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Coronary artery disease (CAD) is the leading cause of death worldwide. Affected individuals cluster in fam-
ilies in patterns that reflect the sharing of numerous susceptibility genes. Genome-wide and large-scale gene-
centric genotyping studies that involve tens of thousands of cases and controls have now mapped common
disease variants to 34 distinct loci. Some coronary disease common variants show allelic heterogeneity or
copy number variation. Some of the loci include candidate genes that imply conventional or emerging risk
factor-mediated mechanisms of disease pathogenesis. Quantitative trait loci associations with risk factors
have been informative in Mendelian randomization studies as well as fine-mapping of causative variants.
But, for most loci, plausible mechanistic links are uncertain or obscure at present but provide potentially
novel directions for research into this disease’s pathogenesis. The common variants explain ∼4% of inter-
individual variation in disease risk and no more than 13% of the total heritability of coronary disease.
Although many CAD genes are presently undiscovered, it is likely that larger collaborative genome-wide
association studies will map further common/low-penetrance variants and hoped that low-frequency or
rare high-penetrance variants will also be identified in medical resequencing experiments.

INTRODUCTION

Coronary artery disease (CAD) is the most frequent cause of
death in high-income countries and the second most
common cause of death in medium and low-income countries
(1). It most commonly presents clinically in cases of angina
pectoris and myocardial infarction (heart attack), which are
due to atherosclerotic plaques that develop progressively as
we age and occasionally rupture. Genetic epidemiological
studies of family history and twin concordance studies are
consistent with an underlying multifactorial model of disease
susceptibility with a significant polygenic component. This
is complemented by genetic analysis of heritable conventional
risk factors such as low-density lipoprotein (LDL)-cholesterol
and systolic blood pressure, which collectively might explain a
minor portion of coronary disease risk (2).

Over the past 4 years, researchers have completed several
genome-wide association studies (GWASs) to map underlying
common susceptibility variants for coronary disease. In paral-
lel with GWASs of other complex diseases, it was soon

apparent that typical effect sizes for individual single-
nucleotide polymorphisms (SNPs) were fairly small, so large
sample sizes would be required for reliable gene mapping.
This has encouraged collaboration between individual re-
search groups and led to the formation of consortia to pool
the results of GWASs using meta-analysis techniques. Pro-
gress has been facilitated by the availability of phased haplo-
type training sets (notably, from the HapMap project: http
://hapmap.ncbi.nlm.nih.gov/downloads/phasing) and the ac-
companying genotype imputation software (for example,
MACH: www.sph.umich.edu/csg/abecasis/MACH/index.html
or IMPUTE: mathgen.stats.ox.ac.uk/impute/impute_v2.html).
These population genetic resources and statistical genetic
tools provide an efficient solution to the fact that individual
GWASs are often carried out on different SNP arrays with
variable SNP overlap.

All this effort came to a crescendo this year with the publi-
cation of two papers from the CARDIoGRAM (3) and C4D (4)
consortia that together scanned nearly 40K coronary disease
cases for susceptibility gene signals. Combined with the
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results from other recent large-scale studies (5–7), 35
common coronary disease variants have been robustly
mapped by GWASs (3–7) or gene-centric SNP arrays (8)
(Table 1). These results are mostly based on cases and controls
of European descent. The C4D (4) and gene-centric (8) dis-
covery experiments included South Asians from Pakistan
and India as well as Europeans; these designs were optimally
powered to detect variants that were common to both ancestry
groups. Wang et al. (7) carried out their GWAS discovery and
replication experiments in the Chinese Han population.

For some of the SNPs, there is circumstantial evidence to
highlight an underlying gene. For example, LIPA encodes
lipase A, which catalyzes the hydrolysis of cholesteryl esters
and triglycerides. The lead CAD risk SNP in LIPA (4,8) is
strongly correlated with expression quantitative trait loci
(eQTL) SNP, with the CAD risk allele correlated with
increased expression of LIPA mRNA in monocytes (9) and

liver (4), suggesting a functional relationship between the
disease association signal and this candidate gene. However,
for most of the SNPs mapped by GWASs, it is difficult to im-
plicate an underlying gene. Inspection of recombination fre-
quency maps derived from the HapMap project suggest
genetic boundaries defined by recombination hotspots, which
drives the traditional approach of fine-mapping using haplo-
type block information (10). However, there is ample evidence
that cis-regulatory mechanisms in the soma can operate over
tens, hundreds or even millions of base pairs and are presum-
ably unaffected by meiotic recombination (11). It is becoming
possible to define functional genomic boundaries based on
chromatin architecture-related factors, such as CCCTC-
binding factor sites (12) that are found in the vast majority
of vertebrate insulator elements. We suspect that, for most
coronary disease loci, it will take some time to complete the
sequence of functional genomics experiments that will be

Table 1. Thirty-five common susceptibility variants for coronary artery disease

Chr Position Locusa SNP References Reported
effect

SNP-specific heritability
(h2

SNP), %
EAF OR Kp¼ 2% Kp¼ 5% Kp¼ 10%

1 55 496 039 PCSK9 rs11206510 MIGen (36) 0.82 1.08 0.03 0.04 0.05
1 56 962 821 PPAP2B rs17114036 CARDIoGRAM (3) 0.91 1.17 0.07 0.09 0.11
1 109 822 166 SORT1 rs599839 Samani et al. (58), MIGen (36) 0.78 1.11 0.06 0.08 0.10
1 222 823 529 MIA3 rs17465637 Samani et al. (58), MIGen (36) 0.74 1.14 0.12 0.15 0.18
2 44 072 576 ABCG8 rs4299376 HumanCVD (8) 0.29 1.09 0.04 0.05 0.07
2 203 745 885 WDR12 rs6725887 MIGen (36) 0.15 1.14 0.07 0.09 0.11
3 138 119 952 MRAS rs2306374 Erdmann et al. (59) 0.18 1.12 0.06 0.07 0.09
5 131 867 702 IL5 rs2706399 HumanCVD (8) 0.48 1.02 0.01 0.01 0.01
6 11 774 583 C6orf105 rs6903956b Wang et al. (7) 0.07 1.51 0.35 0.45 0.56
6 12 927 544 PHACTR1 rs12526453 MIGen (36) 0.67 1.10 0.06 0.08 0.10
6 35 034 800 ANKS1A rs17609940 CARDIoGRAM (3) 0.75 1.07 0.03 0.04 0.05
6 134 214 525 TCF21 rs12190287 CARDIoGRAM (3) 0.62 1.08 0.05 0.06 0.07
6 160 961 137 LPA rs3798220 Clarke et al. (30) 0.02 1.92 0.25 0.32 0.40
6 161 010 118 LPA rs10455872 Clarke et al. (30) 0.07 1.70 0.57 0.73 0.90
7 107 244 545 7q22 rs10953541 C4D 2011 (4) 0.80 1.08 0.05 0.06 0.08
7 129 663 496 ZC3HC1 rs11556924 CARDIoGRAM (3) 0.62 1.09 0.06 0.07 0.09
8 126 495 818 TRIB1 rs10808546 HumanCVD (8) 0.65 1.04 0.02 0.02 0.02
9 22 098 574 ANRIL/CDKN2BAS rs4977574 WTCCC (60), McPherson et al. (61),

Helgadottir et al. (62), Samani et al. (58), MIGen (36)
0.46 1.29 0.53 0.68 0.84

9 136 154 168 ABO rs579459 CARDIoGRAM (3), Reilly et al. (6) 0.21 1.10 0.05 0.06 0.08
10 30 335 122 KIAA1462 rs2505083 C4D 2011 (4), Erdmann et al. (5) 0.38 1.07 0.05 0.06 0.08
10 44 775 824 CXCL12 rs1746048 Samani et al. (58), MIGen (36) 0.87 1.09 0.03 0.03 0.04
10 91 002 927 LIPA rs1412444 C4D 2011 (4) 0.42 1.08 0.05 0.07 0.08
10 104 719 096 CYP17A1-NT5C2 rs12413409 CARDIoGRAM (3) 0.89 1.12 0.04 0.05 0.07
11 103 660 567 PDGFD rs974819 C4D 2011 (4) 0.32 1.08 0.05 0.06 0.08
11 116 648 917 APOA1-C3-A4-A5 rs964184 CARDIoGRAM (3) 0.13 1.13 0.05 0.07 0.09
12 111 884 608 SH2B3 rs3184504 Soranzo et al. (63) 0.44 1.07 0.04 0.05 0.06
13 110 960 712 COL4A1-A2 rs4773144 CARDIoGRAM (3) 0.44 1.07 0.04 0.05 0.06
14 100 133 942 HHIPL1 rs2895811 CARDIoGRAM (3) 0.43 1.07 0.04 0.05 0.06
15 79 111 093 ADAMTS7 rs4380028 C4D 2011 (4), CARDIoGRAM (3), Reilly et al. (6) 0.60 1.07 0.05 0.06 0.08
17 2 126 504 SMG6-SRR rs216172 CARDIoGRAM (3) 0.37 1.07 0.03 0.05 0.06
17 17 543 722 PEMT rs12936587 CARDIoGRAM (3) 0.56 1.07 0.04 0.05 0.06
17 46 988 597 GIP-ATP rs46522 CARDIoGRAM (3) 0.53 1.06 0.03 0.04 0.04
19 11 163 601 LDLR rs1122608 MIGen (36) 0.77 1.14 0.10 0.12 0.15
19 45 395 619 APOE rs2075650 HumanCVD (8) 0.14 1.14 0.07 0.09 0.11
21 35 599 128 MRPS6 rs9982601 MIGen (36) 0.15 1.18 0.11 0.14 0.18

h2
total 3.30 4.27 5.29

Chr, chromosome; Position, position (in bp) on GRCh37/hg19 (Genome Reference Consortium February 2009); EAF, effect allele frequency; OR, odds ratio;
h2

SNP, SNP-specific heritability estimates are shown for three disease prevalence estimates; Kp, disease prevalence estimate for SNP-specific heritability estimate;
h2

total total SNP-encoded heritability for each disease prevalence estimate are shown in bold type.
aMost locus assignments are provisional based on proximity (see text).
bEffect allele frequency and odds ratio are given for Chinese Han population.
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required to confidently lay the blame of disease susceptibility
on a specific underlying gene. The loci shown in Table 1
should therefore be interpreted as provisional assignments
based mainly on proximity (nearest coding sequence).

It is noteworthy that the lists of confidently assigned genes
across the recent crop of studies show little overlap, which at
first glance seems unlikely to be due to differences in tagging
SNP coverage, phenotypic heterogeneity or ancestry (these
studies are heavily weighted towards European ancestry).
We suspect that it most likely has its roots in the small
effects conferred by the susceptibility genes (each allele
increases risk by �5%). Such small gene effects would, in a
GWAS discovery experiment comprising 20K cases and
20K controls, be expected to have only a 5% probability of
passing even a modest stage-1 (tentative discovery) threshold
of P , 0.00001. Therefore, in absolute terms, this low power
to detect an individual gene means that different, and only
occasionally overlapping, sets of susceptibility loci are likely
to emerge from similarly sized studies (13,14). Of course,
even for loci that have surpassed the de facto genome-wide
significance threshold of 5 × 1028, there is still an appreciable
chance that one or more of the 34 loci will prove to be false-
positives (15). We expect based on binomial theory that the
maximum number of false-positive associations in Table 1
will be three or fewer. Skol et al. (16) pointed out that a com-
bined analysis of stage 1 discovery data (based on GWAS SNP
arrays) and stage 2 validation data (a subset of the most prom-
ising SNPs from stage 1) is more efficient than attempting
formal replication in stage 2 and such an analysis is now
standard practise. However, some researchers, mindful of
historical difficulties of interpreting complex genetic data
(17), prefer to apply a cautious approach to secure robust
(i.e. taking into account stage 2 multiple testing penalties)
and independent (of GWAS discovery) replication data (3,4).

GWAS is a ‘hypothesis-free’ approach to the study of
complex diseases, which depends on mutations that unpredict-
ably occurred in previous generations, and purely by chance
(genetic drift) or by (balancing) selection is now common.
As such the loci that are identified provide a framework for
what we know and do not know about pathogenesis from
other hypothesis-led (e.g. physiological, biochemical or cell
biological) experiments. In the case of coronary disease genet-
ics, we have examples that illustrate complex genetic architec-
tural features such as allelic heterogeneity, pleiotropy, risk
factor QTLs, copy number variation (CNV) or synthetic asso-
ciations, which are discussed below. There are findings that
could lead to tangible clinical benefits relatively soon (LPA
and SORT1). But mainly there are leads to point researchers
in unanticipated directions, at least some of which we hope
will provide novel biological insights into how atherosclerotic
plaques develop and rupture.

HOW MUCH HERITABILITY HAS BEEN MAPPED?

Manolio et al. (18) have pointed out that despite the success of
GWAS in mapping common susceptibility variants for many
multifactorial diseases, collectively these variants typically
explain a modest fraction of the total heritability of these con-
ditions. The accuracy of such calculations depends on the

fidelity of a series of locus-specific heritability estimates as
well as the total (i.e. measured plus unmeasured) heritability.

Locus-specific heritability estimates are based on odds ratio
estimates that assume that the lead SNP at a locus accurately
tags the disease-causing variant. No correction is usually made
for potential biases due to the ‘winner’s curse’ (19) or to signal
attenuation due to clinically unscreened control data (20).
External (to the case–control data) epidemiological informa-
tion on disease prevalence is required if the multifactorial
threshold model is to be used to calculate locus-specific herit-
abilities. Prevalence estimates can vary substantially with clin-
ical phenotype, sex, and age and are drifting over time with
changing environmental risk factor exposures (www.heartsta
ts.org); we suggest that a range of prevalences between 2
and 10% is relevant to coronary disease GWAS case series.

Invaluable coronary disease heritability data are derived
from the longitudinal study of over 20K twins in the
Swedish Twin Registry (Karolinska Institute, Stockholm,
Sweden). The total heritability of coronary disease was esti-
mated for angina in men as 39% (95% CI 29–49%) and in
women as 43% (8–51%) (21) and for death from coronary
disease in men as 57% (45–69%) and in women as 38%
(26–50%) (22). Genetic association studies generally use
samples collected from survivors of disease, for ethical and
other pragmatic reasons. For coronary disease, case series
are clinically heterogeneous if they include different diagnos-
tic subgroups (e.g. chronic stable angina or myocardial infarc-
tion) with subtly differing pathologies that might have an
impact on susceptibility. So, we propose that a heritability
estimate of 40% will encompass the clinical heterogeneity
across typical GWAS case series.

Taking all of these issues into account, we estimate that
between 8 and 13% of the total heritability of coronary
disease can be explained by the 35 common variants
(Table 1). So, the vast majority of the heritability is currently un-
explained. X-linked single-gene disorders have intrinsic advan-
tages for gene mapping, so it is a pity that the X-chromosome has
sometimes been overlooked in the search for coronary disease
susceptibility loci (contrast the CARDiOGRAM study which
was based on imputed data with C4D which was based solely
on genotype data). This can easily be resolved as appropriate
analytic means (i.e. phased haplotype training sets and
imputation software) are now freely available and have
proved productive in the investigation of the X chromosome
in other disease areas [e.g. type 2 diabetes (23)].

Although there was little evidence for non-additive genetic
effects in the aforementioned twin studies of coronary
disease, we note that classic MZ/DZ concordance studies
have very limited power to identify non-additive variance
components (24). Moreover, dominance and epistatic vari-
ance components are inevitably confounded in this design
(25). Consequently, there seems no reason why epistatic
and high-penetrance/low-frequency alleles should not
explain a portion of the missing heritability. Indeed, some
of the linkages detected in earlier affected-sib-pair studies
(26,27) might be conferred by low-frequency alleles with
or without allelic heterogeneity. For example, the locus on
chromosome 17p reported by PROCARDIS (27) was asso-
ciated with a sibling recurrence risk ratio (lsib) of 1.29 that
could theoretically be conferred by a dominant, low-
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frequency (0.5%) allele of intermediate penetrance (17.2%)
and with a 1.8% phenocopy rate. Such linkage signals are
usually intractable to conventional GWAS based on
common SNPs (28) but might be resolved by means of
resequencing-based analyses or genotyping arrays with
good coverage of low-frequency variants.

SUSCEPTIBILITY ENCODED BY CNV

The development of array-based methods to systematically
study CNV has allowed researchers to study the role of this
rich source of genetic variation in common multifactorial
diseases (29). It is ironic that these high-throughput techniques
with genome-wide coverage of CNVs have overlooked an
exemplar of common disease susceptibility namely that
encoded by the apolipoprotein(a) (LPA) gene. This gene
includes a highly variable number of kringle IV-2 repeats
(range at least 12–44) which result in numerous isoforms
that can be typed by protein electrophoresis (30) or genomi-
cally quantified by qPCR (30–32). Two SNPs that tag short
isoform alleles that are encoded by relatively low copy
numbers of kringle IV-2 sequences show strong associations
with high lipoprotein(a) levels and with coronary disease
risk (OR¼ �1.5) (30). These SNPs were not included on com-
monly used GWAS SNP arrays (but were fortuitously included
in the design of the HumanCVD gene-centric SNP array)
and have been recalcitrant to genotype imputation due to
their frequency or linkage disequilibrium properties. Conse-
quently, they have not been assessed in GWAS meta-analyses
of coronary disease susceptibility.

ALLELIC HETEROGENEITY AND PLEIOTROPY

Allelic heterogeneity is a regular feature of complex diseases
and traits. For example, multiple independent signals were
detected at 19 of 180 height QTL (33). Researchers have
systematically scanned for secondary association signals of cor-
onary disease (by conditioning on the lead SNP at each locus),
an approach that identified multiple independent SNP signals in
LPA (30). The coronary disease associations in PCKS9 detected
by the non-synonymous R46L SNP rs11591147 (34,35) and a
non-coding SNP rs11206510 (36) appear to be independent as
the two SNPs show little linkage disequilibrium (r2¼ 0.04 in
PROCARDIS Human CVD data). A possible example of
allelic heterogeneity arises for SNPs rs3825807 (3) and
rs1994016 (6) that map to alternate flanks of the ADAMTS7
gene on chromosome 15 to rs4380028 (4) and are in moderate
linkage disequilibrium (r2¼ �0.50).

Coronary disease shows substantial clinical heterogeneity
that is reflected in morphological differences in the athero-
sclerotic plaques (37) that might in turn reflect differences in
inherited susceptibilities. Plaque rupture and subsequent cor-
onary thrombosis causes acute coronary syndromes such as
myocardial infarction, thereby motivating searches for genes
that might influence plaque stability. Reilly et al. (6) under-
took a GWAS of coronary disease patients with angiographic
disease contrasting those cases that had suffered myocardial
infarction with those who had not. This study mapped a
novel association to the ABO blood group system with

SNPs that strongly tag the O allele. The CARDIoGRAM con-
sortium (3), which studied a mixture of coronary disease cases
of which two-thirds had suffered a myocardial infarction and a
mixture of screened and unscreened controls, also mapped a
susceptibility signal to the ABO system. Their lead SNP is
only in moderate linkage disequilibrium (r2¼ 0.39) with the
Reilly et al. (6) signal so may be due to allelic heterogeneity
or pleiotropy. We must await further fine-mapping studies of
the ABO and ADAMTS7 loci to fully understand the details
of these associations.

QTL MAPPING AND CONVENTIONAL

RISK FACTORS

Conventional risk factors for coronary disease such as circulat-
ing lipid levels and blood pressure are heritable (quantitative)
traits. There has been much effort in mapping common QTL
for these traits using GWAS or other large-scale SNP arrays
in population-based as well as case–control samples (38–
40). Technical difficulties such as uncontrolled fasting status
or on-treatment measurements have been largely overcome
to produce a rich crop of risk factor QTL. Notable examples
of overlap with coronary disease loci (Table 2) include
TRIB1 (Drosophila tribbles homologue, a gene that interacts
with the mitogen-activated protein kinase cascade), which
has pleiotropic effects on circulating triglyceride, LDL- and
HDL-cholesterol levels (40) and CYP17A1 (17-a hydroxylase
gene involved in steroid hormone metabolism) which is a sys-
tolic blood pressure QTL (38,39). However, most (22 of 34) of
the coronary disease loci do not show convincing risk factor
QTL effects (Table 2). It may be that novel heritable inter-
mediate phenotypes will eventually be identified that will
explain some of the disease associations; this should lead to
informative insights into pathological mechanisms. Indeed,
expectations that coronary genes would be involved in
innate immunity or thrombosis have not emerged from
large-scale genetic association studies to date.

MOVING FROM ASSOCIATED LOCUS

TO CAUSATIVE GENE

Robust assignments of common susceptibility variants are to
be applauded, but it may take some time to resolve the under-
lying molecular genetic mechanisms. For instance, the first
coronary disease locus to confidently emerge from GWAS
mapped to chromosome 9p21 to a region that was initially
believed to be a gene desert. However, it was quickly recog-
nized in fine-mapping studies (10) that the associated region,
which was of prior interest to cancer genetics researchers
(41,42), was potentially linked to neighbouring cyclin-
dependent kinase inhibitor genes CDKN2A (which has
multiple synonyms including p16, see www.genecards.org/
cgi-bin/carddisp.pl?gene=CDKN2A for more details) and
CDKN2B (p15, see www.genecards.org/cgi-bin/carddisp.p
l?gene=CDKN2B). Subsequent studies of murine models
have highlighted a Cdkn2a/b-mediated mechanism involving
smooth muscle cell proliferation (43). Studies of human tran-
scription enhancer elements propose that the large non-coding
antisense RNA molecule CDKN2ABAS, which is also known
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by the monikers ANRIL and CDKN2B-AS1, is involved in the
long-range transcriptional regulation of several genes, includ-
ing CDKN2A and CDKN2B, in vascular endothelial cell lines
(44).

Another notable success story followed the overlap of
LDL-cholesterol QTL and coronary disease association
signals on chromosome 1p. Here eQTL were particularly in-
formative to resolve the role of SORT1 which encodes sortilin
from it’s neighbours (45). Parallel functional studies have
implicated sortilin as a novel regulator of lipoprotein produc-
tion in the liver (46), thereby providing a mechanistic link to
the coronary disease susceptibility although some details of
the mechanism need to be reconciled.

DISCREPANCIES BETWEEN MEASURED

AND PREDICTED GENETIC RISK

Using results from proxy SNPs that are in almost complete
linkage disequilibrium with each other, the CARDIoGRAM

and C4D studies provide a joint SORT1 per-allele risk estimate
equal to 1.12 (1.09–1.15). The measured per-allele QTL effect
on LDL-cholesterol is equal to 0.145 mmol/l (0.135–0.155)
(40). Substituting the latter QTL effect into the Framingham
coronary heart disease risk equation (47) predicts a per-allele
relative risk equal to 1.042 (1.039–1.045). So, the coronary
disease risk estimate derived from GWAS is substantially
higher than that predicted from the effect on LDL-cholesterol
levels derived from long-term prospective studies.

A similar discrepancy was noted in a genotype risk score ana-
lysis of the Malmö Diet and Cancer study (48). Given the under-
lying sample sizes (.100K for the lipid QTL GWAS
experiment) and the consequent precision of the risk factor
effect sizes, it seems unlikely that these have been systematic-
ally underestimated. It is possible that the disease risk estimates
have been overestimated [e.g. winner’s curse (19)] and/or the
disease associations are only partially mediated through the ac-
companying risk factor QTL effect (i.e. pleiotropy). Moreover,
the Framingham risk equations, which were based on US popu-
lation data from 1970s onwards, were based on single (baseline)

Table 2. Risk factor QTL and coronary artery disease

Locusa QTL Lead QTL SNP CAD Risk SNP r2 Reference(s)

PCSK9 LDL, TC rs2479409 rs11206510 ,0.30 Kathiresan et al. (64), Teslovich et al. (40)
PPAP2B rs17114036
SORT1 LDL, TC rs646776 rs599839 0.91 Kathiresan et al. (64), Teslovich et al. (40)
MIA3 rs17465637
ABCG8 LDL rs4299376 rs4299376 1.00 Teslovich et al. (40)
WDR12 rs6725887
MRAS rs2306374
IL5 rs2706399
C6orf105 rs6903956∗

PHACTR1 rs12526453
ANKS1A rs17609940
TCF21 rs12190287
LPA Lp(a) rs10455872 rs10455872 1.00 Clarke et al. (30)
LPA Lp(a) rs3798220 rs3798220 1.00 Clarke et al. (30)
LPA LDL, TC rs1564348 rs10455872 ,0.30 Teslovich et al. (40)
LPA HDL rs1084651 rs10455872 NAb Teslovich et al. (40)
7q22 rs10953541
ZC3HC1 rs11556924
TRIB1 TG, TC, LDL, HDL rs2954029 rs10808546 0.96 Kathiresan et al. (64), Teslovich et al. (40)
ANRIL/CDKN2BAS rs4977574
ABO LDL, TC rs9411489 rs579459 ,0.30 Teslovich et al. (40)
KIAA1462 rs2505083
CXCL12 rs1746048
LIPA rs1412444
CYP17A1-NT5C2 blood pressure rs11191548 rs12413409 1.00 Newton-Cheh et al. (38)
PDGFD rs974819
APOA1-C3-A4-A5 TG, HDL rs964184 rs964184 1.00 Kathiresan et al. (64), Teslovich et al. (40)
SH2B3 blood pressure rs3184504 rs3184504 1.00 Levy et al. (39)
COL4A1-A2 rs4773144
HHIPL1 rs2895811
ADAMTS7 rs4380028
SMG6-SRR rs216172
PEMT rs12936587
GIP-ATP rs46522
LDLR LDL, TC rs6511720 rs1122608 ,0.30 Teslovich et al. (40)
APOE LDL, TC, HDL rs4420638 rs2075650 0.40 Kathiresan et al. (64), Teslovich et al. (40)
MRPS6 rs9982601

r2, measure of linkage disequilibrium between the lead QTL SNP and the lead risk SNP; LDL, LDL-cholesterol; HDL, HDL-cholesterol; TC, total cholesterol; TG,
triglycerides.
aMost locus assignments are provisional based on proximity (see text).
bSNP rs1084651 had a .5% genotyping failure rate in the HapMap database Rel23.
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cholesterol measurements. Cholesterol measurements are
subject to short-term (e.g. variable fasting) as well as long-term
variation (e.g. changes in diet). Such within-individual vari-
ation can result in the systematic underestimation of the
strength of a risk factor association with disease, an epidemio-
logical effect known as regression dilution bias (49). Whatever
the explanation, these findings emphasize that genetic
epidemiological inferences from cross-sectional data need
cautious interpretation and that information from prospective
studies (e.g. UK BIOBANK, www.ukbiobank.ac.uk) will be
very informative.

GENETIC INSIGHTS FOR EMERGING

RISK FACTORS

Common variants that show quantitative genetic variation for
disease risk factors or intermediate phenotypes can probe the
putative causal relationship between risk factor and disease.
This Mendelian randomization (MR) information (50) is par-
ticularly useful when there are no drugs that specifically
modulate the exposure. For instance, Lp(a) is an LDL particle
that appears to be proatherogenic in cross-sectional and
prospective epidemiological studies. But drugs such as
niacin that reduce Lp(a) concentrations also beneficially in-
crease the HDL levels. So, it can be difficult in randomized
clinical trials (RCT) to unambiguously attribute any clinical
benefit to specific mechanisms. Following a large-scale candi-
date gene study, two SNPs in the apolipoprotein(a) gene were
shown to tag short isoform alleles that were strikingly asso-
ciated with raised Lp(a) concentrations and coronary disease
risk (30) (also discussed in CNV and allelic heterogeneity sec-
tions above). Simultaneous modelling of disease risk and
quantitative genetic variation were consistent with a direct
causal link, thus predicting that pharmacological lowering of
Lp(a) levels will be beneficial to patients. Loci that carry tri-
glyceride QTL such as TRIB1 and APOA1-C3-A4-A5 also
show QTL effects for HDL and LDL. Consequently, these
pleiotropic loci will not be useful for MR probing of the
role of triglyceride, a well-studied lipid that is presently not
routinely included in cardiovascular risk calculations.

CANDIDATE AND POSITIONALLY

CLONED GENES

Before the GWAS epoch, there was much effort expended in
scanning candidate genes, those genes with known or pre-
dicted functions that might be involved in coronary disease
pathogenesis, for susceptibility variants. This research was
supplemented by positional cloning experiments that were un-
biased in terms of gene candidature (51). In comparison with
the levels of statistical support required for GWAS, the evi-
dence for most of the candidate genes was modest despite
meta-analyses involving up to 36K subjects (52). For instance,
genetic variation in the apolipoprotein E gene (APOE) has
well-known effects on LDL-cholesterol and is a highly
plausible coronary disease candidate gene. However, a
meta-analysis of 17 studies with at least 500 cases that
included 21 331 cases and 47 467 controls estimated the risk
of carrying the protective 12 allele (versus 13/ 13

homozygotes) as 0.80 (95% CI 0.70–0.90) (53); the signifi-
cance of this association is approximately P ¼ 0.0005, four
orders of magnitude below genome-wide significance.
GWAS, even when enhanced by genotype imputation, may
not accurately tag specific candidate gene variants [e.g. LPA
and rs10455872 (30)]. So, the absence of a GWAS signal
cannot be assumed to negate prior candidate or positional
cloned genes (8). Indeed, the design of the HumanCVD gene-
centric SNP array has revealed several novel loci LIPA, IL5,
TRIB1 and ABCG5/ABCG8 as well as finally robustly confirm-
ing the candidature of APOE (8).

FUTURE DIRECTIONS AND PROSPECTS

Models of the genetic architecture of complex traits (33)
predict that large numbers of small effect susceptibility loci
remain to be discovered, some of which should be tractable
to well-powered GWAS. The momentum amongst researchers
to meta-analyse GWAS data will be sustained as larger
consortia (e.g. the recently merged CARDIoGRAMplusC4D
consortium) are formed. They can take full advantage of initia-
tives such as the Metabochip project, a custom array contain-
ing 196 725 SNPs that builds on the CARDIoGRAM stage-1
discovery results. So, it is reasonable to expect that the
number of common coronary disease variants will increase, al-
though as each novel variant will be associated with increas-
ingly tiny effects, it seems that the missing heritability gap
will never be filled by common variants alone.

The compilation of an exhaustive list of human genetic
variation through the dbSNP (http://www.ncbi.nlm.nih.gov/p
rojects/SNP) and HapMap (http://hapmap.ncbi.nlm.nih.gov/)
projects is being systematically expanded by the 1000
Genomes project (http://www.1000genomes.org). This is par-
ticularly useful for low-frequency variants (minimum allele
frequency ,5%), which were largely absent from the early
genome-wide SNPs arrays, which were designed to type
common variants in GWAS. Synthetic associations due to
tagging of rare variants by common SNPs or haplotypes com-
posed of common SNPs can occasionally be detected (54);
this is particularly useful if the rare variant might disrupt
gene function (e.g. non-synonymous SNP). Consequently,
analyses of imputed genotypes derived from the 1000
genomes project are an immediate research priority. This is
encouraged by the detection of a haplotype association with
coronary disease (55) that subsequently was partially
explained as a synthetic association to an LPA SNP (30).
Imputation-based analysis will be complemented by whole-
genome or exome resequencing experiments aimed at identi-
fying low-frequency variants and unique high-penetrance
mutations; together, these approaches have the potential to
reveal novel disease mechanisms.

Finally, as the list of mapped disease variants expands, and
fine-mapping and functional genomic studies refine loci to
resolve underlying genes, pathway and network analysis
should prove useful to provide systems level insights into
coronary disease pathogenesis (56,57).
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