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ABSTRACT

Different species, genes, and locations within genes
use different codons to fine-tune gene expression.
Within genes, the ramp sequence assists in ribo-
some spacing and decreases downstream collisions
by incorporating slowly-translated codons at the be-
ginning of a gene. Although previously reported as
occurring in some species, no previous attempt at
extracting the ramp sequence from specific genes
has been published. We present ExtRamp, a software
package that quickly extracts ramp sequences from
any species using the tRNA adaptation index or rel-
ative codon adaptiveness. Different filters facilitate
the analysis of codon efficiency and enable identifi-
cation of genes with a ramp sequence. We validate
the existence of a ramp sequence in most species
by running ExtRamp on 229 742 339 genes across
23 428 species. We evaluate differences in reported
ramp sequences when we use different parameters.
Using the strictest ramp sequence cut-off, we show
that across most taxonomic groups, ramp sequences
are approximately 20–40 codons long and occur in
about 10% of gene sequences. We also show that
in Drosophila melanogaster as gene expression in-
creases, a higher proportion of genes have ramp se-
quences. We provide a framework for performing this
analysis on other species. ExtRamp is freely avail-
able at https://github.com/ridgelab/ExtRamp.

INTRODUCTION

The central dogma of biology shows that three consecutive
nucleotides of coding DNA, called codons, are transcribed
into messenger RNA (mRNA), mRNA is translated into

amino acids, and amino acids form proteins (1). There are
61 canonical codons plus three stop codons that form and
regulate the creation of 20 amino acids (2). Since there are
more codons than amino acids, in many cases multiple syn-
onymous codons encode the same amino acid. Although
originally presumed to be identical in function, unequal dis-
tributions of synonymous codons quickly led to two non-
mutually exclusive hypotheses: (i) non-random mutations
occur particularly at the third codon position, and (ii) se-
lection for codon bias persists (3,4). Furthermore, highly
expressed genes display more prominent codon usage bi-
ases, suggesting that synonymous codons might play differ-
ent roles in species fitness (5). The unequal abundance of
tRNA anticodons led to the wobble hypothesis: tRNA anti-
codons do not need to latch onto all three codon nucleotides
(6). However, codon usage is highly associated with the most
abundant tRNA present in the cell (7). Furthermore, codon
usage patterns affect gene expression, with codons latching
onto fewer than all three tRNA anticodons being consid-
ered suboptimal for gene expression (8).

Although increased gene expression is often considered
optimal, suboptimal codons are preferred in certain genes
or parts of genes because they slow translation and re-
duce translational errors. For instance, a short set of 30–
50 slowly-translated suboptimal codons, or ramp sequence,
was identified at the 5′ end of many protein coding se-
quences, which serves to evenly space ribosomes (9) and
reduce mRNA secondary structure (10) at translation ini-
tiation. This region has codons that are less adapted to
the tRNA pool and consequently the ramp sequence has a
slower elongation speed relative to the rest of the gene (11).
This ramp could be caused by any of three features correlat-
ing with slower translation elongation speed: codon adapta-
tion to the tRNA pool, amino acid charge, and mRNA fold-
ing energy (12). The ramp sequence was discovered by using
a sliding window of 15 codons (although verification was
done with sliding windows ranging from 10 to 20 codons),
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representing the length of the ribosome footprint (9). How-
ever, more recent estimates of the ribosome footprint range
from 15 nucleotides (5 codons) to about 45 nucleotides (15
codons) with a commonly accepted length of 28 nucleotides
(about 9 codons) (13). Therefore, any algorithm for extract-
ing the ramp sequence must be capable of adapting to differ-
ent ribosome footprints by changing the size of the sliding
window. Finally, since the ramp sequence is a relative mea-
sure of codon efficiency for each gene and not an absolute
measure for the whole genome, each gene sequence must be
analyzed individually (11).

Several methods have been used to calculate the effect
that each codon has on overall translation efficiency. Two of
the most common approaches are the Codon Adaptation In-
dex (CAI) (14), which calculates a normalized value for each
codon based on a set of highly expressed genes from the
organism, and the Effective Number of Codons (Nc) model
(15), which uses a population genetics approach to calcu-
late the efficiency of each codon based on its overall usage
in the species. To calculate CAI, two relative adaptiveness
measures are used. First, the relative synonymous codon
usage (RSCU) is calculated by dividing the observed fre-
quency of a codon by the frequency of each codon encod-
ing the same amino acid, assuming equal usage. Second, the
relative adaptiveness of a codon (wij) is calculated for the
jth codon in the ith amino acid. The wij metric is the ratio
of RSCUij to RSCUimax for the ith amino acid (14). The
tRNA Adaptation Index (tAI) (16) more accurately reflects
changes in overall translational efficiency due to wobble in-
teractions, tRNA composition, and synonymous codon po-
sition within a gene (17). However, most species do not have
annotated tAI values. Since the tAI and wij both measure
overall translational efficiency, wij can be used as a proxy
for tAI when only sequence data are available.

We present ExtRamp, the first algorithm that can iden-
tify areas of decreased translational efficiency at the start
of individual genes using tAI, wij or any other codon effi-
ciency table. No existing algorithm can identify ramp se-
quences in individual genes. We validate our approach by
recreating the whole genome trends identified by Tuller et al.
(9) in Saccharomyces cerevisiae, Drosophila melanogaster
and Caenorhabditis elegans using tAI values. Moreover, we
demonstrate the effectiveness of wij as proxy for tAI by us-
ing it to detect the same pattern. Finally, we provide statis-
tics of ramp usages and relative codon adaptiveness in 23
428 species across all domains of life.

MATERIALS AND METHODS

Data collection and processing

We use the coding sequences (CDS) from 23 428 species
from the following taxonomic groups with some overlap
between viruses and bacteria: 418 archaea, 15 063 bacte-
ria, 234 fungi, 149 invertebrates, 89 plants, 75 protozoa,
107 mammalian vertebrates, 123 other vertebrates, and 7
233 viruses. All CDS regions were downloaded from the
National Center for Biotechnology Information (NCBI) in
September 2017 (18–20). The reference sequences for each
gene were used because they are the most complete compi-
lation of the alleles in a given species (20). We always used
the longest isoform, when given a choice, and we filtered out

Figure 1. ExtRamp algorithm flowchart. Outlines the algorithm steps, in-
cluding the optional input/output arguments (dotted lines) and the two
options (underlined) for calculating codon efficiencies.

partial gene sequences and sequences with annotated excep-
tions (i.e. unclassified transcription discrepancy, suspected
errors, translational exception, etc.).

The tAI values were downloaded from the tAI Calculator
(http://tau-tai.azurewebsites.net) (21). We provide tAI data
for Escherichia coli and S. cerevisiae in the GitHub reposi-
tory as examples of the two comma-separated values (CSV)
file formats accepted by ExtRamp. Since tAI values reflect
the overall translational efficiency of a species better than
wij, we recommend using tAI values, where available.

Extracting the ramp sequence

ExtRamp has two options to extract the ramp sequence,
determined by user input (see Figure 1). The first option
uses tAI values (or other codon efficiency values). ExtRamp
first removes the start and stop codons. Then the algorithm
walks over each gene, codon by codon, and matches the

http://tau-tai.azurewebsites.net
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Figure 2. Translational bottleneck calculation and usage. A detailed example of how translational bottleneck outlier regions are calculated and used to
identify ramp sequences.

associated tAI to each codon, creating an ordered list of
codon efficiencies within that gene.

Local codon efficiency bottlenecks are calculated by tak-
ing a sliding window the size of a ribosomal footprint (de-
fault nine codons (22)) of codon efficiencies, finding the
middle (default harmonic mean) of each sliding window,
and then determining where in the gene these bottlenecks
occur, similar to the methods in Navon and Pilpel (23) (see
Figure 2 for a detailed explanation with an example). Next,
ExtRamp optionally determines regions across all genes in
the input FASTA file where more local bottlenecks occur
than expected by random chance (default is true outliers).
Using this method, we take the most conservative approach
to determine in which percentage of the gene the local min-
imum must occur for a ramp sequence to be identified by
ensuring that all percentages (from 1 to n) are outliers (e.g.
if 1, 2, 3, 5, 7 are outlier regions, then the local bottleneck
must occur in the first 3% of the gene because 4 was not an
outlier region). The user can specify outlier regions as well,
in which case the bottleneck must occur within the user-
defined outlier region. If a bottleneck occurs within this re-
gion, then the mean codon efficiency of the entire sequence
is calculated. The ramp is extended beyond the bottleneck
until the sliding window codon efficiency exceeds the mean
codon efficiency of the whole sequence.

If the user specifies the arithmetic mean, geometric mean
or median, the local translational bottleneck method out-
lined above is used as default. However, standard devia-
tions can be used instead of local bottlenecks. If standard
deviations are used, then the mean and standard deviation

of all codon efficiencies within the sequence are calculated.
Using a sliding window starting from the beginning of the
gene, the ramp sequence extends until the mean codon ef-
ficiency within the sliding window exceeds the mean codon
efficiency of the entire gene sequence minus the standard
deviations specified by the user. However, since codon effi-
ciencies have a large degree of variance and the sequences
are relatively small, typically standard deviations must be
smaller than 1.0 in order to identify ramp sequences.

An optional quality control step ensures that reported
ramp sequences have similar lengths by calculating the av-
erage ramp length across all identified ramp sequences and
removing ramp sequences that are in the tailing regions out-
side of a user-defined number (recommended two) of stan-
dard deviations above or below the mean length. Each step
is multithreaded and by default uses all available process-
ing cores, although any number of processing cores can be
specified by the user.

The second option is used when the user does not sup-
ply the codon efficiency values for the species (i.e. the tAI
values are not available for the species). This option uses ei-
ther the input FASTA file or a user-supplied input FASTA
file (typically containing highly expressed genes) to calcu-
late the RSCU for each codon using the following formula,
where xij is the occurrences of the jth codon in the ith amino
acid, and ni is the number of alternative codons for the ith
amino acid (14):

RSCUi j = xi j
1
n

∑ni
j = 1 xi j

(1)
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Next, wij is calculated using the following formula:

wi j = RSCUi j

RSCUimax
(2)

These ratios estimate codon adaptiveness for a species,
with smaller ratios associated with less adaptive (efficient)
codons. Once these efficiencies are calculated, the analysis
is the same as the tAI method, with wij substituting the tAI
values. This second method extends the utility of ExtRamp
to non-model organisms that are not yet included in the tAI
library.

Program options

ExtRamp is written in Python 3.5 and requires a few stan-
dard libraries which can easily be installed using pip3 (pro-
cess outlined in the GitHub README). To increase the
versatility of ExtRamp, we include several options that can
be split into two categories: controlling input and output
files, and specifying variables used in the algorithm. To see
real-time progress of the algorithm at runtime, the -v (ver-
bose) option can be used.

An input FASTA file with CDS sequences is required us-
ing the -i option. By default, DNA sequences are expected,
although RNA can be provided using the -r flag. An op-
tional input file containing tAI values (or other codon ef-
ficiency values) for each codon can also be provided using
the -a option. If tAI values are not provided, ExtRamp will
calculate ramp sequences based on wij for the input FASTA
file. However, wij can be calculated on a different FASTA file
using the -u option. By default, ramp sequences are printed
to standard out (terminal) in FASTA format to facilitate
piping the results into additional analysis tools. To print the
ramp sequences to a file, the -o option can be provided. The
list of local translation efficiencies for each sequence can be
printed to a CSV file using the -l option. Each of the effi-
ciency sequences are smoothed using the ribosomal window
length (discussed below) and the data are printed in ‘tidy’
format (24) for easy graphing using R. An unsmoothed list
of all codon efficiency speeds for each codon can also be
written to a file using the -p option. A list of the gene names
that did not contain any calculable ramp sequence can be
written to a text file using the -n option and sequences that
are removed because they are not divisible by three or do
not exceed the minimum sequence length can be written to
another file using the -z option.

There are nine options that control variables used in the
analysis performed in ExtRamp. The -t option controls the
number of threads used, with the default being all available
processing cores. The -q option sets the minimum length of
a sequence to be analyzed. Similar to the methods used by
Navon and Pilpel (23), the default is 300 nucleotides (100
codons). Since there are several methods to determine the
middle of a dataset, we provide the -m option with inputs of
mean (arithmetic mean), median, gmean (geometric mean),
and the default of hmean (harmonic mean). The -s option
controls the number of standard deviations below the aver-
age of the consensus codon efficiency list for the maximum
codon efficiency within a ramp sequence (typically less than
one because codon efficiencies have large variances). The
-d option controls the number of standard deviations above

or below the mean ramp sequence length for all reported
ramp sequences (if used, we recommend two standard de-
viations). The -w option controls the ribosomal window
length that is used to smooth the proposed ramp sequences
to minimize excess noise from spikes and dips in individual
codon efficiencies. The default ribosomal window length is
nine codons. The -f flag determines the outlier bottleneck
regions based on sequences included in the input FASTA
file. By default, the -f flag finds true outliers in the dataset.
However, this can be modified using the -e option to find
regions above a percentile (e.g. 75 would find places in a
gene that have bottlenecks in the 75th percentile or above).
The -c option sets the outlier region percentage (e.g. 10
would mean that the bottleneck must occur in the first 10%
of the gene sequence). The default outlier region is in the
first eight percent of the gene sequence.

Algorithm validation

To validate our approach, we compared the consensus
efficiencies calculated by ExtRamp for S. cerevisiae, D.
melanogaster, and C. elegans to results by Tuller et al.
(9). We used the tAI values published in that study rather
than updated values to enable accurate comparisons. We
found the consensus efficiency for each species using the
ExtRamp algorithm and graphed the results. We ran the al-
gorithm using the -m mean option to match the method
used by Tuller et al. (9). The local efficiency values were also
smoothed with a window size of four for consistency with
their methods.

FlyBase comparison

We used RNA-Seq gene expression values reported in Fly-
Base (http://flybase.org/rnaseq/profile search) (25) to deter-
mine if reported ramp sequences were associated with gene
expression values (see Figure 3). We combined all expres-
sion data from both males and females at 1, 5 and 30
days old. Using the ‘Expression On’ utility, we pulled the
FlyBase gene names for each of the eight expression level
bins: ‘No/Extremely low’, ‘Very low’, ‘Low’, ‘Moderate’,
‘Moderately high’, ‘High’, ‘Very high’ and ‘Extremely high’.
These gene names were converted to protein names using
the provided FlyBase ‘convert’ tool to facilitate compar-
isons with our dataset. The RNA-Seq Profile tool uses a ‘not
less than’ approach, so by default the ‘No/Extremely low’
bin contains all the genes that are identified by the higher
expression bins as well. We ensured that each bin contained
only genes with a certain expression level by removing all
genes reported in bins with higher expressions.

We ran ExtRamp on the D. melanogaster CDS regions
using the default options with tAI values. We then counted
the number of ramp sequences for each expression level.
Converting from gene names to protein names amplifies the
number of sequences because there are multiple isoforms for
each gene. Since we used the longest isoform of each gene,
we used the number of gene names for the total number of
sequences possible, instead of the number of protein names.
Using a Chi-squared test, we checked if the number of hits
for each expression level significantly differed from random.

http://flybase.org/rnaseq/profile_search
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Figure 3. FlyBase analysis flowchart. Data were collected from both the
FlyBase database and by running ExtRamp on Drosophila melanogaster
coding sequences. The number of ramps that fell into each expression level
bin was tested with a Chi-squared test to determine if the distribution was
random.

wij versus tAI option comparison

To determine if running ExtRamp with and without tAI
values produces similar results, we ran ExtRamp with and
without tAI values on five species: Acidilobus saccharovo-
rans, Arabidopsis thaliana, C. elegans, D. melanogaster and
S. cerevisiae. We calculated the number of shared ramp se-
quences between the two techniques. We then used phyper, a
mark and recapture statistical test built into R, to determine
if the number of common elements was statistically signifi-
cant. The following options were used: p = number of com-
mon sequences, m = number of tAI extracted sequences, n
= total number of CDS tested – m, k = number of extracted
sequences using wij, and lower.tail = FALSE.

Comparison across all domains of life

To further validate our approach, we used ExtRamp to
extract ramp sequences from 229 742 339 gene sequences

found in 23 428 species. We used the wij method instead of
tAI values for this analysis because tAI values are not avail-
able for most species. After extracting the ramp sequence
from each gene, we determined the length of each ramp. For
each species partition, we plot the percentage of genes with
a ramp sequence and the length of the identified ramp se-
quences.

RESULTS

We first tested the accuracy of our algorithm by replicating
the consensus translation efficiency of species reported in
Tuller et al. Using parameters specified in their manuscript,
ExtRamp reports identical codon efficiencies at each posi-
tion (Figure 4).

We then determined if ramp sequences were associated
with gene expression values using the tAI method (Table
1). Using the detailed gene expression data available for D.
melanogaster, we compared the isolated ramp sequences to
their respective expression level bin. Using a Chi-squared
test, we compared the number of genes found in each bin
to the expected number if the ramp sequences were pro-
portionally distributed between the expression bins. The re-
ported Chi-squared value was 58.2 with seven degrees of
freedom and a p-value of 3.45 × 10−10. A clear progression
of increasing standard residuals is seen from genes with low
expression to extremely high expression. Very low and ex-
tremely low expression genes have slightly higher standard
residuals than low expression genes (0.19 and −1.28, respec-
tively). However, the residuals are much lower than very
high and extremely high expression genes (2.87 and 6.24,
respectively). We plot the standard residuals in Figure 5 to
show the trend toward more ramp sequences in more highly
expressed genes in Drosophila.

We compared the wij and the tAI approaches to identify
ramp sequences. The number of ramp sequences extracted
from each species varied between these approaches, so we
calculated if the number of common sequences between the
approaches was random or if both options were targeting
the same sequences. Using a Mark and Recapture statisti-
cal approach on five species, four of the five species had very
significant p-values (<1 × 10−6), indicating that the two ap-
proaches typically identified ramp sequences for the same
genes (Table 2).

Finally, we identified ramp sequences in all genes from
23 428 different species across all domains of life using the
wij method. In all instances, similar ramp sequences were re-
ported using any of the four middle values: geometric mean,
harmonic mean, arithmetic mean, and median. The first 5–
10% of the gene was typically considered an outlier region,
with protozoa having a slightly lower average (2–5%) and
viruses reported almost no outlier regions (see Figure 6).
Reported ramp lengths in sequences with a ramp typically
ranged from about 60 to 120 nucleotides (20–40 codons),
with plants having a slightly higher average length (about
25–55 codons) and viruses having a slightly lower average
length (about 10–20 codons) (see Figure 7). Bacteria and
plants reported the highest percentage of genes with ramp
sequences (15–30%), while viruses reported almost no genes
with ramp sequences (see Figure 8). Using the translational
bottleneck technique with the strictest filter for outliers,
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Figure 4. Consensus tAI Efficiencies: The averaged local tAI values across all CDS regions mapped to the codon position for Caenorhabditis elegans,
Drosophila melanogaster, and Saccharomyces cerevisiae. The local efficiency values were smoothed with a window size of four. These graphs are identical
to charts reported in Tuller et al. (9).

Figure 5. Standard residuals of expression bins. Using a Chi-squared test, we calculated the standard residuals for each expression bin and plotted these
values, ordered from the bin with the lowest expression to the bin with the highest expression.

Table 1. tAI Ramp sequences for FlyBase expression bins

Expression level Observed ramps Total sequences Expected ramps Standard residuals

No/Extremely low 73 726 84.82014734 −1.28
Very low 182 1536 179.454196 0.19
Low 181 1830 213.8028507 −2.24
Moderate 337 3162 369.4232864 −1.69
Moderately high 312 2655 310.1893818 0.1
High 177 1383 161.5788757 1.21
Very high 155 1054 123.1410955 2.87
Extremely high 42 142 16.59016656 6.24
Total 1459 12488 1459

Ramp sequences were extracted from all genes reported in FlyBase using ExtRamp and tAI values. For each expression level (no/extremely low to
extremely high), the number of observed ramp sequences was compared to the expected number of ramp sequences if ramp sequences were not associated
with expression (i.e. the total proportion of ramp sequences multiplied by the total number of sequences in a bin reported by FlyBase).
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Table 2. Mark and recapture analysis: the number of ramps extracted using the tAI and wij options was determined from the total number of gene sequences

Species

Number of ramps
identified tAI
method

Number of ramps
identified
wij method

Number of
total sequences

Number of
identical ramps
captured

Mark and
recapture
P-value

Arabidopsis thaliana 1974 3672 25101 239 0.999
Acidilobus saccharovorans 191 261 1354 63 2.95 × 10−7

Caenorhabditis elegans 3294 2897 18901 640 9.78 × 10−13

Drosophila melanogaster 1848 2302 12920 850 2.21 × 10−210

Saccharomyces cerevisiae 823 767 5649 256 1.66 × 10−47

The ‘number of identical ramps captured’ indicates the number of sequences that contained ramps using both tAI and wij methods of ramp extraction.
The p-value indicates the probability that the amount of overlap (‘number of identical ramps captured’) could occur randomly. The phyper function in R
was used for these calculations.

Figure 6. Cutoff percentage used to compute ramp sequence. For each tax-
onomic group, violin plots for each of the four middle values show the cut-
off percentages used to compute the ramp sequences. Cutoff percentages
are defined as the last consecutive gene region before the number of trans-
lational bottlenecks is no longer an outlier, starting from the first percentile
(i.e. if the cutoff is 5, then 1–5 are all outlier regions). Each of the nine sub-
plots show means in the following order: geometric mean, harmonic mean,
arithmetic mean and median.

most taxonomic groups report ramp sequences for about
10% of all species genomes (Figure 8).

We also analyzed the outlier regions that were identified
by ExtRamp. Since all middle values report similar ramp
sequences, we chose the default harmonic mean to analyze
the outlier percentiles. We first removed the start and stop
codon from each gene in the genome. Then we divided each
gene into 100 equal parts and determined in which part
the translational bottleneck occurred. Where multiple equal
bottlenecks were identified, all bottlenecks were included in
the analysis. We show that in bacteria, invertebrates, mam-
mals, other vertebrates, and plants, 100% of the species had

Figure 7. Ramp lengths in nucleotides. After removing outliers, we plot
the ramp lengths for all ramp sequences in each taxonomic group. Each
of the nine subplots show means in the following order: geometric mean,
harmonic mean, arithmetic mean and median.

an outlier region in the first percentile of their genes, and the
outlier region extends to the tenth percentile in most taxo-
nomic groups (see Figure 9). We also found that all taxo-
nomic groups have an outlier region in the last percentile
(99th percentile) of the gene. Each taxonomic group except
viruses clearly shows an outlier region at the beginning of
the gene sequence with very few outlier regions between the
first 10% of the gene and the end of the gene.

DISCUSSION

Using the strictest settings on ExtRamp, most taxonomic
groups had similar percentages of ramp sequences (∼10%
of genes) and ramp sequence lengths (20–40 codons). How-
ever, bacteria and plants reported significantly more ramp
sequences (∼25% of genes), while viruses reported almost
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Figure 8. Percentage of sequences with a ramp per species. For each taxo-
nomic group, violin plots for each of the four middle values show the per-
cent of sequences in each species that contained a ramp. Each of the nine
subplots show means in the following order: geometric mean, harmonic
mean, arithmetic mean and median.

no genes with a ramp sequence. In plants, the reported
cutoff value was higher than the other taxonomic groups
(Figure 6), indicating the outlier regions extended farther
into the gene sequence. More outlier regions could indi-
cate that in plants, translational bottlenecks occur in a
wider region at the beginning of gene sequences than in
other taxonomic groups. A higher reported cutoff percent-
age would increase the number of ramp sequences identified
and could account for the increased number of ramp se-
quences shown in Figure 8. In bacteria, the mean cutoff per-
centage is slightly higher than in other taxonomic groups.
However, the density distribution is much more tightly con-
centrated around the mean (see Figure 6). A tighter den-
sity distribution indicates that bacteria report more sim-
ilar cutoff percentages between species than inter-species
comparisons in other taxonomic groups. This tighter den-
sity distribution could also indicate that more selective pres-
sure exists in bacteria to maintain a ramp sequence than in
other taxonomic groups. Unsurprisingly, viruses reported
almost no ramp sequences. Viral genes are populated with
regulatory sequences at the beginning of the coding region
and host-repeating substrings throughout the genetic code
(26), which potentially limits the applicability of selection
for ramp sequences in viruses.

We also present evidence that a clear progression of in-
creasing proportions of ramp sequences are identified from
low expressed genes to extremely high expressed genes in D.
melanogaster (Table 1). We plot the standard residuals for

Figure 9. Percent of species with outliers at each gene percent. After di-
viding each gene into 100 equal parts, we determined where translational
bottlenecks occur in the gene. We then identified all outlier regions using
the harmonic mean. For each taxonomic group, we counted the number
of species with an outlier region at each of the 100 percentiles, and we di-
vided that number by the total number of species in the taxonomic group.
We plot these percentiles. When no species had an outlier region, points
are not plotted.

each expression bin (Figure 5) and show that the highest
standard residual (6.24) is found in the ‘Extremely high’ ex-
pression bin, while all expression bins less than or equal to
‘Moderately high’ expression have standard residuals at or
below zero. This analysis complements previous studies in-
dicating that ramp sequences are more prevalent in highly
expressed genes (9,27).

Although the wij and tAI methods detect different num-
bers of sequences as containing ramps, they largely tar-
get the same sequences, with four of the five species ana-
lyzed having p-values <1 × 10−6 (Table 2). Since tAI val-
ues are not available for most species, further evaluation
with a more robust tAI library might indicate systematic
biases of tAI, whether from a phylogenetic or algorithmic
standpoint. It is probable that tAI is more accurate in some
species, or the correlation between tAI and wij is not univer-
sal. However, through our analysis, we show that although
wij and tAI recover different numbers of ramp sequences,
both methods typically target the same sequences.

ExtRamp can also aid in the analysis of a gene as a whole.
Because the ramp sequences behave differently than the rest
of the gene, it can skew the results of certain analyses. Some
studies have avoided the problem by removing the first 50
codons of all the sequences before performing their anal-
yses (28). However, this practice removes potentially valu-
able data and is not universally accurate for all sequences or
species. At least two solutions to this predicament are as fol-
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lows: (i) Determine the exact ramp sequence for each gene
(possibly none) and remove only those portions, thereby
keeping more of the sequence data for downstream anal-
ysis. (ii) Incorporate the annotated ramp sequences in the
downstream analysis tools.

We also provide the option to view the local translation
efficiencies for each sequence that can easily be plotted using
R. With these data, analyses can extend beyond the ramp
sequence into the body of the gene. Furthermore, the op-
tion to view codon efficiency at each position allows for
more extensive analyses involving local translational bottle-
necks and codon usages. Future analyses could evaluate if
there are correlations between physical characteristics such
as functional domains of the gene and the translational ef-
ficiency of that section of the gene.

Very few studies have been performed on ramp sequences
because software for extracting individual ramp sequences
does not exist. We developed this algorithm to fill this need
and improve the study of ramp sequences. Many studies
look at ramp sequences on a high level, either evaluating
the average length of the sequences in a species or deter-
mining the codon usage bias that influences the ramp. Ex-
tRamp is the first algorithm to isolate the ramp sequence
from individual genes, and it is the first attempt to analyze
ramp sequences in non-model organisms. Future research
can determine which codons, specifically, are targeted in the
ramp sequence, if ramps have a different mutation rate than
the rest of the gene, if ramp sequences are associated with
DNA structure, and if the length of the ramps can be used
as a predictor for expression levels. We anticipate that Ex-
tRamp will make ramp sequence research more accessible
and assist in uncovering more biologically meaningful in-
terpretations of the ramp sequence.
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