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An important capacity of genes is the rapid change of expression levels to
cope with the environment, known as expression responsiveness or plas-
ticity. Elucidating the genomic mechanisms determining expression
plasticity is critical for understanding the molecular basis of phenotypic
plasticity, fitness and adaptation. In this study, we systematically quantified
gene expression plasticity in four metazoan species by integrating changes of
expression levels under a large number of genetic and environmental con-
ditions. From this, we demonstrated that expression plasticity measures a
distinct feature of gene expression that is orthogonal to other well-studied
features, including gene expression level and tissue specificity/broadness.
Expression plasticity is conserved across species with important physiologi-
cal implications. The magnitude of expression plasticity is highly correlated
with gene function and genes with high plasticity are implicated in disease
susceptibility. Genome-wide analysis identified many conserved promoter
cis-elements, trans-acting factors (such as CTCF), and gene body histone
modifications (H3K36me3, H3K79me2 and H4K20me1) that are significantly
associated with expression plasticity. Analysis of expression changes in
perturbation experiments further validated a causal role of specific transcrip-
tion factors and histone modifications. Collectively, this work reveals the
general properties, physiological implications and multivariable regula-
tion of gene expression plasticity in metazoans, extending the mechanistic
understanding of gene regulation.
1. Introduction
Gene expression connects genotypes to phenotypes. Gene expression plasticity
(GEP), which concerns the capacity of genes to change their expression levels
under diverse conditions, is critical for phenotypic plasticity, adaptation and
evolvability [1–4]. It has been widely observed that the expression levels of cer-
tain genes (such as stress-response genes) are intrinsically more flexible while
those of other genes are more resistant (such as housekeeping genes). GEP
has important implications for organismal fitness [2]. For example, the ability
of genes to rapidly tune their expression levels to accommodate changing con-
ditions (such as stress) is crucial for the organism to adapt to a new
environment, hence increasing the fitness. Theoretically, low plasticity confers
cellular stability and allows the organism to maintain a steady state, while
high plasticity allows an organism to rapidly remodel its gene expression pro-
grammes and cellular function to cope with changing environments, enabling
phenotypic adaption. Elucidating the genomic mechanisms underlying differ-
ential GEP is an important but unresolved question in genome biology.

Pioneering studies in yeast have defined GEP by measuring the magnitude
of gene expression changes across diverse genetic and environmental con-
ditions [3,5,6]. Functional analyses have revealed that two types of genetic
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and epigenetic signatures in promoters correlate with
expression plasticity. The first signature is the TATA box, a
conserved element present in many eukaryotic gene promo-
ters. In yeast, TATA box-containing genes exhibit
significantly higher levels of plasticity than TATA-less
genes, and this phenomenon is conserved in other species
[3]. The second signature is nucleosome occupancy and
organization near the transcription start site (TSS). The pres-
ence of well-positioned nucleosomes is associated with
significantly higher expression plasticity in yeast [5,6].

In multicellular organisms, GEP and its regulation are less
well understood. Gene expression changes have been profiled
in response to a limited number of conditions in individual
experiments in Caenorhabditis elegans [7–9], Drosophila [10]
and human cells [11]. The presence of specific transcription
regulatory elements has been shown to allow dozens of
genes to be co-regulated in response to heat shock stress
[7]. Systematic comparison of gene expression changes in
five C. elegans strains cultured under five conditions ident-
ified that certain genes are more prone to respond to trans-
acting factors to mediate genotype–environment interactions,
especially those with complex promoter architecture and
mid-range expression levels [8]. In addition, the genetical
genomics approach has been employed to identify cis- and
trans-loci that are strongly associated with gene expression
changes in response to specific environmental conditions
such as ambient temperature [9]. These studies have charac-
terized groups of genes that are prone to change expression
under specific stress conditions, and revealed certain gene
features that mediate plastic gene expression. However,
many important questions remain to be addressed. For
example, is GEP an intrinsic gene property conserved in
multicellular organisms? What are the biological implications
of differential expression plasticity? Furthermore, given the
significantly increased complexity of gene regulation in
metazoan species, are there additional cis-elements, trans-factors
and epigenetic regulators that underlie expression plasticity?
To this end, a systematic analysis of the properties and genomic
regulation of GEP in metazoan species is highly desirable, but
has yet to be performed.

In this study, we performed an integrative functional
analysis of genome-wide gene expression programmes,
gene attributes, cis-regulatory motifs, trans-acting proteins
and histone modifications to decipher the properties, impli-
cations and regulation of GEP in four metazoan species.
Our results revealed that GEP is a conserved gene property
implicated in cellular flexibility, disease susceptibility and
stress/environmental response. We provide genome-wide
evidence that core promoter cis-elements, transcription fac-
tors (such as CTCF) and gene body histone modifications
(H3K36me3, H3K79me2 and H4K20me1) play a causal role
in determining expression plasticity. Together, our findings
provide insights into the function and regulation of GEP
in metazoans.
2. Results
2.1. Quantification of gene expression plasticity in

metazoan species
GEP is defined as the magnitude of gene expression
change across diverse genetic and environmental conditions
(figure 1a). Using a similar method as done previously for
yeast data [3], we collected gene expression datasets from a
public database [12] or from the literature [13] to quantify
GEP in four metazoan species (electronic supplemen-
tary material, table S1, and Methods). For each condition
(e.g. culture temperature, gene mutation, drug treatment),
the magnitude of gene expression change after treatment
was quantified as the square of log2-fold change, and
the values across all conditions (range from 270 to 1267 in
different species, figure 1b) were averaged and log-trans-
formed to represent GEP (electronic supplementary
material, figure S1a).

The measured GEP shows a wide distribution which is
distinct from that expected, in which the fold changes of
genes associated with each condition were randomized
(figure 1c; electronic supplementary material, figure S1b).
We performed a series of quality control checks to ensure
reliable quantification of GEP. First, we verified that the
total number of conditions used was sufficient to represent
GEP. Simulation of the influence of condition number on
GEP showed high stability of the score (r = 0.9) once the
condition number reached 100 (electronic supplementary
material, figure S1c); as we used over 100 conditions for
all species, our condition number was sufficient. Second,
we confirmed the biological relevance of quantified GEP
using benchmark genes. As expected, human signal-respon-
sive genes [14] whose expression is expected to be
conditional and dynamic showed significantly higher GEP
than other genes (electronic supplementary material, figure
S1d and table S2). In addition, consistent with the expec-
tation that genes participating in the stress response
should have high GEP, our data showed that, in both fly
and worm [10,15], stress-responsive genes and those
required for stress response indeed exhibited significantly
higher GEP (electronic supplementary material, figure S1e,f
and table S2). Third, our measurement of GEP is based on
quantifying expression changes across both normal and
challenging conditions (such as environmental changes
and genetic perturbations), which would better approximate
the ability of a gene to change its expression than the natu-
ral variability of gene expression across tissue or cell types
under normal condition. We applied the same method
and recalculated GEP of human genes using expression
data across a large collection of normal samples [16].
While GEP calculated using both data sources (termed
GEPN+C and GEPN, respectively) correlated moderately
with each other (Spearman correlation, ρ = 0.317, p < 0.001,
figure 1d ), GEPN+C used here better represented expression
plasticity than GEPN. Specifically, GEPN+C exhibited a sig-
nificantly higher level than GEPN (Wilcoxon signed-rank
test, p < 0.001, figure 1e; electronic supplementary material,
table S3) for signal-responsive genes that should exhibit
high expression plasticity. Finally, unlike yeast in which
GEP is quantified in one cell across various conditions,
GEP in multicellular organisms combines the results of
different tissues and cell types. Thus, the quantifying orga-
nismal-level GEP may not be meaningful if cell-specific GEP
is pervasive. To assess this possibility, we calculated GEP for
specific human cell lines and found that cell-type-specific
GEP values correlated significantly with total GEP and
with each other (figure 1f ), suggesting that, while GEP exhi-
bits cell specificity, the total GEP recapitulates that of
specific cell types.



02.55.07.510.012.5

2

0

–2

–4

–6

genetic and environmental conditions

ex
pr

es
si

on
 le

ve
l

low 
plasticity

high 
plasticity

high 
plasticity

organism
number

of genes 
number

of conditions 

human 16 645 1267

mouse 12 424 887

fly 9514 270

worm 12 602 550

al
l

A
54

9

ep
ith

el
ia

l c
el

l

H
C

T
11

6

hE
SC

ke
ra

tin
oc

yt
e

M
C

F7

M
D

A
M

B
23

1

M
SC

m
on

on
uc

le
ar

 c
el

l

all

A549

epithelial cell

HCT116

hESC

keratinocyte

MCF7

MDAMB231

MSC

mononuclear cell

correlation coefficientGEPN

G
E

P N
+

C

Spearman r = 0.317,
p < 0.001

(a) (b) (c)

( f )(d) (e)

GEP (from low to high)

600
450
300
150

0

1.20–1.2–2.4–3.6–4.8–6.0–7.2

1.20–1.2–2.4–3.6–4.8–6.0–7.2
480
360
240
120

0

1.20–1.2–2.4–3.6–4.8–6.0

600
450
300
150

0

3.22.41.60.80–0.8–1.6–2.4

800
600
400
200

0

fr
eq

ue
nc

y

human

mouse

fly

worm

G
E

P 
(r

an
k 

pe
rc

en
til

e)

GEPN+C

1.0

0.8

0.6

0.4

0.2

0

GEPN

signal-responsive genes

other genes

£0
.2

0.
3

0.
4

0.
5

0.
6

0.
7

≥0
.8

***

Figure 1. Quantification of GEP in four metazoan species. (a) Schematic diagram shows the definition of GEP based on changes in expression levels across genetic
and environmental conditions. Genes with a high GEP exhibit dynamic expression across conditions, while genes with a low GEP exhibit stable expression. (b)
Summary of data sources. The figure shows the species, numbers of genes and numbers of conditions used for quantifying GEP. (c) Distribution of GEP in
four species. (d ) Correlation between GEPN+C and GEPN. For GEPN, fold changes of gene expression were quantified between expression level in a sample and
the average level across all samples. (e) Signal-responsive genes exhibited higher GEPN+C than GEPN. To compare the GEP level of the same gene calculated
using different expression datasets, GEP levels were normalized as the percentile rank across all genes. *** denotes Wilcoxon signed-rank test, p < 0.001.
( f ) Heatmap shows the correlation coefficient between global and cell-specific GEP.
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2.2. Expression plasticity is an intrinsic gene property
associated with gene function and disease
susceptibility

With GEP quantified, we next determined whether GEP is an
intrinsic gene property based on two criteria. First, a gene prop-
erty should be evolutionarily conserved. Consistently, we found
GEP to bewidely conserved between species. The strongest cor-
relation coefficient was observed between human and mouse
orthologues (ρ = 0.46, p < 0.001).Weaker but statistically signifi-
cant correlations were also observed between distantly related
species (electronic supplementary material, figure S2a and
table S4). Second, a gene property should measure a distinct
gene feature. Gene expression level and broadness (also
known as tissue specificity) are two important properties that
quantify the abundancy and breadth of gene expression
[16,17]. Our analysis showed GEP to be poorly correlated
with expression level (electronic supplementary material,
figure S2b and table S5; ρ = 0.079 and 0.179, respectively, for
two different datasets) and expression broadness (electronic
supplementary material, figure S2c and table S5; ρ = 0.077 and
0.080, respectively, for two different measurements of
expression broadness), suggesting GEP indicates an orthogonal
feature of gene expression. Together, the above results confirm
that expression plasticity is an intrinsic gene property indicating
the changeability of gene expression.

We next sought to determine the physiological implications
of GEP. First, we established that GEP is significantly associated
with specific gene functions. Consistent with intuition, analysis
of gene functional annotations [18] revealed that genes with
high GEP were significantly overrepresented in biological pro-
cesses that are important for cellular flexibility, such as
inflammatory response, immune response and response to
drugs (figure 2a). In addition to global functional classifications,
we compiled lists of genes with well-defined physiological
functions and confirmed again that GEPand biological function
were nicely consistent (electronic supplementary material, table
S6). Specifically, homeobox genes, which are critical for specify-
ing cell fate and body plan, exhibited significantly lower GEP
(figure 2b; electronic supplementary material, table S6). So did
hormones and their receptors, whose function is crucial for
growth and development in a dosage-sensitive manner
(figure 2c; electronic supplementarymaterial, table S6). Conver-
sely, the GEP of innate immune genes was significantly higher
than that of other genes (figure 2d; electronic supplementary
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material, table S6), consistent with their important roles in
immune response. Importantly, the association of gene function
with characteristic GEP level was highly conserved between
species; the average GEP values of genes in given Gene Ontol-
ogy (GO) terms (GEPGO) were significantly correlated for all
pairwise species comparisons (figure 2e; electronic supplemen-
tary material, table S7), suggesting that genes with a similar
function tend to have a concordant GEP level across species.

Second, we revealed that genes with high GEP are impli-
cated in disease susceptibility. Considering that genes with
high GEP would confer flexibility, we tested whether their mal-
function would be more frequently implicated in disease. We
found that the GEP values of human genes were positively cor-
related with their propensity for disease association. The
average number of diseases associated with a gene increased
with expression plasticity (figure 2f; electronic supplementary
material, table S8). Similarly, the chances of a gene being
cancer-related positively correlated with GEP (figure 2g; elec-
tronic supplementary material, table S8); the frequency of
cancer-related genes increased from 1–2% in genes with low
plasticity to 4–6% in those with high plasticity.
Altogether, we have systematically quantified GEP in four
metazoan species and demonstrated it to be an intrinsic gene
property with important biological implications. Low-plasticity
genes tend to function in cellular processes demanding high
stability, whereas high-plasticity genes are enriched in cellular
processes demanding high flexibility. In particular, genes
with high expression plasticity tend to be crucial for maintain-
ing organismal fitness, especially under challenges such as
disease conditions. The broad conservation and important
physiological implications of expression plasticity indicate
its magnitude is a specific trait under tight regulation. In the
following sections, we investigate the genomic regulation of
expression plasticity.

2.3. Influence of core promoter cis-elements on gene
expression plasticity

We began by investigating the influence of promoter elements
on GEP. It has been reported that yeast genes with a TATA box
motif exhibit significantly higher GEP than those without it
[3,23]. This trend was nicely recapitulated in our data. As
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shown in electronic supplementary material, figure S3a, the
frequency of TATA box-containing promoters increased in
genes with high GEP.

We then examined whether there exist additional promo-
ter elements influencing plasticity. To facilitate cross-species
comparison, we used a large collection of well-characterized
DNA motifs sourced from multiple species [24]. This
approach identified 141 GEP-associated motifs (electronic
supplementary material, table S9), including a TATA
box-like motif (Mann–Whitney U-test, Benjamini–Hochberg
corrected p < 0.01). An observed lack of GEP-associated
motifs in Drosophila might have been due to underrepresenta-
tion of that species in the motif dataset. Because many motifs
exhibited high sequence similarity, we further collapsed
similar motifs into a single motif class. This yielded 40
unique classes, 33 of which exhibited consistent effects on
GEP (electronic supplementary material, table S9). Respect-
ively, 19 and 14 types of motifs promoted or repressed GEP,
and nine classes showed conserved roles in two or more
species (figure 3a). As the DNA elements in promoters
might not be independent in their presence and function,
we also determined the contribution of each of the
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33 GEP-associated motif classes after controlling for
the influence of all other classes. To do so, we performed
stepwise model selections by calculating the Akaike infor-
mation criterion (AIC). The stepwise AIC procedure
iteratively adds and removes model predictors (motif
classes) in order to identify the subset with the best perform-
ance (lowest AIC score). Only one motif class (C35) was
removed from the model, indicating that most motif classes
influence GEP after controlling for the effects of others
(electronic supplementary material, figure S3b). Consistently,
the effects of motif classes that influenced GEP in the same
direction were accumulative; GEP levels changed progress-
ively as the number of same-direction motif classes
increased (figure 3b; electronic supplementary material,
figure S3c). These results suggest that many promoter
cis-elements in addition to the TATA box influence GEP
non-redundantly.

One promoter may contain both GEP-promoting and
-repressing elements; therefore, is the presence of motif
classes with opposite effects in the core promoter optimized
to coordinate their influence on GEP? If so, we predict that
the co-occurrence of motif classes that influence GEP in the
same direction would be enriched (higher than expected),
whereas the co-occurrence of those working in opposite
directions would be depleted (lower than expected).
Indeed, for all pairwise motif classes, the ratio of enriched
to depleted was significantly higher for those influencing
GEP in the same direction than those with opposite directions
of effect (figure 3c; electronic supplementary material,
figure S3d ). Hence, cis-element promoter architecture is
optimized to maximize its effect on GEP.

To further characterize the interactions between DNA
elements, we analysed the combinatorial effects between pair-
wise motif classes to identify three types of interactions,
namely additivity, enhancement and dominance (electronic
supplementary material, figure S3e). Most pairwise motif
classes (88%, 87% and 91% in human, mouse and worm,
respectively) function additively to influence GEP. The
observed GEP values of promoters containing both motif
classes were similar to those expected from summing the effects
of individual motif classes (figure 3d; electronic supplementary
material, figure S3f ). Interestingly, a small number of motifs
exhibited non-additive interactions. In humans (figure 3d),
we identified seven pairs of motif classes that demonstrated
enhancement interactions in which the observed effects in pro-
moters with both motif classes were significantly stronger than
expected. In addition, seven pairs of motif classes exhibited
dominance interactions in which the effect of one motif class
was masked by that of the other.

The above analysis of the contributions of promoter cis-
elements to expression plasticity reveals that many promoter
cis-elements function individually or synthetically to influ-
ence expression plasticity. A DNA element often regulates
gene expression through the binding of trans-acting proteins,
such as transcription factors. However, our knowledge of
the association between any given cis-element and its corre-
sponding regulatory proteins is fairly limited. This
uncertainty prevented us from performing a systematic analy-
sis of how motifs regulate expression plasticity via regulatory
proteins. To circumvent this complexity, we next adopted a
regulatory protein-centric strategy in order to investigate
whether certain trans-acting proteins regulate expression
plasticity.
2.4. Promoter binding of specific trans-acting proteins
is associated with gene expression plasticity

The availability of genome-wide binding patterns for many
regulatory proteins provides rich opportunities to elucidate
their functions in GEP. In particular, the Encyclopedia of
DNA Elements (ENCODE) [25] has mapped in vivo binding
regions for a large collection of human regulatory proteins
in many samples, allowing us to systematically evaluate the
potential functions of trans-acting proteins. If a regulatory
protein influences GEP, its target genes would exhibit signifi-
cantly higher or lower values than those it does not bind.
Notably, where GEP describes a constant feature of gene
expression, the occupancy of regulatory proteins at target
genes is highly context-specific. We, therefore, required that
the protein–GEP association be consistently detected in a
majority of samples.

Through screening genome-wide binding data for 159
regulatory proteins in 505 samples (electronic supplementary
material, table S10), we identified six (CEBPB, CTCF, RAD21,
RELA, TBP and TCF7L2) and four (NR2C2, GABPA, SIX5
and ZNF143) proteins that were positively and negatively
associated with GEP, respectively (figure 4). Notably, the list
of GEP-promoting regulators includes TBP, the TATA box
binding protein, consistent with the observation that TATA
box-containing promoters exhibit high GEP [3]. We also
found that co-binding regulatory proteins exhibited consist-
ent effects on GEP. For example, CTCF, the CCCTC-binding
factor, and its interacting protein RAD21, the Scc1 component
of the cohesin complex [27], were both associated with higher
GEP (figure 4a). Significantly, some of the identified proteins
had effects consistent with the motif analysis results. For
example, the effects of CEBPB and GABPA were captured
by both motif-centric and regulatory protein-centric analyses
(electronic supplementary material, table S9 and figure 4).
Similarly, the motif MA0088.2 related to ZNF143 was associ-
ated with a lower GEP (adjusted p = 0.011), which, while
not passing the cut-off for significance (adjusted p < 0.01),
was consistent with the results of protein occupancy analysis.
2.5. Validating the role of trans-acting proteins
To test whether the above results were simple correlations or
reflected causal regulatory relationships, we used gene
expression datasets from knockout experiments to validate
the causal roles of transcription factors. After careful curation,
we identified five expression datasets for CTCF, RAD21,
RELA (n = 2) and TCF7L2 [28–32] that met the following cri-
teria: first, the regulatory protein was mutated (null
mutants) or knocked out; and second, genome-wide gene
expression was assayed for at least two different conditions
for both control (CTR) and loss of function (LOF) mutants.

Because all four proteins were predicted to be GEP-pro-
moting (figure 4a), we expected that their inactivation would
induce a significant reduction in GEP. For each dataset
(figure 5a), we compared the magnitude of expression changes
for very dynamically expressed genes (top 20% of genes with
highest expression changes) as an approximation of GEP for a
condition. We found a significant reduction (Mann–Whitney
U-test, p < 0.001 for all cases) in the magnitude of expression
changes for all four regulatory proteins (four out of five
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datasets) (figure 5b–e). Of the two datasets available for RELA,
one was not consistent with our prediction (data not shown).

Furthermore, we compared the magnitudes of expression
change among genes that were dynamically expressed in
both genotypes and showed the same directions of expression
change (co-upregulation or co-downregulation). Again, we
found that genes generally exhibited lower magnitude
expression changes following the inactivation of regulatory pro-
teins (Wilcoxon signed-rank test, p< 0.001 for all cases). The
ratio of genes showing lower magnitude to those showing
higher magnitude ranged from 1.4 to 3, which was significantly
greater than expected (figure 5b–e, Fisher’s exact test, p< 0.001
for all cases). It is worth noting that, while the predicted roles
of these proteins were made using human data, the pertur-
bation experiments performed using other organisms nicely
validated their roles. Together, the above results reveal a pre-
viously unrecognized function for certain sequence-specific
regulatory proteins in controlling expression plasticity.

Of these regulatory proteins, CTCF and RAD21 are of par-
ticular interest. Recent findings have revealed that CTCF and
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the associated cohesin complex could mediate higher order
chromosome folding and chromatin interactions [33]. The bind-
ing of CTCF and cohesin at genomic sites defines the physical
contact points (anchor) for the formation of a chromatin loop
structure that is important in transcriptional regulation [34]. It
was reported that theCTCF/cohesin-bound anchor regions exhi-
bit significantly higher transcriptional activity than those located
in the loop region [35]. As related above, both genome-wide pre-
diction and perturbation data support a positive role for CTCF
and RAD21 in regulating expression plasticity (figures 4a
and 5b,c). Another subunit of cohesion, SMC3, did not pass
our stringent cut-off to identify regulators of GEP, but was also
associated with higher expression plasticity in three out of
four examined samples (electronic supplementary material,
table S10). These results inspired us to test whether CTCF and
the cohesin complex regulate GEP through a chromatin top-
ology-based mechanism (electronic supplementary material,
figure S4a). If it does, we could make two predictions: first,
genes whose promoters are located in the anchor regions of a
chromatin loop would exhibit significantly higher GEP than
those located in loop regions; and second, CTCF binding sites
outside the loop structure would not be associated with GEP.
We tested this possibility using the GM12878 B-lymphocyte
cell line, in which genome-wide binding data for CTCF, RAD21
and SMC3 and chromatin topology data are both available
[25,35]. Our results excluded the possibility of topology-based
GEP regulation through the following observations. First, genes
exhibited similar GEP values regardless of whether their
promoters were located in anchor or loop regions (Wilcoxon
signed-rank test, p> 0.01) (electronic supplementary material,
figure S4b). Second, binding of CTCF outside the loop structure
remained significantly associated with higher GEP (electronic
supplementary material, figure S4c, Mann–Whitney U-test, p<
0.001). These findings suggest that a different mechanism
accounts for the GEP-promoting role of CTCF. Indeed, CTCF is
known to be a multi-functional protein and is implicated in
gene regulation through diverse mechanisms [36].

2.6. Gene body H3K36me3, H3K79me2 and H4K20me1
modifications are associated with restricted
expression plasticity

In addition to DNA sequence and transcription factors, epige-
netic modifications also play prominent roles in regulating
gene expression. We collected diverse epigenomic datasets and
examined their relationships with GEP. For the identification of
GEP-associated epigenetic signatures, a similar strategy was
adoptedas forGEP-associated regulatoryproteins.We identified
three histone modifications, mainly occurring in gene body
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regions (electronic supplementary material, figure S5a and
table S11), that were strongly correlated with lower GEP:
trimethylation of histone H3 at lysine 36 (H3K36me3),
dimethylation of histoneH3 at lysine 79 (H3K79me2) andmono-
methylation of histone H4 at lysine 20 (H4K20me1). Genes
enriched for these modifications in the gene body exhibited sig-
nificantly lower GEP than those depleted (Mann–Whitney
U-test, Benjamini–Hochberg corrected p< 0.01) in a majority
(greater than or equal to 80%) of the examined human samples
(figure 6a; electronic supplementary material, table S12). Genes
with high GEP values exhibited lower frequencies of these his-
tone modifications in the gene body (electronic supplementary
material, figure S5b for representative examples). Importantly,
the repressive effects of H3K36me3, H3K79me2 and
H4K20me1 on GEP were consistently detected in all four
metazoan organisms (figure 6b–d; electronic supplementary
material, table S12). We did not identify combinatorial effects
of the above modifications on GEP as genes with two types of
modifications did not exhibit significantly lower GEP levels
than genes with only one type of modification, and genes with
all three types of modification did not show significantly lower
GEP levels than thosewith two or one type ofmodification (elec-
tronic supplementary material, figure S5c and table S13).
Collectively, these results predict that gene body H3K36me3,
H3K79me2 and H4K20me1 modifications function to reduce
expression plasticity.
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Figure 7. Perturbing histone modifications affects magnitude of gene expression changes. (a) Gene expression datasets used to validate the effect of histone
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2.7. Validating the role of histone modifications
To determine a causal role for the above histone modifications,
we analysed the change of GEP in mutants in which histone
modifications levels were perturbed. We mined the literature
and collected four relevant datasets (figure 7a) within which
global gene expression was assayed for multiple conditions
in both wild-type and mutants of the corresponding enzyme
that adds or removes a modification of interest. We expected
that the loss or gain of these histone modifications would
induce a respective increase or reduction in GEP.

For H3K36me3, we used a C. elegans dataset in which the
met-1 gene that encodes the H3K36 methyltransferase was
mutated [37]. MET-1 is required for maintaining the global
H3K36me3 level [38], and in met-1 mutants the modification
level is reduced by over 90% [37].We compared themagnitudes
of global gene expression changes (day 2 versus day 12)
between control samples and met-1 mutants to approximate
GEP. To specifically analyse the contribution of H3K36me3,
we focused only on those genes enriched in H3K36me3 in the
gene body regions of control samples at both day 2 and day
12. As predicted by our computational analysis (figure 6), the
magnitude of gene expression change was significantly
increased following the loss of H3K36me3 (figure 7b). We also
compared the magnitudes of expression change for genes that
showed identical directions of change (co-upregulation or co-
downregulation). The ratio of genes showing higher magnitude
to those showing lowermagnitudewas significantly higher than
expected (3.12 versus 1, Fisher’s exact test, p < 0.001). These find-
ings confirm a GEP-repressive role for H3K36me3. Interestingly,
the authors of this dataset reported a similar function for
H3K36me3 in restricting age-dependent gene expression
changes, which impacts the C. elegans lifespan [37]. In addition,
they identified similar results using Drosophila data, suggesting
that this phenomenon is conserved across metazoans.
H3K36me3 is known to be enriched at actively transcribed
genes [39]; the increased magnitudes of expression change
induced by inactivation of H3K36me3 thus cannot be simply
explained by its role in transcriptional activation.

ForH3K79me2,we identified twomouse datasets inwhich
the DOT1L gene that encodes the histone H3K79 methyltrans-
ferasewas either knocked out [40] or selectively inhibited [41].
In both mutants, the level of H3K79me2 was dramatically
reduced. As above, we compared the magnitudes of
expression changes in multiple conditions and found them
to be significantly increased (figure 7c,d). In genes showing
identical directions of expression change, the ratio of higher
magnitude to lower magnitude changes was significantly
higher than expected (figure 7c,d). To specifically measure
the effect of H3K79me2, we focused on genes enriched for
the modification in the gene body region in knockout control
samples. For the inhibition dataset, genome-wide H3K79me2
modification data were not available; therefore, our analysis
was applied to all genes.

For H4K20me1, we identified one mouse dataset in which
a neuron-specific isoform of LSD1 (LSD1n), an H4K20
demethylase, was conditionally knocked out [42]. This
resulted in a significant and specific elevation of H4K20me1
levels [42]. We expected that this gain of function for
H4K20me1 would induce a reduction in GEP. Consistently,
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loss of LSD1n resulted in significantly decreased magnitudes
of gene expression change (figure 7e). Among genes showing
identical directions of expression change, the ratio of those
with higher magnitude changes to lower magnitude changes
was significantly lower than the expectation (figure 7e).

Collectively, the above data reveal that certain gene
body histone modifications determine GEP, in addition to
their well-established functions in regulating gene transcrip-
tion [43], splicing [39,44], DNA replication [45] and DNA
repair [46].
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3. Discussion
3.1. Expression plasticity is a conserved gene property
Although expression plasticity has been quantified under a
variety of genetic and environmental conditions in different
species, there is widespread correlation of expression plasticity
between orthologues (electronic supplementary material,
figure S2a). Importantly, expression plasticity is widely associ-
ated with particular gene functions, and this association is
also evolutionarily conserved (figure 2e). These findings
suggest that the expression plasticity of different genes is opti-
mized to exert biological functions and that plasticity is a
specific target of regulation through evolutionarily conserved
mechanisms. An important further question is to what extent
expression plasticity varies across cell types. Owing to the rela-
tive scarcity of cell-specific expression change datasets, we
performed a meta-analysis on combined data from cell lines,
tissues and whole organisms. As per the preliminary results
shown in figure 1f, different cell types seem to exhibit differen-
tial expression plasticity. However, the relatively small number
of conditions included (fewer than 100 for most cases) prevents
us from drawing a strong conclusion. It will be interesting to
assay and compare the magnitude of gene expression changes
in different cell types in response to diverse conditions. Such an
assay will provide insights on the implications of expression
plasticity for cellular function and on cell-specific mechanisms
of plasticity regulation.

3.2. Independent regulation of gene expression level,
plasticity and noise

Expression plasticity correlates poorly with gene expression
level (electronic supplementary material, figure S2b), indicat-
ing that different mechanisms are used to independently
regulate various properties of gene expression. As expected,
we found gene expression levels and plasticity to be regu-
lated by distinct genetic and epigenetic mechanisms. As for
expression plasticity, we identified DNA motifs that are
associated with expression levels in multiple cell lines. How-
ever, none of the motifs that influenced expression plasticity
were associated with expression level (data not shown). In
addition, a genome-wide analysis of the contribution of 38
types of histone modifications to gene expression levels in
human cells revealed that H2BK5ac, H3K27ac, H3K79me1
and H4K20me1 are the most important histone modifications
for predicting expression levels, all of which positively corre-
late with expression [47]. Again, none of these modifications
play similar roles in regulating expression plasticity. It
appears that cells use distinct regulatory programmes to
separately modulate gene expression levels and plasticity.
Genome-wide studies in yeast have revealed GEP and
expression noise to be highly correlated [1,3,6,23,48]. Genes
with high expression variability among isogenic cells (high
expressionnoise) tend to exhibit highmagnitudes of expression
change in response to stimuli (high expression plasticity). This
thus suggests the existence of a common mechanism under-
lying expression noise and plasticity. Consistent with this, the
TATA box promoter element is positively correlated with
bothGEPand cell-to-cell expression noise [4,49]. Recent studies
have also identified certain types of histone modification
as significantly associated with expression noise [49,50], some
of which were independently identified here to regulate
expression plasticity. However, closer examination of the
relationship between noise and plasticity demonstrates that
the coupling between the two is highly conditional and evol-
vable in both yeast [4] and Escherichia coli [51]. For example,
the correlation between noise and plasticity is disfavoured for
essential genes and haploinsufficient genes, whereby certain
genes could have both high plasticity and low noise. It is
unclear whether the noise–plasticity coupling also exists in
higher organisms. We evaluated the noise–plasticity relation-
ship using a recently published single-cell transcriptome
dataset from mouse embryonic stem cells under three culture
conditions [52]. Where expression noise had a relatively high
correlation coefficient between conditions (electronic sup-
plementary material, figure S6a), the correlation between
noise and plasticity was significantly lower in all conditions
(electronic supplementary material, figure S6b). This suggests
the coupling between noise and plasticity is not a general
rule in higher organisms. Furthermore, while H3K27me3,
H3K4me1 and H3K9ac are associated with high expression
noise in mouse embryonic stem cells [49], we found that
these modifications do not affect expression plasticity. Interest-
ingly, H3K36me3, H3K79me2 and H4K20me1 have been
independently identified as significantly associated with
restricted expression noise [50] and plasticity (figure 6). How-
ever, the expression noise data [53] and plasticity data used in
each study are not correlated (electronic supplementary
material, figure S6c; ρ = 0.023, p = 0.059). This suggests that
these histone modifications regulate expression noise and
plasticity through distinct mechanisms.
3.3. Effect of histone modifications on gene expression
plasticity

While many histone modifications regulate gene expression
level, fewer regulate expression plasticity. Out of all 30 types
of histone modifications examined, three modifications
(H3K36me3, H3K79me2 and H4K20me1) were found to restrict
plasticity, and none promoted plasticity. Previous works have
shown that H3K36me3 functions to maintain gene expression
stability and fidelity [54,55], and to maintain epigenetic
memory of gene transcription in germ cells [56–58]. The nega-
tive role of H3K36me3 in regulating expression plasticity is
consistent with the reported roles. Whether H3K79me2 and
H4K20me1 play a similar function in the above processes is
worth testing in future studies. All identified histone modifi-
cations are plasticity-restricting, raising the possibility that
histone modifications may mainly function to downregulate
plasticity to ensure stable and robust expression. All plas-
ticity-restricting modifications were found to be enriched in
gene body regions (electronic supplementary material, figure
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S5a), suggesting transcriptional elongation might be a regulat-
ory target for controlling expression plasticity. A previous
study showed that the C. elegans ZFP-1/DOT-1.1 complex, an
H3K79 methyltransferase, promotes Pol II pausing [59]. In
addition, inactivation of mouse LSD1n, a methylase that
removes histone H4K20 methylation, increases Pol II pausing
[42]. These findings raise the possibility that these gene body
histone modifications restrict expression plasticity by inducing
Pol II pausing, an important mechanism for regulating gene
expression [60]. The Global Run-on Sequencing method
(GRO-seq), which maps the binding sites of transcriptionally
active Pol II, has been widely used to accurately quantify Pol
II elongation and pause-release [61]. Using human GRO-seq
data [62–64], we found that genes with or without Pol II paus-
ing exhibited similar expression plasticity (electronic
supplementary material, figure S7 and table S12). Pol II paus-
ing index values [65,66], a parameter for quantifying Pol II
pausing, were indistinguishable for genes with high and
low GEP. Whether gene body histone modifications function
through affecting other aspects of transcriptional elongation
would be an important question to test in the future.
4. Conclusion
In summary, in this study, we systematically quantified
GEP in four metazoan species and performed a comprehensive
functional analysis of its properties, implications and multi-
variable regulation with two major findings (figure 8). First,
we revealed that expression plasticity is a conserved gene prop-
erty related to gene function and implicated in disease
susceptibility and cellular stability. This finding suggests that
the changeability of gene expression is an intrinsic gene prop-
erty with broad biological implications. Second, we identified
genomic and epigenomic signatures that determine expression
plasticity genome-wide. These findings significantly expand
the functional repertoire of cis-elements, transcription factors
and histone modifications in gene regulation. Together, our
work provides insights into the genomic regulation of gene
expression flexibility in multicellular organisms.
5. Methods
5.1. Quantification of gene expression plasticity
The method for GEP quantification used here is based on a
previous study with minor modifications [3] which
represented GEP as the magnitudes of gene expression
change under diverse conditions. We collected expression
datasets in which genome-wide gene expression was assayed
under at least two different conditions. The magnitude of
gene expression change for a condition was determined as
a fold change, and the average fold change across a large
number of genetic or environmental conditions was used to
quantify GEP. The Expression Atlas database [12] collects a
large number of manually curated and uniformly processed
gene expression datasets spanning many species and biologi-
cal samples. In particular, its differential experiments section
provides processed fold changes in gene expression across
many conditions. Expression fold change datasets for
human, mouse and fly genes were directly extracted from
the Expression Atlas. Because of the paucity of C. elegans
expression datasets in the Expression Atlas, worm data
were obtained from a previous study in which fold changes
of genes were determined across more than 400 conditions
[13]. This resource has been widely used in the field to
study gene co-expression regulatory networks. A consider-
able number of C. elegans genes (n = 2395 according to
WormBase) are organized in operons, and genes within an
operon are co-expressed as a polycistron from the same pro-
moter. We excluded such genes from analysis as comparisons
of plasticity between them would not be meaningful.

We calculated GEP (electronic supplementary material,
table S1) using a similar method as done previously for
yeast data. First, the square of log2-fold change of mRNA
abundance under a given condition as comparedwith the con-
trol was calculated to represent expression change under a
condition. Second, expression changes were averaged across
all conditions. Third, because the values showed a skewed dis-
tribution, we further log2-transformed them to represent GEP.
We required expression datasets to have been assayed using
the same platform when a sufficient number of conditions
(more than 100) were available for that platform. Otherwise,
expression datasets from multiple platforms were combined
to achieve the necessary condition number.
5.2. Benchmark genes
Wecollected lists of geneswithwell-defined biological functions
as benchmark genes to determinewhether themeasured GEP is
biologically relevant. Human signal-responsive genes (n = 2221;
electronic supplementarymaterial, table S2) were obtained from
NetPath [14]. Flystress-responsive genes (n= 891; electronic sup-
plementary material, table S2) were defined by Girardot et al.
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[10]. Worm genes that are critical for stress/environmental
response (n = 505; electronic supplementary material, table S2)
were curated based on phenotype data from mutants or RNA
interference (RNAi)-mediated gene knockdown. Gene-associ-
ated phenotypes were retrieved from WormBase [15] using
simplemine (https://wormbase.org/tools/mine/simplemine.
cgi). From all phenotypic terms, we manually curated a collec-
tion of 69 phenotypes that were associated with stress/
environmental response. A gene was considered required for
stress/environmental response if any of those 69 phenotypes
were detected in its mutants or RNAi experiments.

5.3. Gene orthologues
Lists of orthologous genes were downloaded from the
Ensembl genome browser (https://www.ensembl.org) [67].
We only considered one-to-one orthologues between species
pairs (electronic supplementary material, table S4).

5.4. Gene expression level and broadness
Gene expression level is defined as the average gene expre-
ssion level across a large number of samples. We used
expression datasets from two previous studies to measure
expression level: first, the Lukk dataset in which human
gene expression level was measured based on 5372 curated
human microarray datasets [17], and, second, the Functional
Annotation of the Mammalian Genome 5 (FANTOM5) project
in which genome-wide gene expression was quantified across a
large number of tissues and cell types [16]. For the FANTOM5
dataset, log2-transformed TPM (transcripts per kilobase million
reads) expression data in 230 normal human tissue or cell lines
were used. The most abundant transcript was used to represent
the gene if multiple transcripts were associated with the same
gene. Broadness of gene expression was calculated by two
different methods using the FANTOM5 dataset. In the first
method, broadness was quantified as the frequency of samples
in which a gene is expressed. A gene was defined as being
expressed in a sample if log (TPM+1) > 0.1. In the second
method, broadness was quantified as the frequency of samples
in which a gene is expressed specifically. Specificity of gene
expression in a sample was quantified as the expression level
in that sample divided by the average expression level across
all samples. We defined a gene to be specifically expressed in
a sample if the specificity score was higher than 2.

5.5. Functional enrichment analysis
Enrichment analysis of biological processes was performed
for genes with high and low expression plasticity using the
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) functional classification tool (https://
david.ncifcrf.gov) with default parameters [18].

5.6. Genes with well-defined biological function
Homeobox genes (n = 198 for human, n = 152 for mouse, n= 77
for fly and n= 62 for worm; electronic supplementary material,
table S6)were defined by theHomeoDB2 classification [68].Hor-
mones and receptor genes (n= 181 and 107 for human and
mouse, respectively; electronic supplementary material, table
S6) were taken from Hmrbase [69]. Innate immune genes (n =
898 and 431 for human and mouse, respectively; electronic sup-
plementary material, table S6) were taken from InnateDB [70].

5.7. Conservation of GEP–gene function associations
Conservation of GEP–gene function associations between
species was determined using GO terms (http://geneontol-
ogy.org) [71]. We first populated each GO term recursively
to its parent terms. Only GO terms associated with 20–500
genes were considered in our analysis. Then, GEP values
for each ontology term were calculated by averaging the
GEP of all genes belonging to that term (electronic
supplementary material, table S7).

Gene–disease association: disease genes were extracted
from DisNet (http://www.disgenet.org) [20] and GeneCards
(https://www.genecards.org) [19,72]. Cancer-related genes
were defined by IntGOen (https://www.intogen.org) [21]
and the Cancer Gene Consensus (http://cancer.sanger.ac.
uk/census) [22].

5.8. DNA motif-centric analysis
TATAbox-containinggeneswere identifiedusing the FindMtool
(http://ccg.vital-it.ch/ssa/findm.php) of the Signal search
analysis server [73], which scanned for the presence of the
TATA box motif in the genomic region from −99 to 0 relative
to the TSS using default parameters. To identify GEP-associated
motifs, we used the position weight matrix file for all character-
ized DNA motifs (CORE 2016 dataset, n= 1014) obtained from
the JASPAR database (http://jaspar2016.genereg.net) [24]. We
scanned for the presence of each motif in the core promoter
regions of genes from four metazoan species (from −200 to
+100 relative to the TSS) using the find individual motif occur-
rences (FIMO) tool of the MEME suite with default parameters
[74]. A DNA motif was considered associated with expression
plasticity if a significant difference (Mann–Whitney U-test,
Benjamini–Hochberg corrected p< 0.01) in plasticity was
detected between genes with and without the motif in their
core promoters (electronic supplementary material, table S9).
Because the position weight matrices of many DNA motifs are
very similar, we further collapsed individual motifs into distinct
classes based on matrix similarity. First, cluster information for
each of the five taxonomic groups was extracted from JASPAR
2018 (http://jaspar.genereg.net/matrix-clusters), and GEP-
associated motifs belonging to a given cluster were combined.
Then, motif clusters were compared between taxonomic
groups to further collapse similar motifs into one class. Through
this process, the 141 individual motifs associated with
expressionplasticitywere collapsed into 40 distinctmotif classes.

Evaluation of pairwise combinations of DNA motifs
revealed three types of relationships: additivity, enhancement
and dominance. For this analysis, we predicted the expected
GEP of promoters containing both motifs (GEPexp) by sum-
ming the effects of the individual motifs and then
comparing that prediction with the observed GEP values
from promoters with both motifs (GEPobs). A relationship
was defined to be additive if GEPobs was indistinguishable
from GEPexp (GEPobs = GEPexp). Otherwise, GEPobs was
further compared with the GEP values of promoters contain-
ing only one of the two motifs (GEPm1 or GEPm2) to
determine whether enhancement or dominance occurred
using the rules listed in electronic supplementary material,
figure S3e. Enhancement was defined as the combined
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effect of two motifs exerting significantly stronger influence
on GEP than the sum of their separate effects, and occurs
only between motifs that influence GEP in the same direction.
A dominance interaction occurred when the effect of one
motif was masked by that of another, and applied only in
cases of motifs influencing GEP in opposite directions. Stat-
istical significance of GEP values was determined using the
Mann–Whitney U-test with a p-value cut-off of 0.05.

As done for GEP analysis, we also analysed the influence of
DNA motifs on the gene expression level. We examined the
contributionof 1014motifs to expression levels using three base-
line gene expression datasets sourced from the Expression
Atlas, including GTEx (53 normal tissues) [75], the Illumina
Body Map (16 normal tissue types) [76] and the Roadmap
Epigenomics Project (57 tissue and cell lines) [77]. For each
sample, we compared expression levels between genes with
and without a specific motif in their core promoter regions
(from−200 to +100 relative to the TSS). Amotif was considered
to be associated with the gene expression level if the expression
levels between motif-containing and motif-less genes differed
significantly (Mann–Whitney U-test, Benjamini–Hochberg cor-
rected p < 0.01) and consistently in more than 80% of the total
126 samples analysed.

5.9. Regulatory protein-centric analysis
Genome-wide in vivo binding data for human regulatory pro-
teins were produced by the ENCODE project [25] and
extracted from the UCSC Genome Browser (https://www.
genome.ucsc.edu/ENCODE) [78]. In total, these data con-
sisted of 505 datasets containing binding data for 159
regulatory proteins in 91 cell lines (electronic supplementary
material, table S10). Binding patterns were generated for a
large collection of regulatory proteins in many distinct
samples by ChIP-seq experiments, and uniformly processed
to identify protein-binding peaks throughout the genome.
To identify regulatory protein occupancy in the promoter
regions of target genes, protein-bound peaks were intersected
with the promoter regions of all human genes (from −500 bp
to +500 bp relative to the annotated TSS defined by Ensembl
Genome Browser). To determine whether the binding of a
certain regulatory protein was associated with expression
plasticity, we compared expression plasticity between genes
with and without binding of that protein in their promoter
regions. We defined a regulatory protein as being associated
with expression plasticity if it met the following criteria:
(i) the difference in GEP was statistically significant (Mann–
Whitney U-test, Benjamini–Hochberg corrected p < 0.01),
(ii) the directions of difference were consistent in at least
80% of all examined samples, and (iii) genome-wide binding
was assayed in more than three distinct biological samples.

5.10. Histone modification analysis
Histonemodificationdatasetswere collected from the ENCODE
project, Roadmap Epigenomics Project and theGene Expression
Omnibus (GEO)database. Processing forpeak regionsofhistone
modifications was performed in the original studies. To identify
evolutionarily conserved histone modifications that regulate
expression plasticity, we first identified candidate modifications
from the human data and then examinedwhether they could be
validatedusingdata fromother species.Weusedhumanhistone
modification data from the Roadmap Epigenomics Project
(http://egg2.wustl.edu/roadmap), which contained 978 data-
sets illustrating the genome-wide distribution of 30 types of
histone modifications in 127 samples [77]. For each dataset, we
downloaded the uniformly processed broad-peak and narrow-
peak files to examine their enrichment in gene body regions.
Only peaks with p-values less than 10−4 were used. If a peak
overlappedwith the gene body, the genewas considered to con-
tain the modification. A histone modification was considered to
regulate expression plasticity in the human genome if:
(i) expression plasticity between genes with or without the
modification was significantly different (Mann–Whitney U-
test, Benjamini–Hochberg corrected p< 0.01), (ii) the effects of
the histone modification on expression plasticity (promoting
or repressive) were consistent in over 80% of examined samples,
and (iii) data were available for more than three samples.

5.11. Magnitude of gene expression change in
perturbation experiments

We searched exhaustively for gene expression datasets in which
expression levels were assayed for at least two different con-
ditions in both wild-type and mutant samples. These datasets
were necessary to examine whether inactivation of regulatory
proteins or histone modifications induces differential magni-
tudes of gene expression change between conditions. To
exclude the possibility that a geneperturbation induceddramatic
changes in the gene expression programme, which would make
comparisons of magnitude meaningless, we only considered
datasets where a majority of differentially expressed genes
(greater than 60%) were shared (consistently upregulated or
downregulated) between conditions in the wild-type and
mutants background. Differential gene expression was deter-
mined by t-test (Benjamini–Hochberg corrected p< 0.01). The
processed expression values for all microarray probes were
downloaded from the National Center for Biotechnology Infor-
mation GEO database for each series. To determine gene
expression levels, we mapped the probes and associated values
onto all protein-coding genes. Probes that matched to multiple
genes were discarded. If multiple probes matched the same
gene, their values were averaged. Average gene expression and
fold changes were analysed using the limma algorithm [79].

5.12. Statistics
All statistical methods and corresponding p-values were
described in the main text, figures or figure legends. Statisti-
cal analyses including Pearson correlation, Spearman rank
correlation, Mann–Whitney U-test, Wilcoxon signed-rank
test, t-test, AIC analysis and Fisher’s exact test were
performed using Python.
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