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Abstract

Past management of exploited species and of conservation issues has often
ignored the evolutionary dynamics of species. During the 70s and 80s,
evolution was mostly considered a slow process that may be safely ignored for
most management issues. However, in recent years, examples of fast evolution
have accumulated, suggesting that time scales of evolutionary dynamics
(variations in genotype frequencies) and of ecological dynamics (variations in
species densities) are often largely comparable, so that complex feedbacks
commonly exist between the ecological and the evolutionary context
(“eco-evolutionary dynamics”). While a first approach is of course to consider
the evolution of a given species, in ecological communities, species are
interlinked by interaction networks. In the present article, | discuss how species
(co)evolution in such a network context may alter our understanding and
predictions for species coexistence, given the disturbed world we live in. |
review some concepts and examples suggesting that evolution may enhance
the robustness of ecological networks and then show that, in many situations,
the reverse may also happen, as evolutionary dynamics can harm diversity
maintenance in various ways. | particularly focus on how evolution modifies
indirect effects in ecological networks, then move to coevolution and discuss
how the outcome of coevolution for species coexistence depends on the type
of interaction (mutualistic or antagonistic) that is considered. | also review
examples of phenotypes that are known to be important for ecological networks
and shown to vary rapidly given global changes. Given all these components,
evolution produces indirect eco-evolutionary effects within networks that will
ultimately influence the optimal management of the current biodiversity crisis.
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Introduction

In spite of the many examples presented by Darwin of fast
evolution, especially in the context of artificial selection', the
potential for evolution to affect ecological dynamics has been
largely ignored in the prediction and management of species
exploitation or species conservation. Until recently, the time scale
of evolution was often considered to be so long” that it could be
safely ignored for many applied topics in ecology. While this
view dominated during the 70s and the 80s, many results in the
past two decades have accumulated, showing that evolution alters
ecological dynamics, even on short timescales. The evolution
of species directly targeted by humans is easy to perceive. The
development of modern medicine has led to the repeated evolu-
tion of resistance in bacteria’ and the intensification of agricul-
ture to the fast evolution of pesticide resistance in various pest
species®. Such examples may give the false impression that fast
evolution matters only for small, short-lived species. On the con-
trary, other examples clearly point out that such phenomena apply
broadly, even for larger species. Large differences in the survival
of different heritable phenotypes can, for instance, produce large
evolutionary variations, even in one generation. Fast evolution
of age and size at maturity in a cod fishery has been observed
in just a few years’. This evolution eventually constrained cod
recovery when fishing stopped. Evolution of leg morphology
in cane toads has allowed this invasive species to propagate
increasingly quickly in Australia®. Next to these particular
examples, more general analyses show the impact of evolution
on the demography of species as well as on the dynamics of
their interactions. Reconsidering previously published species,
Hairston et al.’” showed that the population growth rate of
different species from different case studies was affected equally
by (ecological) density or environment-dependent effects and
by (evolutionary) changes in their phenotypes, suggesting
that evolution happens on a time scale that is relevant for
ecological dynamics. Classical predator—prey population cycles
are similarly affected, with many datasets suggesting that
evolution often shapes such cycles*'".

Fast evolutionary dynamics should be all the more prevalent
in the context of current global changes. Global changes are of
political and societal importance because they cause impor-
tant declines in many species, affecting either their survival or
their fecundity. Because these two quantities are the basic fitness
components, global changes imply strong selective pressures''~”
so that fast evolution is expected for any phenotype that would
be heritable, variable, and associated with these variations in
fecundity and survival. Fast evolution has been repeatedly shown
in the case of invasive species, both in alien species®'*" and in
species of the recipient community'®'”. Tt then largely alters the
dynamics of the invasion and its effects on invaded ecosystems.
Evolution under climate change has been similarly observed. It
modifies species phenologies'®!' and constrains changes in species
distributions**~**. Evolution in response to overexploitation®>** or
in response to agricultural management’** has also been exten-
sively documented.

The question of the role of evolution in conservation issues is
thus particularly important and increasingly recognized”".

F1000Research 2019, 8(F1000 Faculty Rev):97 Last updated: 24 JAN 2019

Evolution may help the conservation of diversity. For instance,
the idea of evolutionary rescue’’ proposes that, following a
disturbance, if natural selection acts fast enough, it may allow
local species adaptation and survival, as the evolving species’
growth rate is restored by evolution. While many instances of
evolutionary rescue have been observed in nature’” and the
conditions of its occurrence theoretically and experimentally
investigated, its general importance for the overall maintenance
of diversity is still unknown. Particularly, evolutionary rescue
is a concept based on a monospecific approach’ and its impact
on the dynamics of the network in which the evolving species
is embedded is still largely unknown. However, experimen-
tal evidence highlights that such effects do exist. For instance,
experimental evolution of plants depending on humidity con-
ditions alters the composition and structure of their microbial
communities*, thereby affecting plant—soil feedbacks.

Other works suggest less optimistic impacts of evolution on
species diversity. Evolution under frequency-dependent selection
(i.e. the fitness of individuals of a particular phenotype depends
on whether this phenotype is rare or common in the population)
can drive the extinction of the evolving species (evolutionary
suicide™%). While frequency dependence may sometimes be
beneficial from a fitness point of view, current evidence shows
that it restricts the applicability of evolutionary rescue’.
Evolution can also directly decrease population size (evolu-
tionary deterioration™), thereby increasing the probability of
extinction of the species. Evolution of a species can also lead
to the loss of another species in the network (evolutionary
murder”’). Ultimately, the overall effect of species evolution
on the maintenance of diversity under global changes will depend
on which of these processes (evolutionary rescue, suicide,
deterioration, and murder) dominate.

In the present article, I focus on the implications of species
(co)evolution within networks, given the context of our disturbed
world. I tackle three questions: (1) what are the implications
of evolutionary rescue in a network context? (2) Does the effect
of evolution on diversity depend on the type of interaction
(hence the type of network) that is considered? (3) Are the traits
with documented variations linked to global changes important
in a network context?

Evolutionary rescue in the context of ecological
networks

Given current changes, the role of species adaptation is hotly
debated. While some studies claim that niche conservatism
should prevail*'**; others have pointed out that rapid evolutionary
adaptation plays an important role in the maintenance of
diversity'**'**=%. Under evolutionary rescue, a species may adapt
following a selection process born from a change in its environ-
ment and survive because of this adaptation. While such an
outcome offers important hope given the current biodiversity
crisis, it likely applies to a restricted set of species (Figure 1).
Reviews on the conditions of application of evolutionary rescue
have been published elsewhere (e.g. 30). Species with large
populations are more likely to survive through evolutionary res-
cue (Figure 1). Large populations offer more time for evolution
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Figure 1. Evolutionary rescue. (A) The black line shows the evolving species’ density. At the start, the species undergoes an alteration in its
environment that leads to a negative population growth rate. However, natural selection favors adapted alleles in the population (the dashed
line shows the adapted allele frequency). This adaptation increases the species’ growth rate. When this growth rate becomes positive, the
species’ density increases again. The red line shows the population under which extinction is likely (e.g. due to demographic stochasticity).
The longer the species spends under this threshold, the larger the probability of extinction. (B) Evolutionary rescue depends on population
size. In this panel, the only difference between the black and the gray species is initial population size. Evolutionary rescue is more likely for
the gray species, as its larger initial population leaves more time for evolution to act before the threshold is reached. (C) Evolutionary rescue
depends on genetic variability. In this panel, the two species differ only in their genetic variability. The gray species initially has a larger
genetic variability. This allows a faster evolutionary response, thereby facilitating rescue. Adapted from 30,31.

to act before the species abundance is dangerously low. Also,
larger abundances often offer more genetic variability (e.g.
more reproductive events, hence the possibility of transmission
of more de novo mutations)**’. Similarly, species that have
faster life-cycles are more likely to be saved by evolutionary
rescue, as the numerous reproductive events allow the accumu-
lation of new mutations. A higher genetic variability promotes
evolutionary rescue (Figure 1). Because most species of con-
servation concern do not have high abundances and often have
slow time cycles, evolutionary rescue is unlikely to save these
species.

I do not want to focus on these already-reviewed aspects™;
instead, I would rather question the implications of evolution-
ary rescue outside of the monospecific framework in which it has
been grounded to bring it into a network context. Imagine that
we have two species in a network undergoing a disturbance in
their abiotic environment (e.g. a temperature change). Following
this disturbance, imagine that the two species adapt to the change
through natural selection (e.g. through modifications of their
thermal niche). I want to stress here that the trait I consider is not
directly selected for by species interactions but rather selected
by the (abiotic) environment. Finally, imagine that one of the
two species undergoes an efficient evolutionary rescue process
(hereafter species A), while the other one does not (hereafter
species B), for instance because of asymmetries in abundances or
in initial genetic variabilities. Even though both species undergo

evolutionary rescue and both would likely survive if one were
to consider species separately (Figure 2A), the network con-
text may alter this prediction. If the species are in competition
(Figure 2B), species B will likely be killed (evolutionary
murder*#4%) because the efficient evolutionary rescue in
species A leads to a competitive asymmetry between the two
species. Similarly, if we imagine that species A is now a preda-
tor of species B (Figure 2C), its efficient evolutionary rescue
enhances the decline of species B, likely driving it to extinction.
Species B indeed suffers simultaneously from the outside distur-
bance (evolutionary rescue being hardly efficient for species B)
and from the ecological context (more predators, as species A
has an efficient evolutionary rescue). Following the extinction
of species B, species A may similarly go extinct if it is a spe-
cialist or may survive if it consumes other prey in the network.
In the latter case, the efficient evolutionary rescue in species
A will directly impact all of its prey in the food web. Now con-
sider the reverse case: species B is the predator (Figure 2D). The
ecological context now enhances the positive effect of evolution-
ary rescue on coexistence. The very efficient evolutionary res-
cue in prey species A creates bottom-up effects on its predator
(species B). Species B may then hardly suffer from the external
change. Similar positive effects are expected if the two species
have mutualistic interactions (Figure 2E). Effects extend beyond
pairwise interactions. If one considers two prey species that
share a predator (a classical “apparent competition” module’’),
efficient evolutionary rescue in species A will help to maintain
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Figure 2. Evolutionary rescue, considering ecological interactions. (A) Starting from the classical, monospecific view of evolutionary
rescue, direct effects of evolution are positive for the maintenance of diversity (black +). Note, however, that evolutionary rescue is more
efficient for species A (gray) than for species B (black) (larger + sign). (B) When the two species compete, evolutionary rescue favors one
of the two species, possibly leading to the loss of the other species (evolutionary murder). (C) Similarly, when species A is a predator of
species B, evolutionary rescue may decrease diversity by increasing top-down effects. However, efficient evolutionary rescue in
species A may actually help species B, for instance by increasing bottom-up effects (D) or when the two species have mutualistic interactions
(E). Effects of evolutionary rescue may propagate further. If two prey species share a predator and one species has a very efficient
evolutionary rescue, this helps to maintain the predator species (through bottom-up effect) but may lead to the evolutionary murder of the
other prey species, as apparent competition is increased. In all panels, ecological interactions are in solid arrows, direct effects of evolutionary
rescue on diversity maintenance are shown by a black +, and indirect effects of evolutionary rescue on diversity are depicted using green

or red signs.

its predator but may be detrimental to the maintenance of the
other prey species (Figure 2F). In conclusion, while evolutionary
rescue may help the focal species to survive in deteriorated
environments (at least under some conditions), its effect on
diversity as a whole, accounting for community structure, is not
likely to be systematically positive. Rather, it will lead to some
important surprises, as evolutionary rescue modifies indirect
effects happening within the ecological network.

Some empirical observations can be linked to these ideas.
For instance, the evolution of resistance in agricultural pests
incurs large losses in terms of agricultural productivity**>'. This
clearly highlights how evolutionary rescue in consumer species
reduces the abundance and productivity of lower trophic levels.
Considering competition, several evolutionary models suggest
that while species evolution can help the survival of some species
through adaptation, as well as the colonization of new ranges,
such winners are compensated by the extinctions of many other
species that suffer from increased competition™>*. Observations
suggest that the maintenance of mutualistic interactions is also
affected by such rescue processes. In the case of coral bleach-
ing, evolutionary variations are likely to be highly important to
determine the resilience of coral reefs™. Rapid adaptation is
more likely to come from evolution in the symbionts, as they
have larger population sizes and faster generations™. Such work
suggests that rescue of one of the mutualistic partners helps the
maintenance of the whole system, as proposed above. Note
that because evolutionary rescue is more likely to happen in
(small) species that have short generations and large popula-
tions, the cascading effects I introduce here are likely larger

when such species have a dominant role in the network’s structure
and functioning. Immediate candidates include pathogens, whose
abundance and impact on ecological network structure is now
well documented™.

An example: co-evolution of species phenology in
plant-herbivore and plant—pollinator systems

As illustrated by Figure 2, how evolution and ecology interact
and affect the maintenance of species diversity depends on the
type of interaction that is considered (antagonism [competition
or predation] versus mutualism). While many studies remain
focused on either trophic networks or mutualistic networks, an
increasing number of researchers are interested in understanding
how mixing different types of interactions affects the stability
and diversity of ecological networks’ . In an evolutionary
context, it has been shown that in a complex ecosystem where
several interactions coexist, evolution does not systematically
enhance the stability of the network®. Evolution is more sta-
bilizing when one considers the trophic part of the interaction
network®®, while evolution of the mutualistic interaction is more
often destabilizing®. Given present disturbances, it is urgent
to develop a more integrative understanding of how ecological
networks function, considering the different interaction types
they contain.

Particularly, expected evolutionary feedbacks differ depending
on the type of ecological interaction”’. To discuss this, I use the
evolution of phenologies as a working example (Figure 3). 1
consider eco-evolutionary dynamics of plant-herbivore interac-
tions (Figure 3A and 3C) and of plant—pollinator interactions
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Figure 3. Coevolution of plant-interactor phenologies under different scenarios. Scenarios differ in interaction type (antagonistic on the
left [A and C] and mutualistic on the right [B and D]) and in the species with the higher evolutionary potential (e.g. genetic variability) to shift
its phenology in response to climate change (top row: interactor potential higher; bottom: plant potential higher). In each panel, the initial
phenology is shown in dark. Possible new phenologies given the evolutionary potential are shown in light. Arrows show the magnitude of the
potential shift. A possible outcome for the evolution is proposed below each panel.

(Figure 3B and 3D) to contrast mutualistic and antagonistic
interactions. I focus on phenology for several reasons. Changes
in phenologies are one of the most prevalent consequences of
climatic changes®. Also, previous studies suggest that species
vastly differ in their ability to shift>®, with important conse-
quences for the maintenance of interspecific interactions in
ecological networks®~”. For instance, a recent review on 15 years
in Texas showed that amphibians have shifted their phenologies
in different ways, increasing competitive interactions in these
communities”. In each case, I assume that the species evolve
toward earlier phenologies, for instance because of climatic
changes. One of the species (either the plant or its interactor)
can evolve a phenological change fast while potential evolution
is slower in the other species, for instance because its genetic
variability is reduced. I also consider that the overlap of the
two phenologies is a proxy of the intensity of the ecological
interaction. The different situations are shown in Figure 3.

In Figure 3A, I assume that the herbivore population responds
more easily so that its phenological shift is facilitated. Potential
evolution for the plant is, on the contrary, assumed to be limited.
Given these components, herbivores that emerge early will be
resource limited, having little plant to consume. As a result, in
such a situation, although the herbivore could in principle exhibit
evolutionary rescue (as it is able to evolve fast), it will likely
not because its evolution is constrained by the low evolution-
ary potential of its resource. If this evolution is too slow given
current changes, the diversity may not be maintained. Now

turn to the reverse scenario (Figure 3C), in which the plant has
a high evolutionary potential while the herbivore cannot shift
easily. The plant is now released from some of the top-down
effects and its population may grow. This may in turn increase
its evolutionary potential (e.g. because of the accumulation of
new mutations), further facilitating the rescue process. Therefore,
ecological release may speed up plant evolution, accelerating
evolutionary rescue. The herbivore, on the contrary, is a victim
of two distinct forces. On the evolutionary side, it has a low
potential, so that evolutionary rescue is unlikely. On the eco-
logical side, its resource population does shift, so that it is left
with little resource. Such forces interact to promote the extinction
of the herbivore.

I now turn briefly to the right part of the figure (Figure 3B and
3D) that shows mutualistic interactions. Regardless of the situ-
ation, the species whose evolutionary potential is higher will
have no mutualistic partner when shifting its phenology. Assum-
ing the mutualistic interaction has a large impact on fitness, early
emerging individuals will be counterselected, and the realized
phenological shift will actually be close to the one observed for
the slower species. Therefore, I expect that in the case of these
mutualistic interactions, the evolutionary response will be close
to the potential response of the slower species. This suggests that
evolutionary inertia may commonly happen for such interac-
tions. This inertia limits the efficiency of evolutionary rescue and
may play a part in the observed decline of pollinators and asso-
ciated plants observed in different places’'~*. Also, this idea is in
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line with other studies pointing out the evolutionary vulnerability
of mutualisms given current changes'”. While previous work
suggests that mutualistic networks, involving intrinsically strong
positive feedbacks, are prone to sudden collapse’™, the present
analysis suggests that they may also be less likely to evolutionarily
adapt to external disturbances.

Superficially, it may seem that results from Figure 2E and
Figure 3B and 3D are in contradiction, as the first points out
how mutualism may be beneficial for evolutionary rescue while
the other argues the contrary. The two figures actually show
different processes. Figure 2 relies on an analysis of density-
dependent effects. Indeed, when mutualism enhances densities,
it may help evolutionary rescue. Figure 3 relies on the distribu-
tion of this density in times (phenologies). Possible mismatch
may then limit the rescue process. In a mutualistic context, it is
therefore important to understand which of these two processes
(density-dependent effect versus mismatch effect) will dominate to
properly analyze the fragility of the interaction.

Of course, other scenarios are possible. Analysis of Figure 3
relies on a pairwise interaction, therefore implicitly assuming
that both species are specialists (or at the very least that the
particular interaction plays an important role in the fitness of both
species). For more generalist species, phenological shifts can
in fact lead to changes in interaction partners. Such interaction
switches have been observed in several instances'>*%’. This
does not preclude the possibility of negative evolutionary effects
on diversity maintenance. Such a rewiring creates new indirect
effects in the ecological network’ that may be positive or negative
(see Figure 2 and related text). While the effects of evolution on
biodiversity in the context of ecological networks require further
theoretical developments (but see 76,77), we already know that
some of the traits that largely drive ecological dynamics within
these networks are currently varying fast under current changes.

Also, the analysis of Figure 3 relies on evolutionary variations
in phenology. While variations in phenology have been widely
observed®, the role of plasticity, of the evolution of plasticity,
and of genetic changes in such variations is not always clear and
likely varies depending on species and on the ecological con-
text. However, several studies have underlined that evolution
can clearly be an important part of such shifts. For instance, vari-
ations in egg-laying date in great tits are largely explained by
either genetic variations'” or evolution of plasticity'®. Such a
role of evolution in spawning dates has also been pointed out for
amphibian species’'. Similarly, the timing of bird migration has
recently shifted, and part of these shifts is linked to evolutionary
changes’.

Effects of current changes on phenotypes strongly
impacting ecological networks

Many studies document the variations of different phenotypic
traits under global changes. While the role of evolution versus
plasticity is not always clear in these studies, several of these
variations are widespread, consistent, and sustained, suggest-
ing a directional selective process whose influence on ecologi-
cal networks can be important. While a complete list of these
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phenotypes is beyond the scope of this article, I here discuss a
few phenotypic traits satisfying two conditions: (1) documented,
consistent variations given current changes and (2) documented
impact on the structure or functioning of ecological networks.

Body size, for instance, has large effects on many aspects of the
ecological dynamics of species, affecting not only life history
traits”” but also the occurrence and intensity of ecological inter-
actions. Predator—prey interactions are largely affected by the
distribution of body sizes*’®!, predators being larger than their
prey by a given ratio**. Differences in body size also affect
competitive interactions®. Therefore, changes in the body size
of different species in an ecological network likely impact its
structure and functioning, as suggested by empirical data® and
theoretical models****’. One of the key theoretical frameworks
to understand the implications of body size for ecology is the
metabolic theory of ecology”. It also allows some predictions on
how increasing temperature (e.g. through climate change) may
affect the selection of body sizes. Consistent with these predic-
tions, many empirical data show that current changes lead to
decreasing body sizes within natural ecosystems. Evidence is
particularly strong for aquatic systems’””, where smaller body
sizes are selected at different organizational levels, within spe-
cies and among species’’. Selection of smaller body sizes is so
prevalent in the empirical literature that it has been proposed as
a general law of climate changes™. This leads to two important
questions regarding ecological networks. First, what will be the
implications of such phenotypic changes for the structure and
functioning of these systems? If the various species change
body sizes at different rates, modifications in interaction part-
ners are likely. Interaction strengths will also likely be modified,
affecting the stability of future networks™. Second, how does
the ecological network act as a selective agent on species body
sizes? As body size affects ecological interactions, the ecological
network may also constrain future body size variations in addi-
tion to or in interaction with climatic changes. Selection toward
smaller body sizes may be accelerated or dampened. Body size
dynamics may also depend on the position of the species within
the network. For instance, recent theoretical results suggest that
larger body size variations happen at higher trophic levels’’.

I now get back to phenological changes. Phenology directly
affects the occurrence of interactions within the network by the
simple fact that for two species to interact, it is necessary that
they co-occur (i.e. their phenologies match). I have already
explained some of the evolutionary consequences of changes
in phenology. I would like to turn to the consequences of such
phenological changes for the ecological network. A first con-
sequence is that shifts in phenology, if constrained in different
ways between different groups (for instance between plants and
their pollinators), may lead to changes in interaction partners. An
immediate consequence is that interaction patterns are altered,
and network structures and energy pathways will likely be
modified. Also, partners are of different quality, which has
important implications for the evolution of such networks. In an
interesting experiment published recently, Gervasi and Schiest]*®
manipulated the pollinators of different Brassica rapa plants,
with one pollinator treatment (bumblebees) offering a better
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service than the other (hoverflies). They showed that in just a
few generations, the plants pollinated by hoverflies evolved a
decreased investment in advertising traits (shorter plants, modi-
fied volatile compounds) and evolved toward more autonomous
self-pollination. This study clearly shows possible consequences
of partner switches in pollination networks due to phenologi-
cal changes. Other reproductive modes can be selected and the
mutualistic interaction undermined. This is also consistent with
other work suggesting that mutualisms can be evolutionarily
threatened by current changes owing to partner switches'”.

Changes in phenologies in a key interaction also potentially
change the functioning of the whole system. Deacy et al.” showed
that, because of climate change, in Alaska, the phenologies of
red elderberry (Sambucus racemosa) and of sockeye salmon
(Oncorhynchus nerka) migration have progressively converged.
As a result, Kodiak brown bears (Ursus arctos middendorffi)
have relaxed their predation on salmon, as they prefer to eat the
elderberries. Because in normal years bear predation is the
major source of salmon mortality, and because salmon mortality
is a huge part of the nutrient cycling in such ecosystems”, the
phenological shift described by Deacy er al. likely affects the
whole ecosystem’s functioning by changing the way nutrients are
spatially distributed.

Other traits certainly deserve investigation. For instance,
stoichiometric ratios are important constraints for interspecific
interactions and ecosystem functioning’®”’. Because nitrogen
deposition and modifications of nutrient cycles by humans are
important current changes”, the distribution of available nutri-
ents presently changes in major ways, possibly affecting the
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selection of stoichiometric ratios in many organisms. Such varia-
tions may constrain the transmission of energy within ecological
networks, affecting their functioning and stability”. Global
changes may also affect the selection on plant chemistry. Recent
data show that the number of freezing days impacts the frequency
of various thyme phenotypes that differ in their chemistry'”.
Because plant metabolites play an important role in plant—
herbivore interactions'’’, plant—pollinator interactions, or in
both'*71% such modifications may ultimately affect the structure of
multiple interaction networks.

Understanding such eco-evolutionary aspects requires the
development of theoretical models allowing a relevant com-
plexity (i.e. multiple species to study the diversity issues) and of
relevant phenotypes and trade-offs. While the current devel-
opments in community evolution models** offer proper
tools to tackle these issues, such complex questions need time
and investigation, which is at odds with the urgency of the
situation.
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