice of neural mass model. The specification of the generative
model is fully separate from the inversion scheme and follows a standard
format. The core of each neural model is formed by an spm_fx_***.m
function describing the equations of motion. These have parameters that
are specified in terms of prior means and variances in spm_***_priors.m.
These two functions are hence unique for each type of neural mass model.
In addition, an observer function maps neuronal states at the source level
to recorded signals at the sensor level. This entails a scaling of depolar-
isation in (a mixture of) neural populations and multiplication with a
conventional forward (leadfield) model (spm_gx_erp.m). Subsequently,
data features in the form of event-related potentials (ERP) or cross-
spectral densities (CSD) are generated via spm_fy_erp.m and
spm_fs_csd.m, respectively, where spectral responses are obtained via
the system's transfer functions in spm_csd_mtf.m. Prior distributions for
the parameters used in these observation functions are specified in
spm_L_priors.m and spm_ssr_priors.m. In order invert a DCM, users first
specify the model options – and network structure – in the graphical user
interface (as a batch, or in a custom script) before calling one of the
inversion routines spm_dcm_erp.m or spm_dcm_csd.m, depending on
the data feature of interest. This automatically collects the appropriate
data features and prior distributions, sets the initial states, and calls the
inversion scheme spm_nlsi*.m. After inversion, additional functions can
be used, e.g., to visualize results and perform model comparisons. The
entire pipeline is presented in Fig. 2.

2.2. Generic DCM implementation

In order to couple sources that differ in their intrinsic (within-source)
dynamics, a new function spm_fx_gen.m has been introduced that serves
as a parent routine that calls the state equations for each individual
model type within the network, and adds the contribution of extrinsic
(between-source) connections. The only change, from the perspective of
the user, is the specification of model type for each source separately,
which is now encoded in separate structures. Table 1 illustrates the exact
format. A field is included to specify which intrinsic connections are free
to vary between conditions (fixed in the standard implementation).
Another new option is the direct specification of the hidden state(s) that
contribute to the measured signal. This is useful for models like the basal
ganglia-thalamus model, where it is possible for studies to use recordings
from different anatomical structures. As before, after specification of the
DCM, a call is made to either spm_dcm_csd.m for spectral data features
or spm_dcm_erp.m for time domain data features. An example script is
available under the example_scripts folder within SPM or upon request.
We have also included the documentation for the generic prescription in
Appendix 1.

In principle, the current implementation of the generic DCM scheme
could support the composition of any neural mass or neural field sources
to create a model of distributed neuronal responses. Having said this, the
practical implementation requires one to distinguish between extrinsic
(between-source) and intrinsic (within-source) coupling. The extrinsic
coupling clearly has to be conserved in its form over sources. At present, a
parameterised sigmoid activation (i.e., voltage to firing rate) function is
applied to specified hidden states of each source and the resulting spike-
rates drive specified (usually conductance) hidden states in each source.
The specification of efferent and afferent extrinsic effects is in terms of
the indices of source specific hidden states. In short, the integration
scheme assembles the intrinsic and extrinsic flows separately, where the
extrinsic flows have the same form. This formal constraint should, in
principle, accommodate both convolution and conductance based
intrinsic models; however, at present only convolution models are
accommodated.

Generic DCM facilitates source-specific model specification via
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Table 1
List of user-specified options for DCM inversion.

Field Description Examples

Standard DCM
DCM.options.analysis Data feature to be modeled 'ERP', 'CSD'
DCM.options.model Type of neural mass model 'ERP', 'CMC',

'MMC', 'BGT',
'NFM', 'NMM'

DCM.options.spatial Type of spatial (forward)
model

'ECD', 'IMG',
'LFP'

DCM.options.trials Indices of trials
(conditions)

[1 2]

DCM.options.Nmodes Number of spatial modes
to invert

8

DCM.options.D Time bin decimation
(down-sampling)

1

DCM.options.Tdcm [start end] Time window
in ms

[0 1000]

DCM.options.onset Stimulus onset in ms –
used in DCM for ERP

60

DCM.options.dur Stimulus dispersion
(standard deviations) in
ms – used in DCM for ERP

16

DCM.options.Fdcm [start end] Frequency
window in Hz – used in
DCM for CSD

[4 48]

Generic DCM
DCM.options.model(n).source Type of neural mass model

for the n-th source
'ERP', 'CMC',
'MMC', 'BGT'

DCM.options.model(n).B Index number of intrinsic
connections exhibiting
condition-specific effects
(optional)

[2 3 4 7], [1 4
7 10], [1:10]

DCM.options.model(n).J Index number of neural
states that contribute to
the measured signal. Sets
their prior expectation to 1
(optional)

3

DCM.options.model(n).K Index number of neural
states for which their
contribution to the
measured signal is
estimated from the data.
Sets their prior variance to
1/32 (optional)

[1 7]

Other options as listed for the
standard DCM implementation

Table 2
Currently available neural mass and field models in DCM.

Acronym Full name Type Specifics Reference

ERP Event-
Related
Potential

Convolution/
Neural Mass

Original model
with 3 cell
populations

David and
Friston, 2003

SEP Sensory-
Evoked
Potential

Convolution/
Neural Mass

Faster version of
the ERP model

David and
Friston, 2003

LFP Local Field
Potential

Convolution/
Neural Mass

ERP model with
recurrent
inhibitory
connections for
modelling
gamma
oscillations

Moran et al.,
2007

CMC Canonical
Microcircuit

Convolution/
Neural Mass

4-population
model with
separate supra-
and
infragranular
pyramidal cell
populations

Bastos et al.,
2012;
Auksztulewicz
and Friston,
2015

MMC Motor
Microcircuit

Convolution/
Neural Mass

4-population
model based on
motor cortex
anatomy

Bhatt et al.,
2016

BGT Basal
Ganglia and
Thalamus

Convolution/
Neural Mass

Subcortical
model including
4 basal ganglia
structures and
thalamus

Marreiros et al.,
2013; Moran
et al., 2011a

NFM Neural Field
Model

Convolution/
Neural Field

3-population
model with
spatiotemporal
dynamics

Pinotsis et al.,
2012

NMM Neural Mass
Model

Conductance/
Neural Mass

Conductance-
based version of
the ERP model

Marreiros et al.,
2009; 2010

MFM Mean Field
Model

Conductance/
Mean Field

Conductance-
based version of
the ERP model
with second
order statistics

Marreiros et al.,
2009; 2010

NMDA Mean Field
Model with
NMDA
receptor

Conductance/
Mean Field

Conductance-
based version of
the ERP model
with NMDA
receptor and
second order
statistics

Moran et al.,
2011b

CMM Canonical
Mean Field

Conductance/
Mean Field

Conductance-
based version of
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DCM.options.model(n), which should be specified for each source (n ¼ 1
… N) in the network. This includes an option to specify which intrinsic
connection strengths vary between conditions (field B), and an option to
indicate which neural states contribute to the observed signal (fields J
and K) in cases that differ from the default priors. Abbreviations of data
features: ERP (Event-Related Potential), CSD (Cross-Spectral Density).
Abbreviations of neural mass models: ERP (Event-Related Potential),
CMC (Canonical Microcircuit Model), MMC (Motor cortex Microcircuit
Model), BGT (Basal Ganglia-Thalamus Model), NFM (Neural Field
Model), NMM (Neural Mass Model). For a complete list of currently
available models see Table 2. Abbreviations of spatial models: ECD
(Equivalent Current Dipole), IMG (Imaging), LFP (Local Field Potential).
Additional (less commonly used) options are listed in the user docu-
mentation of the DCM Matlab functions.
Model the CMC model
with second
order statistics

CMM_
NMDA

Canonical
Mean Field
Model with
NMDA
receptor

Conductance/
Mean Field

Conductance-
based version of
the CMC model
with NMDA
receptor and
second order
statistics
2.3. Addition of new models

The procedure for adding new neural mass models and integrating
them with existing ones is relatively straightforward. This enables users
to contribute models for brain regions that are not adequately described
by current models; for example, the cerebellum, hippocampus, or even
the spinal cord. Minimal additions of new functions and changes to
820
existing ones are required. The first step is the creation of an
spm_fx_***.m function containing the state equations of the new source
model, typically based on previous anatomical and physiological exper-
imental work. This should be accompanied by an spm_***_priors.m
function containing the prior distributions of model-specific neural pa-
rameters. Information about the new neural mass model should subse-
quently be added to spm_dcm_neural_priors.m (for selecting the
appropriate prior function), spm_L_priors.m (for describing the lead
field mapping between the model's hidden states and the measured
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signals), and spm_dcm_x_neural.m (for setting the number of states and
their initial values). Finally, the input and output cell populations for
extrinsic connections, as well as the expected intrinsic delays should be
specified in spm_fx_gen.m. Fig. 2 illustrates the role of these functions in
the DCM pipeline.
2.4. A cortico-basal ganglia circuit

We illustrate the use of generic DCM by coupling a motor cortex
microcircuit model and a basal ganglia-thalamus model comprising four
main basal ganglia structures and the thalamus. The architecture of the
combined model is described in this section – and its application to study
the effect of dopaminergic medication on beta oscillations in Parkinson's
disease is presented in the next section. Both the motor cortex micro-
circuit (Bhatt et al., 2016) and the basal ganglia model (Moran et al.,
2011a; Marreiros et al., 2013) have been used in previous publications
using custom-written code. Here, we make these models publicly
821
available by integrating them within the generic DCM framework.
The motor cortex microcircuit model (MMC) is based on adaptations

to the canonical microcircuit model and subsequent Bayesian model
comparison (Bhatt et al., 2016). These modifications have been applied
to account for cytoarchitectonic differences between the primary motor
cortex and especially visual cortex (Shipp, 2005; Beul and Hilgetag,
2015), upon which the canonical microcircuit model is based. Although
primary motor cortex is known for being agranular, recent work never-
theless provides evidence that pyramidal cells located at the border be-
tween layer 3 and 5a possess classical layer 4-like properties (Yamawaki
et al., 2014). The model therefore includes a separate middle-layer py-
ramidal cell population in addition to the superficial and deep pop-
ulations. A single interneuron population accounts for unspecific
inhibitory input across all layers (Fino et al., 2013). Excitatory inter-
laminar connections are primarily based on in-vitro photo-stimulation
studies in mice (Weiler et al., 2008; Anderson et al., 2010; Hooks
et al., 2011). Connections for which biological evidence was ambiguous
Fig. 2. Simplified flow chart of the stan-
dard and generic DCM implementations.
The main difference between the imple-
mentations is the addition of spm_fx_gen.m
for generic DCM, which gathers the intrinsic
(within-source) state dynamics for the
different types of neural mass models in the
network and adds extrinsic (between-source)
coupling. Currently the generic implementa-
tion can only be called using script-based
model specification. Addition of new neural
mass models to the existing suite of models
and their integration within the existing
Bayesian inversion scheme is relatively
straightforward. New functions that should
be created for additional neural mass models
are highlighted in blue and those that should
be modified are indicated in bold.
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were included or eliminated based on model comparisons (Bhatt et al.,
2016).

The basal ganglia - thalamus model (BGT) was constructed to study
the emergence of beta oscillations in 6-OHDA-lesioned rats (Moran et al.,
2011a) and human Parkinson's disease patients with implanted deep
brain stimulation electrodes (Marreiros et al., 2013). The model com-
prises five subcortical structures: striatum (Str), external segment of the
globus pallidus (GPe), subthalamic nucleus (STN), internal segment of
the globus pallidus (GPi) and motor thalamus (Tha). Interconnectivity
between structures is based on the known main GABAergic and gluta-
matergic projections (Smith et al., 1998; Bolam et al., 2000) and en-
compasses the direct pathway (Str – GPi – Tha) as well as the indirect
pathway (Str – GPe – STN – GPi – Tha). In addition, the model in-
corporates the glutamatergic feedback connection from STN to GPe,
which might have a critical role in generating beta oscillations (Bevan
et al., 2002). Each structure is represented by a single population of
either excitatory or inhibitory neurons. Different types of interneurons
make up ~5% of the striatum (Gerfen and Wilson, 1996) and were
grouped into a single inhibitory self-connection. Pallidal inhibitory
self-connections were added to reflect local axon collaterals (Kita and
Kita, 1994; Sato et al., 2000; Sadek et al., 2007).

The MMC and BGT nodes are coupled via extrinsic excitatory con-
nections. We included the projection from deep pyramidal cells to
striatum (Cowan and Wilson, 1994) as well as the hyperdirect pathway
connection to the subthalamic nucleus (Nambu et al., 2002). Thalamo-
cortical projections originating from motor thalamus (ventrolateral nu-
cleus) have been found to project to pyramidal cells in both layer 5b and
layer 4 (Yamawaki et al., 2014) and were both modeled. In keeping with
the other DCM models and based on the evidence for a presumed layer 4
(Yamawaki et al., 2014), we modeled these as endogenous input to layer
4. Connections from pre-motor and pre-frontal areas primarily target
deep pyramidal cells with a less strong innervation to superficial layers
(Hooks et al., 2013). In addition, we included a constant drive to primary
motor cortex representing general thalamic and sensory input, which
targets most strongly the layer 3/5a border (Mao et al., 2011; Hooks
et al., 2013; Hunnicutt et al., 2014). A constant drive to striatum was also
included to reflect input from premotor and somatosensory areas not
included in the network.
2.5. Neuronal dynamics

The neuronal state equations describe the dynamics of a population's
membrane potential in response to synaptic input through the
convolution-based operation vpost ¼ h� SðvpreÞ, Where S is a sigmoidal
function translating pre-synaptic membrane potential into firing rate,
and hðtÞ ¼ t

Te
� t

T for t � 0 and hðtÞ ¼ 0 for t < 0 is a synaptic kernel
converting pre-synaptic firing rate into post-synaptic membrane poten-
tial (Jansen and Rit, 1995; David et al., 2006, Moran et al., 2007; 2013).
The magnitude of this response is scaled by the synaptic coupling
strength. This can be written as the following second order differential
equation:

€v
k

j ðtÞ ¼
 
γkl S
�
vkl ðtÞ

�þ Am
l S
�
vml ðtÞ

�þ IkðtÞ � 2 _vkj ðtÞ �
vkj ðtÞ
Tk
j

!,
Tk
j

Membrane potential v of cell population j in source k is influenced by
cell populations l within the same source with coupling strength γkl and
with coupling strength Am

l from other sources m. Excitatory connections
have positive coupling strength values and inhibitory connections
negative. The membrane time constant Tk

j is unique for each population.

The sigmoidal function is denoted as SðvÞ ¼ 1
1þe�Rv. Its slope is para-

meterised by R and captures the variability in response properties within
a cell population. The deviation in firing rate from baseline firing
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(obtained for v ¼ 0) is converted into post-synaptic membrane potential.
Finally, endogenous input Ik is modeled as colored noise to reflect the
scale free (1/f-like) spectrum of endogenous neural activity (generated
by brain regions outside the specified network). Scale free fluctuations
mean that the relationship between the amplitude of fluctuations and
their frequency can be expressed as a power law, characterised by a
scaling exponent: ψu ¼ αuω�βu , where we use subscript u to distinguish
this input from observation noise of the same form (see below). Fig. 3
depicts the model's connectivity structure and the populations receiving
endogenous input. Compared to (Moran et al., 2011a; Marreiros et al.,
2013), we absorb maximum excitatory/inhibitory rate constants into our
synaptic connection strengths γ, to ensure the BGT is formally consistent
with the MMC. Time delays within and between sources are not explicitly
incorporated in the state equations but instead implemented via a Taylor
series approximation of the Jacobian matrix (see Appendix A.1 of David
et al., 2006).

The neuronal state equations are supplemented by an observation
function, mapping hidden neural states to the measured signals. For the
MMC source, we fixed observed signal to be a mixed contribution of [0.2
0.2 0.6] from superficial, middle, and deep pyramidal cells. For the BGT
source, the observed signal was set to come from the STN. The scaled
contribution of each source to the measured signal is encoded by the lead
field matrix L. In case of LFP recordings or source-extracted data this is a
mere gain function. At this point in the forward modelling, observation
noise common (subscript c) to recordings from motor cortex and the STN
and channel-specific noise (subscript s) are also added to the spectral
responses predicted by the model; again in the form of colored noise ψ c ¼
αcω�βc and ψ s ¼ αsω�βs (Moran et al., 2009).

All free parameters and their prior distributions are summarized in
Table 3. Nonnegative parameters (such as time constants) are imple-
mented as exponential scale-factors of their prior means. The priors in
Table 3 therefore have a lognormal distribution with an expectation of
zero. As we are working with a new type of DCMmodel, we ensured that
model inversion relied more heavily on achieving accurate fits than on
prior expectation values by increasing the expected precision hE of the
observed data and choosing relatively broad prior variances.

3. An empirical example

We used the cortico-basal ganglia circuit model of the previous sec-
tion to infer alterations in synaptic coupling strength underlying the
reduction in STN beta oscillations observed in Parkinson's disease pa-
tients following dopaminergic medication.
3.1. Experimental data

The data set we used here forms a subset of data used in previous
studies (Litvak et al., 2011; van Wijk et al., 2016). The patients who
participated were diagnosed with Parkinson's disease according to the
Queen Square Brain Bank Criteria (Gibb and Lees, 1988) and underwent
surgical implantation of deep brain stimulation electrodes in left and
right subthalamic nucleus at the National Hospital of Neurology and
Neurosurgery (University College London) following the center's stan-
dard procedures (Foltynie et al., 2011). Each electrode lead (model 3389,
Medtronic, Minneapolis, MN, USA) contained four macro-electrode
contacts of 1.5 mm diameter that were spaced 2mm apart (center-to--
center). The center of the STN was determined as the surgical target for
the lowermost contact as identified on a pre-operative stereotactic axial
T2-weighted MRI scan at the level of the largest diameter of the red
nucleus and 0–1mm behind its anterior border (Bejjani et al., 2000). 11
Patients (2 female) were included in this study. Their mean age (�sd) at
the time of recordings was 54.6� 6.1 (range 40–61) years, with a disease
duration of 12.2� 2.9 (range 8–17) years. United Parkinson's Disease



Fig. 3. Network architecture of the cortico-basal ganglia circuit. Motor
cortex (MMC model) and basal ganglia - thalamus (BGT model) are imple-
mented as two separate sources coupled via extrinsic connections (A1…4Þ.
Intrinsic connections reflect synaptic coupling strengths between cell pop-
ulations within motor cortex γmmc

1…14 and between basal ganglia structures and

thalamus γbgt1…9. Endogenous input in the form of colored noise enters the py-
ramidal cells in the middle layer of the motor cortex and the basal ganglia at the
level of the striatum. Excitatory cell populations and connections are shown in
black, inhibitory populations and connections in red. SP¼ superficial layer py-
ramidal cells; MP¼middle layer pyramidal cells; DP¼ deep layer pyramidal
cells; II¼ inhibitory interneurons; Str¼ Striatum; GPe¼ globus pallidus external
segment; STN¼ subthalamic nucleus; GPi¼ globus pallidus internal segment;
Tha¼ thalamus.

Table 3
Prior distributions for all parameters in individual inversions.

Parameter Description Prior values π;σ2

γmmc
1…14 Synaptic coupling strengths

cortex
[357 872 387 340 311 405 377 429
331 403 753 376 382 414],1/4

Tmmc
1…4 Time constants [ms] cell

populations cortex: [MP, SP,
II, DP]

[3.7 3.2 14.1 10.6],1/8

γbgt1…9
Synaptic coupling strengths
basal ganglia

[962 828 1403 719 526 568 345 780
301],1/2

Tbgt
1…5

Time constants [ms] cell
populations basal ganglia:
[Str, GPe, STN, GPi, Tha]

[9.3 12.2 3.5 12.1 10.1],1/4

A1…4 Extrinsic connections
strengths

[110 588 672 127],1/4

Bmmc
1…14 Condition-specific effects on

intrinsic coupling strengths
cortex

[0 0 0 0 0 0 0 0 0 0 0 0 0 0],1/4

Bbgt
1…9

Condition-specific effects on
intrinsic coupling strengths
basal ganglia

[0 0 0 0 0 0 0 0 0],1/2

B1…3 Condition-specific effects on
extrinsic coupling strengths:
[Tha to MMC, MMC to Str,
MMC to STN]

[0 0 0],1/4

R Slope sigmoidal function:
[MMC, BGT]

2/3,[1/32 1/16]

d1…4 Delays [ms]: [within MMC;
from MMC to BGT; from BGT
to MMC; within BGT]

[1 8 8 4],1/32

αu;βu Endogenous input
(innovations). I ¼ 512 ψu

[1 1],1/4

αc;βc Channel unspecific
observation noise

[1 1],1/4

αs;βs Channel specific observation
noise

[1 1],1/4

L Observation gain: MMC, BGT [1 1],4
hE Precision of observed data 16,4
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Rating Scale (UPDRS) hemibody subscores for bradykinesia and rigidity
were off medication 11.5� 5.4 (range 5–23), and 3.2� 1.8 (range 0–6)
on medication.

Within 2–7 days after implantation, simultaneous magnetoencepha-
lography (MEG) and local field potential (LFP) recordings from STN were
obtained in two separate sessions on subsequent days. In random order,
one of the sessions was performed whilst the patient was ‘ON’ their
regular dose of dopaminergic medication, the other session after over-
night withdrawal (‘OFF’). Signals were low-pass filtered at 600 Hz and
823
sampled at 2400Hz. An offline bipolar derivation was applied between
adjacent LFP contact pairs, resulting in three time series per STN. All
patients with both ON and OFF recordings available were considered in
the present study. Ethical approval was obtained from the local ethics
committee and all patients gave written informed consent prior to the
recordings.

Our analyses are based on resting state recordings of about 3-min
duration. The continuous data were cut into 3.41s epochs. Trials with
STN-LFP or MEG source-extracted amplitude values exceeding 7 standard
deviations of the entire time series were discarded, leaving on average
46� 15 trials (range 16–88) per condition for each hemisphere. Data
from one hemisphere had to be excluded because of poor STN recordings
in the OFF condition in which none of the trials survived the artifact
rejection criteria. In our previous work, we used DICS beamforming to
identify the motor cortical source with largest resting state beta band
coherence (15–35Hz) with each STN-LFP time series (Litvak et al.,
2011). We selected per hemisphere the LFP contact pair with largest beta
band coherence and used the beamformer weights for the corresponding
source location to construct a ‘virtual electrode’ comprising the motor
cortical source time series. This was necessary to suppress artefacts in the
MEG originating from the percutaneous wires that were attached to the
deep brain stimulation electrodes (Litvak et al., 2010). Hence, for each
hemisphere, we have one STN time series and one motor cortical time
series (divided into epochs). Auto- and complex cross-spectral densities
were computed using Bayesian multivariate autoregressive modelling
(Roberts and Penny, 2002) with order 12 for frequencies between 5 and
45 Hz. These served as the data features to be predicted by the DCM
model (Friston et al., 2012).
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3.2. Model inversion

The objective of model inversion is to find posterior parameter den-
sities that provide the most accurate explanation of observed data fea-
tures, while minimizing themodel's complexity (i.e., deviation from prior
distributions). In DCM for complex cross spectral densities, model pre-
dictions are generated via a kernel response to endogenous input (in-
novations) in the spectral domain (Moran et al., 2007; Friston et al.,
2012). The model's connectivity structure, lead field matrix, and
parameter values constitute the system's transfer functions (one per
endogenous input source and data channel), which are multiplied with
the spectral density of the innovations to generate predicted auto- and
complex cross-spectra that are to be compared with the observed spectra.
Parameter expectations and precisions are updated via Variational
Bayesian inference under the Laplace approximation of Gaussian poste-
rior density distributions. This Variational Laplace scheme generalizes
the coordinate ascent expectation-maximization algorithm (Friston et al.,
2007). The objective function is variational free energy, which serves as
an approximation (i.e., lower bound) to the log-model evidence (Friston
et al., 2006, 2007; Friston, 2010).

Given the novel character of our cortico-basal ganglia circuit, we first
determined appropriate prior means for synaptic coupling strengths
(intrinsic and extrinsic) and population time constants by fitting the
model to grand-averaged spectral densities. We explored a range of initial
values that were variations on prior values previously used for the BGT
and MMC and the CMC model.1 In DCM, multiple conditions can be
modeled simultaneously by including a set of B parameters that represent
the difference in synaptic coupling strengths from a baseline or control
condition. We always modeled the OFF medication state as a baseline
condition and ON medication as trial-specific effects on all synaptic
coupling strengths (B). Posterior means for the ON condition are hence
obtained by adding the B estimates to γ or A; i.e., baseline intrinsic or
extrinsic connectivity. As the inversions were prone to early conver-
gence, we re-initialized each of them several times (re-initializing with
posterior estimates) to preclude local minima solutions.2 Posterior means
for synaptic coupling and time constants obtained for the inversion with
most accurate auto- and cross-spectral densities were taken as prior
values for the individual inversions described below. Data from one
subject with exceedingly strong beta oscillations (spectral peak ampli-
tude larger than 5 standard deviations above the group mean) were left
out of the grand-average, in order to obtain more representative group-
level spectral densities; however, this subject was included in the
1 Although not our focus, it should be noted that the optimisation of priors in
DCM for neurophysiological data is an important issue. In principle, this could
proceed by treating the priors over unknown parameters as part of model
specification and then performing model comparison to identify the best priors
in a quantitative sense. In practice, one usually inverts the data at hand using
successive line searches through parameter space to optimise model evidence
(as scored by the free energy). This usually goes hand-in-hand with an accurate
fit; accounting for about 90% of the variance. A heuristic diagnosis of ‘apt’ priors
can be convergence rate: one would normally hope to see convergence within 64
iterations of the variational scheme used in DCM; however, minor improve-
ments can often be obtained after 128 iterations, where a minor improvement is
a trivial increase in free energy (often less than about 1/8 nats).
2 Local minima can be an issue for the sorts of models typically used in DCM

for EEG and MEG (especially models of complex cross spectral data features).
This is because these DCMs are usually nonlinear in the parameters. Further-
more, nonlinearities can present brittle ‘inversion’ problems due to phase
transitions (e.g., when the eigenvalues of a DCM Jacobian cross zero). This sort
of brittleness is finessed in DCM by detecting and precluding positive eigen-
values; however, the problem of local minima can still persist. One simple
approach to this is to use a multi-start scheme; in other words, repeat the
inversion from multiple initial estimates of the parameters: in our illustrative
example we used a multi-start scheme by reinitialising the inversion with the
MAP estimates of the parameters (but not the precision or hyperparameters)
until convergence. This was repeated eight times.
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individual inversions.
Model predictions for the inversion that most accurately captured the

grand-average spectra are presented in Fig. 4A, where we display the
complex-valued cross-spectrum as coherence. There is a close match
between predicted and observed spectral densities for the motor cortex
and the STN, including the suppression of a clear beta peak in STN after
dopaminergic medication. Cross-spectral density values between motor
cortex and STN were much lower compared to the auto-spectra but were
still adequately predicted by the model with a distinct peak in the beta
frequency range for both conditions. The most relevant parameter esti-
mates resulting from this inversion are presented in Fig. 4b. There are a
few things of interest to note here. First of all, the time constants of the
neural populations in the MMC model could support a dissociation be-
tween fast activation in superficial layers versus slower activation in deep
layers, as observed by layer-specific oscillation frequencies in experi-
mental recordings (Roopun et al., 2006; Buffalo et al., 2011). To quantify
laminar-specific spectral responses in our network, we computed the
auto-spectrum of each cortical population from the system's Jacobian at
the maximum a posteriori (MAP) estimates. By specifying a lead field that
samples each population, the associated MAP estimates of spectral re-
sponses can be evaluated in the usual way. This revealed that deep layers
displayed relatively strong low-frequency (alpha) activity – see Fig. 5.
Note that high-frequency activity is not produced by the individual
cortical populations as it is not apparent in the observed data.

Secondly, STN neurons are known to respond relatively fast to input
(Farries et al., 2010), which is reflected by a lower time constant
compared to the other basal ganglia nuclei. Pallidal and striatal time
constants are close to experimentally observed membrane time constants
as summarized in a meta-analysis (http://neuroelectro.org). Further-
more, stronger synaptic coupling strengths were assigned to the domi-
nating cortical pathways from layer 4 to 2/3 and layer 2/3 to 5 (Weiler
et al., 2008; Yamawaki et al., 2014). Likewise, the corticostriatal pro-
jection was stronger than the hyperdirect pathway. We leave the dis-
cussion of medication-induced changes to the next section, where we
describe results based on individual inversions. Full details of prior dis-
tributions for these are listed in Table 3.

Prior means for intrinsic and extrinsic coupling strengths (γ; A), as
well as time constants (T) were taken from the posterior means obtained
after model inversion of the grand average spectra. Other prior means
remained at their original values. Parameters are generally implemented
as exponential scaling factors of the prior expectations to ensure non-
negativity constraints: ϑi ¼ πieθi , with θi ¼ N ð0; σ2i Þ, πi is the prior
expectation and σ2i its log-normal dispersion. Wider distributions were
used for the BGT model to accommodate our uncertainty about their
values. See Fig. 3 for the correspondence between index numbers and
anatomy, and abbreviations of neural populations.
3.3. Group-level parameter inference

The origin of oscillations within the basal ganglia has been the focus
of various experimental studies. On the one hand, much emphasis has
been placed on the recurrent excitation-inhibition circuitry between STN
and GPe, which has the natural capacity to produce oscillations (Bevan
et al., 2002). Indeed, it has been shown that the STN-GPe circuit in vitro
shows synchronized low-frequency oscillatory bursting behaviour (Plenz
and Kital, 1999). Furthermore, lesions or blocked synaptic input within
the STN-GPe circuit disrupt the oscillations (Ni et al., 2000; Tachibana
et al., 2011). On the other hand, other evidence points towards a cortical
origin. Directionality analysis between simultaneously recorded MEG
and STN-LFPs indicates a leading role for cortex in the beta range (Wil-
liams et al., 2002; Fogelson et al., 2006; Litvak et al., 2011; Oswal et al.,
2016). Cortical beta oscillations could reach the STN via the hyperdirect
or the indirect pathway. In the latter case, D2-expressing medium spiny
projection neurons (D2-MSN) may become more sensitive to cortical
input in the dopamine depleted state, leading to an over-activation of the

http://neuroelectro.org


Fig. 4. Model inversion results for the
grand average data. Panel A shows the
model's predicted power spectral densities
(PSD) and coherence overlaid on the
observed spectra. Panel B shows the corre-
sponding posterior means of the baseline
(OFF medication) condition. See Fig. 3 for
the correspondence between index numbers
and anatomy, and abbreviations of cell pop-
ulations. The bars denote the 95% Bayesian
confidence (or credible) intervals based upon
posterior covariance estimates.
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indirect pathway and hence a larger influence of cortical activity on the
basal ganglia (Brown, 2007; Kreitzer and Malenka, 2009; Weinberger
and Dostrovsky, 2011). These mechanisms of beta generation are not
mutually exclusive.

To identify which synaptic connections in our network were altered
by dopaminergic medication, we inverted the model for each hemisphere
individually. For one hemisphere in one subject we were unable to obtain
an adequate model prediction of the observed spectra (spectral pre-
dictions remained flat). This hemisphere was omitted from further ana-
lyses; hence, the individual inversions resulted in 20 sets of posterior
mean values. As we were interested in alterations of synaptic strength
between conditions, we only further considered the (B) parameters
encoding changes in intrinsic and extrinsic connectivity. For each
connection we performed a t-test against zero to test for a significant
difference between conditions over subjects. This revealed a significant
decrease in synaptic coupling strength (efficacy) following dopaminergic
825
medication for the corticostriatal projection (t(19)¼�2.42, p¼ .026),
the hyperdirect pathway (t(19)¼�3.14, p¼ .005), the connection from
striatum to the external pallidum (t(19)¼�2.57, p¼ .019), from the
external pallidum to STN (t(19)¼�2.54, p¼ .020), and the cortical
connection from infragranular pyramidal cells to inhibitory interneurons
(t(19)¼�2.96, p¼ .008). A medication-induced increase in connection
strength was only found for inhibitory self connections of the external
pallidum (t(19)¼ 2.58, p¼ .018). Nevertheless, none of these p-values
survived significance after a false discovery rate correction for multiple
comparisons. Results are shown in Fig. 6.

4. Discussion

Many human electrophysiological studies simply describe how
certain EEG/MEG data features change with behavioral tasks, cognitive
states, and pharmacological interventions or differ between patient



Fig. 5. Maximum a posteriori (MAP) estimates of [auto] spectral responses
in layer-specific neural populations. Results are based upon the MAP esti-
mates of the underlying synaptic and connectivity parameters in the OFF
medication condition. Effectively, these are obtained by running DCM in a
forward modelling mode, using a lead field that plays the role of a virtual
electrode; sampling each population (in the absence of channel noise).

Fig. 6. Group level inference on medication-induced changes in synaptic
efficacy. Connections with significantly altered coupling strength between ON
and OFF medication conditions are indicated in bold. Corresponding ‘þ’ and
‘-’-signs indicate whether medication increased or decreased the posterior mean
of the connections.
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groups and healthy controls. In contrast, analyses based on forward or
generative models – such as DCM – try to identify the neural origin of
these effects by linking experimental recordings to synaptic activities. In
this paper, we have presented a generalization of DCM that affords
greater latitude in its applications. Most importantly, it allows for the
combination of network nodes or sources that differ in intrinsic archi-
tecture. We illustrated this flexibility by coupling a motor cortex micro-
circuit model with a basal-ganglia-thalamus model, and used the
resulting DCM to ask how dopaminergic medication leads to a reduction
in beta oscillations in Parkinson's disease. We found evidence for weaker
synaptic efficacy within the STN-GPe circuit, as well as weaker hyper-
direct and indirect pathway connections.

The implementation of DCM in SPM has gradually been improved and
extended over recent years. At the time of writing, it contains a fairly
broad suite of neural mass and field models that have been designed to
reflect the canonical architecture of the cortex (see Table 2). However,
the standard implementation only permits one type of model in each
inversion. The same model, therefore, has to be used for each node (or
‘source’) in the network. While this serves the majority of EEG/MEG
studies with merely cortical nodes, it is less suited for networks involving
sources that do not adhere to a laminar organization, like the many
subcortical regions, cerebellum, or spinal cord. Even regional variations
in cortical anatomy can be a motivation for adjustments to the canonical
models, as exemplified by the motor cortex microcircuit model. The
generic DCM framework facilitates these non-standard applications by
allowing for a more flexible composition of distributed sources.

In virtue of specifying the model dynamics in terms of equation of
motion, the current scheme restricts generic DCM to state space models
that can be specified as ordinary differential equations (ODEs). This
precludes the direct use of models specified as delay differential equa-
tions (DDE), partial differential equations (PDE), integro-differential
equations or stochastic differential equations (SDE) with additive or
multiplicative noise. However, in many cases one can reduce more
elaborate models to an ODE. In DCM for EEG, high-order Taylor ap-
proximations are used to convert DDEs into ODEs. Indeed, the delays are
a free parameter of the DCM: See the appendix of (Bastos et al., 2015) for
a recent technical discussion. Similarly, it is possible to convert
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integro-differential equations associated with neural field models into
ordinary differential equations using spatial modes: see for example
(Pinotsis et al., 2014). Stochastic differential equations can be formulated
in terms of their density dynamics using (Laplacian) approximations and
the Fokker Planck formalism; see for example (Marreiros et al., 2009;
Moran et al., 2013). Finally, stochastic dynamics can be converted into
deterministic dynamics by using generative models of second order sta-
tistics; such as DCM for cross spectral density of the sort we have used
here (Friston et al., 2012). Effectively, this converts stochastic fluctua-
tions in time into the second order statistics of cross covariance functions
or, in the frequency domain, the spectral behaviour of noise; e.g., the
scale-free fluctuations used above.

In terms of practical constraints on the number of nodes (i.e. sources
and constituent neural masses) in a DCM, there are a number of con-
siderations. First, the computational cost of estimating large models in-
creases with the number of sources. This reflects the fact that the free
energy gradients, with respect to the number of free parameters, grows
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quickly with the number of sources. Having said this, the number of
parameters can be surprisingly large; sometimes several hundred.
Furthermore, increasing the dimensionality of parameter space can,
perhaps counterintuitively, nuance the problem of local extrema. One
perspective on this phenomenon is that adding extra parameters destroys
local extrema (for example, adding an extra dimension to a minimum can
convert it into a saddle point). Usually, DCM is used to answer specific
questions (e.g., about condition or diagnosis effects) using carefully
designed experiments that call for a small number of sources (e.g., be-
tween two and eight). As a rule of thumb, a typical DCM can normally be
inverted on a personal computer within a few minutes, with convergence
after about 16–64 iterations.

We have used an exemplar empirical application to demonstrate the
ability of the generic framework to reproduce and substantiate findings
from previous literature. The occurrence of strong beta oscillations in
basal ganglia nuclei is a hallmark of Parkinson's disease (Gatev et al.,
2006; Hammond et al., 2007; Oswal et al., 2013) and is indicative of the
severity of motor impairments (Neumann et al., 2016; van Wijk et al.,
2016). Identifying the synaptic circuits involved in beta generation is
therefore of great importance in understanding the pathophysiology of
movement disorders and development of targeted treatments. Our find-
ings suggest that dopaminergic medication has a widespread effect on
subcortical effective connectivity. This is to be expected as – in addition
to the striatum – dopaminergic projections from substantia nigra inner-
vate the pallidum and subthalamic nucleus (Cossette et al., 1999).

Empirical studies have shown that dopamine reduces the impact of
GABAergic striatal inputs to GPe (Cooper and Stanford, 2001) and of
GABAergic inputs to STN (Cragg et al., 2004). This support the results we
observed here, as well as previous modelling work showing that the
STN-GPe circuit is capable of inducing oscillations (Gillies et al., 2002;
Terman et al., 2002; Humphries et al., 2006; Holgado et al., 2010; Pav-
lides et al., 2012; Liu et al., 2016) but with a critical influence of con-
nections directly leading to the STN-GPe circuit (Gillies et al., 2002;
Terman et al., 2002; Holgado et al., 2010; Kumar et al., 2011). Also the
two previous DCM studies using a cortico-basal ganglia circuit found
evidence for a contribution of both of STN-GPe connections and the
hyperdirect and indirect pathway to the amplitude of beta oscillations
(Moran et al., 2011a; Marreiros et al., 2013). Alternatively, oscillations
might arise elsewhere in the cortical or cortico-thalamic system and
propagate through to the basal ganglia (van Albada et al., 2009; Hahn
and McIntyre, 2010; Pavlides et al., 2015). This scenario seems unlikely
in our case as spectral beta peaks were not always observed in our MEG
recordings, suggesting that excessive beta oscillations are primarily a
subcortical phenomenon. However, we acknowledge that the lack of
spectral beta peaks might be due to the lower signal-to-noise-ratio
inherent to MEG recordings. Encouragingly, the use of ECoG during
deep brain stimulation surgery is gaining interest in the field, which
could help resolve the ambiguous role of cortical oscillations in Parkin-
son's disease (de Hemptinne et al., 2013; Kondylis et al., 2016).

Previous DCM work – with more phenomenological generative
models – has examined levodopa-induced alterations in effective con-
nectivity in Parkinsonian patients using fMRI (Michely et al., 2015; Rowe
et al., 2010) and EEG (Herz et al., 2014a, 2014b). A common finding in
these studies is an increase in inter-regional coupling to supplementary
motor area with medication, which predicts the severity of
levodopa-induced dyskinesia with high accuracy (Herz et al., 2015).
Although these models lack biological detail in their neural state de-
scriptions, they are capable of identifying key extrinsic effective con-
nectivity changes. This was demonstrated recently in an advanced
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experimental set-up combining simultaneous optogenetic stimulation
and fMRI recordings in mice (Bernal-Casas et al., 2017). Upon stimula-
tion of D1-MSN neurons, DCM identified increased connectivity strength
along the direct pathway connections from striatum to GPi and substantia
nigra. Vice versa, the indirect pathway connection from STN to sub-
stantia nigra was found to be increased during D2-MSN stimulation.
Promising advances in the use of neural mass models in DCM for fMRI
might allow for pinpointing the underlying synaptic signaling more
precisely in future studies (Friston et al., 2017).

The basal ganglia form a distributed and intricately connected
network that is difficult to fully capture with electrophysiological re-
cordings. Computational modelling could therefore be highly valuable in
studying the functional roles of the direct, indirect and hyperdirect
pathways. While we demonstrated an application to movement disor-
ders, it is conceivable to use the same network architecture to address
cognitive or affective functions that are known to be reliant on cortico-
basal ganglia-thalamus interactions, such as reward-based decision
making (Balleine et al., 2007), working memory (McNab and Klingberg,
2008), obsessive compulsive disorder (Graybiel and Rauch, 2000), habit
formation and addiction (Yin and Knowlton, 2006), and many more
(Middleton and Strick, 2000; Kotz et al., 2009; Maia and Frank, 2011). In
humans, the opportunity to collect electrophysiological data from
subcortical structures is afforded by implanted deep brain stimulation
electrodes that are used for treatment of an increasing number of
movement and cognitive disorders (Krack et al., 2010). A more extensive
coverage of basal ganglia activity however might be reached with animal
models, which would provide tighter constraints on model parameters.

The generic DCM framework is primarily aimed at advanced DCM
users whomight appreciate more flexible control over modulatory effects
on intrinsic coupling parameters and/or who wish to couple cortical or
subcortical sources with distinct microcircuit architectures. We have also
described the MATLAB functions that need to be modified or created
when adding a new type of neural mass model to the DCM repertoire.
This has the advantage that existing Variational Laplace schemes in SPM
could be readily accessed for model inversion, including supplementary
tools for Bayesian model comparisons (Stephan et al., 2009; Penny et al.,
2010), and the recently introduced Parametric Empirical Bayes approach
for group inversion and between-group effects inference (Friston et al.,
2016). The generic implementation therefore augments the scope of
research questions that could be addressed with DCM using physiologi-
cally and anatomically realistic models.
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