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SUMMARY

The gut microbiota influences development1–3 and homeostasis4–7 of the mammalian immune 

system, and is associated with human inflammatory-8 and immune diseases9,10 as well as patients’ 

responses to immunotherapy11–14. Still, our understanding of how gut bacteria modulate the 

immune system remains limited, particularly in humans where a lack of deliberate manipulations 

makes inference challenging. Here we study hundreds of hospitalized—and closely monitored—

cancer patients receiving hematopoietic cell transplantation as they recover from chemotherapy 

and stem cell engraftment. This aggressive treatment causes large shifts in both circulatory 

immune cell and microbiota populations, allowing the relationships between the two to be studied 

simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and 

monocyte counts and >10,000 longitudinal microbiota samples from patients revealed consistent 

associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata 

and Bayesian inference allowed us to compare the effects of bacterial genera relative to those of 

immunomodulatory medications, revealing a considerable influence of the gut microbiota—in 

concert and over time—on systemic immune cell dynamics. Our analysis establishes and 

quantifies the link between the gut microbiota and the human immune system, with implications 

for microbiota-driven modulation of immunity.

The human gut microbiota is considered a major modulator of the immune system during 

development3, and in health and disease8,9. For example, children born preterm have distinct 
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microbiome compositions alongside distinct developmental trajectories of peripheral 

immune cell populations3. In adults, the success of immunotherapies that rely on peripheral 

immune cells, such as checkpoint inhibitor treatments, was associated with the composition 

of the microbiome11–13,15. There is an increasing interest in using the microbiome to 

modulate the immune system and augment treatments7,16, including the burgeoning field of 

chimeric antigen receptor (CAR) T-cell therapy17. But our understanding of how the 

microbiota influences the dynamics of immune cells in humans, and how this compares to 

deliberate immunomodulatory interventions, remains limited due to a lack of feasible 

experiments.

To overcome this, we asked whether the gut microbiota could influence day-by-day changes 

in peripheral immune cell counts. We collected a vast dataset of immune reconstitution 

dynamics after allogeneic hematopoietic cell therapy (allo-HCT) from patients treated at 

Memorial Sloan Kettering (MSK) between 2003 and 2019 (Fig. 1a, Supplementary Table 1). 

The conditioning regimen of radiation and chemotherapy administered to HCT patients is 

the most severe perturbation to the immune system deliberately performed in humans: this 

offers a unique opportunity to investigate links between the gut microbiota and immune 

dynamics directly in humans.

Conditioning depletes white blood cell (WBC) counts leading to neutropenia (<500 

neutrophils/μl blood) until transplanted stem cells begin to release granulocytes from the 

bone marrow, initiating immune reconstitution (Fig. 1a–c). HCT therapies also damage the 

gut microbiota18 and reduce its biodiversity (Fig. 1d–i), a collateral effect associated with 

increased mortality in HCT patients19. Immune and microbiome reconstitution vary 

considerably between patients and treatment types (Fig. 1, Extended Data Fig. 1a) enabling 

analyses of associations between microbiome and immune system, and their comparison to 

immunomodulators such as granulocyte-colony stimulating factor (GCSF).

To detect a directional and causal link between the microbiota and circulatory WBCs, we 

first used data from a randomized trial of autologous fecal microbiota transplantation (auto-

FMT)—a controlled microbiota manipulation experiment performed directly on our 

patients20 (Extended Data Fig. 2a). To investigate if auto-FMT affected WBC reconstitution, 

we compared the 24 enrolled patients’ neutrophil, lymphocyte and monocyte counts post-

neutrophil engraftment (3 consecutive days >500 neutrophils per μl). FMTs were conducted 

at variable dates relative to neutrophil engraftment (Fig. 2a, Supplementary Table 2). 

Overall, we observed higher counts of each WBC type in patients who received an auto-

FMT during the first 100 days post neutrophil engraftment (p<0.001, Fig. 2b,c, total WBCs 

Extended Data Fig. 2b–g).

The higher WBCs in patients receiving auto-FMT could result from the successful 

reconstitution of a complex microbiota20 and associated metabolic capabilities21, or it could 

be a systemic response to a severe therapy which introduced billions of intestinal organisms 

at once via an enema (no enema was administered to control patients20). Moreover, chance 

differences in extrinsic factors such as different immunomodulator medications may have 

affected this result due to the small cohort size. Nonetheless, it supported the notion that the 

microbiota can modulate the peripheral immune system. High counts of lymphocytes during 
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immune reconstitution had been associated with improved clinical outcomes22, and 3-year 

survival was positively associated with higher mean levels of WBCs during 100 days after 

neutrophil engraftment in our HCT patients (hazard ratio: 0.91, p=0.04). Determining which 

taxa modulate immune dynamics could therefore open new ways to improve immune 

reconstitution—critical for clinical outcomes.

To investigate the links between the gut microbiota and the dynamics of WBC recovery we 

turned to our large observational cohort of HCT patients. Homeostasis of circulatory WBC 

counts is a complex, dynamic process: WBCs are formed and released into the blood de 
novo by differentiation of hematopoietic progenitor cells from the bone marrow, and can be 

mobilized from thymus and lymph nodes (lymphocytes), spleen, liver and lungs 

(neutrophils); WBCs can also migrate from the blood to other tissues when needed23. To 

identify modulators of these dynamics processes, we developed a two-stage approach 

analyzing the changes of WBC counts between two days (Fig. 3a). Stage 1 served as a 

clinical- and metadata feature selection stage using blood and medication data of 1,096 

patients without available microbiome information (Extended Data Fig. 1b for data 

inclusion). Stage 2 was performed on data from an independent cohort of 841 different 

patients from whom concurrent microbiome samples were available to detect associations 

between microbiome and peripheral immune cell dynamics.

In stage 1 we analyzed the changes in neutrophils, lymphocytes and monocytes during 

patients’ recovery from >20,000 pairs of post-engraftment blood samples separated by a 

single day (Fig. 3b). A cross-validated feature selection approach detected medications and 

HCT parameters associated with WBC dynamics (Extended Data Fig. 3a–c, Supplementary 

Table 3). In stage 2 we sought to identify the additional contribution of the gut microbiome. 

We performed Bayesian inferences using data from different sets of patients with available 

microbiome samples (Supplementary Table 4). Stage 1 had identified—as expected—that 

stem cell graft sources are associated with immune reconstitution kinetics (e.g. umbilical 

cord blood slower than peripheral blood, PBSC24), and we therefore stratified our patients 

by graft source in stage 2. The dynamic systems model of stage 2 now included bacterial 

genera as predictors of daily changes in WBC counts, in addition to the medications selected 

in stage 1, clinical features (conditioning intensity, age, sex), and the current state of the 

blood in the form of counts of neutrophils, lymphocytes, monocytes, eosinophils, and 

platelets (Fig. 3a). The data comprised 841 patients, but approximately 60% of the stool 

samples paired with a daily change in WBC counts were taken before neutrophil 

engraftment, i.e. when WBC counts were zero. Nevertheless, >2,000 post-engraftment 

observations of WBC changes during immune reconstitution provided a large sample to 

analyze dynamics (Fig. 3b). Stage 2 focused on data from the largest (Fig. 3c) cohort: PBSC 

graft recipients. We withheld the other cohorts (bone marrow, BM; T-cell depleted graft (ex-
vivo) by CD34+selection, TCD; and cord) for validation scoring, and included data from 

patients treated at Duke University for additional validation (Supplementary Table 5).

Notably, as a verification of our approach, we detected associations between 

immunomodulator administrations and consequent immune cell dynamics that were 

consistent with known biological mechanisms (Fig. 3c, Extended Data Fig. 4a–f). The 

strongest association across all predictors is the well-known neutrophil-increasing effect of 
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GCSF25; GCSF administration—used to accelerate recovery from chemotherapy-induced 

neutropenia25—was associated with a +140% increase in the rate of neutrophil changes from 

one day to the next ([+114%, +170%], 95 percent probability density interval [HPDI95]). 

This finding was observed in all MSK (v-score=3, Fig. 3d) and Duke validation data sets 

(Extended Data Fig. 4g–j). We furthermore found a GCSF-associated increase of +43% 

([+30%, +58%]HPDI95, v-score=3) in monocyte rates, and, although smaller, in lymphocyte 

rates (+16%, [+5%, +27%]HPDI95, v-score=3). Neutrophil and lymphocyte rates decreased 

following antihistamine or immunosuppressive medication (cetirizine −18%, [−35%, 

+5%]HPDI95, mycophenolate mofetil −8% [−15%,+1%]HPDI95, respectively). Finally, less 

intensive chemotherapeutic conditioning regimens (non-ablative and reduced intensity) were 

associated with increased lymphocyte and monocyte rates (Extended Data Fig. 4c).

Beyond the mechanistically plausible associations of medications, our analysis detected 

associations between the current count of WBCs and their rates of change: negative 

associations of neutrophil and lymphocyte counts with the rates of monocytes, and negative 

associations of platelet and lymphocyte counts with the rates of lymphocytes and neutrophils 

(Fig. 3e). Conversely, we found positive associations between monocytes and the rates of 

each of the investigated WBC subsets. These associations, derived from daily counts of 

WBCs, could reflect a complex network underlying the regulation of blood immune cell 

composition23. More importantly, the associations quantified for these potential homeostatic 

feedbacks and medications provided a benchmark against which we could compare gut 

microbial taxa.

We identified bacterial genera that consistently associated with WBC dynamics (Fig. 3f). 

Higher relative abundances of Faecalibacterium (+8%, [+1%, +14%]HPDI95 per log10), 

Ruminococcus 2 (+5%, [0%, +10%]HPDI95) and Akkermansia (+4%, [+1%, +7%]HPDI95) 

were associated with increased neutrophil rates, whereas Rothia (−3%, [−7%, 0%]HPDI95), 

and Clostridium sensu stricto 1 (−3%, [−6%, 0%]HPDI95) associated with reduced 

neutrophil rates. These results were validated in univariate analyses of the Duke cohort 

(Extended Data Fig. 4g–i). We also used total bacterial abundances as predictors instead of 

relative abundances; this confirmed Faecalibacterium as most strongly associated with 

neutrophil dynamics (Extended Data Fig. 5). Ruminococcus 2 (+5%, [+1%, +9%]HPDI95) 

and Staphylococcus (+4%, [+1%, +6%]HPDI95) were positively associated with 

lymphocyte rates. Faecalibacterium and Ruminococcus 2 also associated with increases in 

monocyte rates; this association was validated in other cohorts (v-score 3 and 1, 

respectively), but there was higher uncertainty of the association estimate (HPDI50>0). 

Clostridium sensu strictu 1 (−3% [−5%, −1%]HPDI95) associated with decreased rates of 

monocytes. The associations we identified—and validated in other cohorts—between gut 

microbial taxa and daily changes in WBCs support the idea that hematopoiesis and 

mobilization respond to the composition of the gut microbiome, influencing systemic 

immunity26.

Intestinal bacteria may affect circulatory WBC counts by influencing either their sources in 

the bone marrow or their cytokine profiles27 and proliferation rates in the blood, their sinks 

in different organs, or both. The immune system in turn can interact with the microbiota and 

modulate its composition, for example via immunoglobulin-A as studied in mice28–30. To 
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investigate a reverse effect of the immune system onto bacterial populations, we employed 

an analogous approach to the stage 1 analysis. Dynamics of WBCs could be estimated from 

changes in absolute cell counts, and to obtain necessary absolute bacterial counts, we 

measured total bacterial 16S rRNA gene copies per gram of stool for a subset of our samples 

(3,995 samples from 481 patients) to jointly infer the bidirectional association network 

between microbiota and the peripheral immune system dynamics. All of our patients 

received antibiotics on some days during their treatment18 and their strong impact on 

microbiota dynamics were the dominant effects that survived feature selection (Extended 

Data Fig. 6). Relaxing the regularization strength (methods), however, revealed several bi-

directional relationships between WBCs and gut bacterial dynamics (Extended Data Fig. 7). 

Of note, we detected a negative association of absolute [Ruminococcus] gnavus group 

abundance with lymphocytes rates, confirming our main result based on relative bacterial 

abundances (Fig. 3f). In the reverse direction, we saw a positive association of lymphocyte 

counts with [Ruminococcus] gnavus group growth rates. Ruminococcus gnavus is associated 

with inflammatory bowel diseases (IBD)31 and auto-immune disorders10; our analysis 

suggests it may drive high neutrophil to lymphocyte ratios that are broadly characteristic for 

poor disease outcomes in IBD32 and beyond33,34.

Several of the bacterial taxa positively associated with WBC rates were obligate anaerobes, 

some of which produce cell-wall molecules1,35 and short-chain fatty acids (SCFAs)36 that 

modulate immune responses and granulopoiesis37. Ruminococcus 2, for example, contains 

keystone species that release nutrients from complex dietary starch38 and such nutritional 

support from the microbiota improved hematopoietic reconstitution in mice21. To identify a 

similar association in our patients, we estimated the microbiota reconstitution potency per 

sample (methods). Shotgun metagenomic sequences from 124 of our samples revealed that 

positive microbiota potency samples were enriched in cholate degradation, vitamin-B1 

synthesis and butanoate formation pathways (Extended Data Fig. 8). In line with 

evolutionary theory39, our results suggest that such broadly available microbial traits may be 

co-opted by the host as part of the homeostatic interplay between immune system and 

microbiota. Reassuringly, the genera Faecalibacterium, Ruminococcus 2 and Akkermansia 
that we associated with increased WBCs rates were among those best reconstituted by auto-

FMT20, potentially explaining the higher counts of neutrophils, monocytes and lymphocytes 

in auto-FMT treated patients.

Our analyses show that the gut microbiome is associated with immune cell dynamics in 

humans. The inferred associations should be interpreted as net effects since they do not 

distinguish the microbiota’s impact on de novo hematopoiesis, for example, from its impact 

on other sources and sinks. Unlike the plausible role of obligate anaerobe fermenters in 

augmenting hematopoiesis via nutritional support21, the positive association detected 

between Staphylococcus and lymphocyte dynamics could instead result from reduced 

extravasation of T cells from circulation into the gut epithelium40, especially since high 

abundances of Staphylococcus are associated with low gut microbiota diversity (p<0.001, 

Extended Data Fig. 9a), which indicates a depleted microbiota.

Nevertheless, our approach allows us to leverage the chronology of events and assess 

“mathematical causality”41. Due to the observational nature of these data there are risks of 
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confounding, e.g. from undetected infections or dietary components, that could explain some 

of the associations found, but the close temporal correspondence41 between microbiota and 

WBC dynamics reduces the number of plausible confounders. Notwithstanding potential 

confounders, our results suggest candidate bacterial taxa that might improve immune 

reconstitution, and focused follow-up studies are required to evaluate their 

immunomodulatory efficacy. Intriguingly, members of Faecalibacterium and Ruminococcus 
in one study12, and Akkermansia in another11, were associated with better responses to anti–

PD-1 immunotherapy, which suggested a disagreement42. Our results, however, revealed 

Faecalibacterium, Ruminococcus 2, and Akkermansia as the taxa with the strongest immune 

cell dynamics associations, therefore agreeing with the finding of both studies that these taxa 

are associated with human immune modulation. Furthermore, our work enables us to 

directly compare their inferred effect sizes to the effects of immunomodulatory drugs. These 

genera are common in healthy people43, but they can drop below detection in patients after 

HCT18. Realistic ranges of 3–5 orders of magnitude in bacterial relative abundances (Figure 

3g, Extended Data Fig. 9b,c) could yield effect sizes similar to the homeostatic feedbacks 

inferred between WBCs and even immunomodulatory medications (e.g. a change in 

Ruminococcus 2 from below detection to 1% relative abundance associated with a +67% 

and +63% increase in neutrophil and lymphocyte rates, respectively). The effect sizes of gut 

bacteria at first may appear small relative to those of immunomodulatory drugs, yet their 

effect could be considerable as they refer to changes in exponential rates of WBCs and 

would accumulate each day while those bacteria remain abundant. To demonstrate this 

accumulation over time, we simulated WBC dynamics using our posterior coefficient 

distributions (methods). We simulated 1,000 time series for microbiota compositions either 

chosen from the 100 samples highest or lowest in Faecalibacterium, Ruminococcus 2 and 

Akkermansia (Fig. 3g), in presence (Fig. 3h) or absence (Fig. 3i) of GCSF administration. 

Simulations predict that microbiota enriched in these genera accelerate immune 

reconstitution, and reduce the time until neutrophils reach >2K*μl−1 in absence of GCSF by 

2.4 days, from predicted 6.8 (CI: [6.5, 7]) to 4.4 days (CI: [4.3,4.5]) days. Gut bacteria, in 

concert and over time, could therefore influence steady-state immune homeostasis 

considerably, even in individuals with less severely injured microbiomes.

In sum, our work links the gut microbiota to the dynamics of the human immune system via 

peripheral white blood cell dynamics. Our analysis uses WBCs counted directly from 

patients, which are coarse-grained clinical analyses conducted at large scale but lack details 

such as lymphocyte and other immune cell subsets. Nonetheless, our work demonstrates 

how analysis of massive clinical datasets can reveal novel biological insights. Because our 

study is in humans, it fills an important gap at a critical time for microbiome research when 

the clinical relevance of animal models of microbiome-immune interaction has been 

questioned44. By studying a large number of patients over time, we were able to infer and 

quantify the association between gut bacteria and systemic immune cell dynamics, and our 

results help to consolidate previous findings12,11 that seemed in conflict with each other42. 

Our demonstration that the microbiota influences systemic immunity in humans opens the 

door towards an exploration of potential microbiota-targeted interventions to improve 

immunotherapy and treatments for immune-mediated and inflammatory diseases8,10–12.
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Methods

Ethics approval and informed consent

The participants in the auto-FMT trial (NCT02269150) provided written informed consent 

to participate in the trial (#14–025). Participants in the observational cohorts at both MSK 

and at Duke provided written informed consent for the use of their fecal specimens and 

clinical data. The use and analysis of these specimens for the work herein was approved by 

IRBs at both institutions: MSK (#16–834) and Duke (PRO0006268 and Pro00050975).

Complete blood count collection and characterization

Absolute white blood cells count data were obtained from routine complete blood counts 

ordered by clinicians during normal clinical practice, used to obtain informative diagnostic 

and monitoring information. Blood samples received in the clinical hematology laboratory 

were analyzed using Sysmex XN automated hematology analyzers (Sysmex, Lincolnshire, 

IL) and, when needed based on specific flags and parameters as per MSKCC standard 

operating procedures, were validated manually using the Sysmex DI-60 Slide Processing 

System or CellaVision DM9600 Automated Digital Morphology System (Sysmex, 

Lincolnshire, IL).

16S rRNA gene amplification and multiparallel sequencing

For each sample, duplicate 50-μl PCRs were performed, each containing 50 ng of purified 

DNA, 0.2 mM deoxynucleotide triphosphates, 1.5 mM MgCl2, 2.5 U Platinum Taq DNA 

polymerase, 2.5 μl of 10× PCR buffer, and 0.5 μM of each primer designed to amplify the 

V4-V5: 563F (5′-nnnnnnnn-NNNNNNNNNNNN-AYTGGGYDTAAAGNG-3′) and 926R 

(5′-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHTTTRAGT-3′). A unique 12-base 

Golay barcode (Ns) precedes the primers for sample identification45, and one to eight 

additional nucleotides were placed in front of the barcode to offset the sequencing of the 

primers. Cycling conditions were 94°C for 3 min, followed by 27 cycles of 94°C for 50 s, 

51°C for 30 s, and 72°C for 1 min. For the final elongation step, 72°C for 5 min was used. 

Replicate PCRs were pooled, and amplicons were purified using the QIAquick PCR 

Purification Kit (Qiagen). PCR products were quantified and pooled at equimolar amounts 

before Illumina barcodes and adaptors were ligated, using the Illumina TruSeq Sample 

Preparation protocol. The completed library was sequenced on an Illumina MiSeq platform 

following the Illumina recommended procedures with a paired-end 250 × 250 bp kit

Sequence analysis

The 16S (V4-V5) paired-end reads were merged and demultiplexed. Amplicon sequence 

variants (ASVs) were identified using the Divisive Amplicon Denoising Algorithm 

(DADA2) pipeline including filtering and trimming of the reads46. Reads were trimmed to 

the first 180 bp or the first point with a quality score Q<2. Reads were removed if they 

contained ambiguous nucleotides (N) or if two or more errors were expected based on the 

quality of the trimmed read. We assigned taxonomy to ASVs using a 8-mer based classifier 

trained by IDTaxa47 using the SILVA database48. We determined the copy number of 16S 
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rRNA genes per gram of stool for 4,158 of our samples as reported previously18, by 

quantitative PCR on total DNA extracted from fecal samples.

Quantification of total microbiota density per gram of stool and estimation of total genus 
abundances.

Quantitative PCR (qPCR) was performed on DNA extracted from the 1g wet weight of a 

stool sample using DyNAmo SYBR Green qPCR kit (Finnzymes) and 0.2 μM of the 

universal bacterial primer 8F (5′-AGAGTTTGATCCTGGCTCAG) and the broad-range 

bacterial primer 338R (5′-TGCTGCCTCCCGTAGGAGT-3′). Standard curves were 

prepared by serial dilution of the PCR blunt vector (Invitrogen) containing 1 copy of the 16s 

rRNA gene. Cycling conditions were 95°C for 10 minutes followed by 40 cycles of 95°C for 

30 seconds, 52°C for 30 seconds, and 72°C for 1 minute. We used the measurements of total 

16S rRNA gene counts per gram of stool to multiply the relative abundances of taxa 

obtained from 16S amplicon sequencing to obtain the estimate of their total abundance per 

gram of stool (supplementary information). Importantly, this does not account for 16S copy 

number variation between taxa, but the observed dynamic ranges in total abundances of taxa 

in our data set span up to 9 orders of magnitude, exceeding the potential inaccuracies due to 

copy number variation.

Diversity calculations

Microbiome alpha-diversity was measured by the inverse Simpson (IS) index of a sample. It 

was calculated by ISi = 1
∑j = 1

N pij2
, where p is the relative abundance of the jth ASV out of N 

total ASVs in sample i.

Linear mixed-effects model of white blood cell counts

To study the effect of auto-FMT on white blood cells, we investigated the white blood cell 

counts of 24 enrolled patients of this trial from the day of neutrophil engraftment until 100 

days after. FMT occurred on different days relative to neutrophil engraftment. Thus, we 

performed an analogous analysis to that conducted in the original publication that 

demonstrated how FMT re-established a diverse microbiome in the post-FMT period20. To 

answer if white blood cell counts differed post-FMT, we used a linear mixed effects model 

of white blood cell counts, y, modeled as a function of the FMT treatment as well as patient 

and timepoint specific random effects. We included random intercept terms for each day i 
and each patient j, and a fixed effects term for the post-FMT period with associated 

coefficient “armpost”, using the indicator variable “FMT”, that is 1 when a patient was from 

the FMT treated arm of the trial and day was greater than or equal to the day of the FMT 

procedure. We conducted independent analyses for neutrophil, lymphocyte and monocyte 

counts. This resulted in the following model of a cell count, y, for patient j on day i:

yij =  β0 + armpost * FMTij + dayi + patientj + εij,   i = 0, …, D,  j = 1, …, P

with prior distributions dayi N 0,  σday
2 , and patientj N 0,  σpatient2 , independent error 

εij N 0, σ2  and fixed intercept β0, for the D days post neutrophils engraftment and P 
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patients, (D=100, P=24). For convenience of those interested in reanalyzing our data, the 

part of our data concerning the auto-FMT analysis is available in tidy format (supplementary 

information), and the analysis code conducted in the R programming language is available 

as an exported notebook (fmt_effect_on_wbc.pdf) on github: https://github.com/jsevo/

wbcdynamics_microbiome/.49 We conducted an additional analysis with “day” as a 

continuous predictor which did not change our conclusions (supplementary information).

Dynamic systems analyses

We analyzed factors associated with the observed changes of absolute counts of neutrophils, 

lymphocytes and monocytes between two days. In the following we describe how 

chronology of events and biological samples were encoded, and the models used to infer a 

role of medications, clinical parameters and the microbiome on dynamics of white blood 

cells.

To reveal factors that associate with day-to-day changes in white blood cell counts, we 

started from a first-order differential equation of white blood cell (W) dynamics:

d W
dt = W gr + ∑

j = 1

P
βjXj

Where gr represents the intercept, i.e. the base line rate of change during immune 

reconstitution, and βj are the to-be-estimated coefficients of the P predictors Xj, j ∈ P, of the 

white blood cell dynamics. This equation was then linearized to

dln W
dt = gr + ∑

j = 1

P
βjXj

And we parameterized the corresponding discrete difference equation:

Δ ln W
Δt = gr + ∑

j = 1

P
βjXj

where Δln(W) is the log-difference between single days of neutrophils, lymphocytes or 

monocytes counts, and Δt=1 for all intervals. Predictors include the counts of neutrophils, 

lymphocytes, monocytes, eosinophils and platelets during an interval (homeostatic 

feedbacks), immunomodulatory medication and clinical observations such as a blood stream 

infection and the onset of graft versus host disease, HCT parameters such as graft types and 

conditioning regimens, and, additionally, the microbiota composition in “stage 2” of our 

analysis (supplementary information for data exclusion and additional details on interval 

definitions). Importantly, by parameterizing a dynamic equation and analyzing rates of 
change, our coefficient estimates have an immediate causal interpretation within our 

modeling framework (i.e. a βj>0 implies that higher levels of the corresponding Xj increases 
the rate of change of white blood cell type, W). To differentiate such results from other 

associations, they have been described by the term “mathematical causality”41.
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Stage 1 analysis: Feature selection. Identifying medications and clinical observations 
associated with white blood cell dynamics from patients without microbiome data

Stage 1 uses data of patients without any available microbiome samples and the following 

model of white blood cell changes, y:

y = gr + ∑
j = 1

p
βjXj,

with intercept, gr.The predictors, X, include dummy variables for the HCT graft type, 

patients’ age on the date of HCT, sex, 13 most frequently observed positive blood cultures 

with remaining other blood stream infections grouped into a separate category “other 

infections”, an indicator for the onset of graft versus host disease, administrations of 55 

different, most common immunomodulatory medications and platelet transfusion events, and 

HCT conditioning intensity regimens as well as the log-transformed geometric mean counts 

of neutrophils, lymphocytes, monocytes, eosinophils and platelets during the respective 

interval. We used elastic net regression50 for feature selection using the sklearn package for 

the Python programming language51. For elastic net regression with 50% L1-penalty, 

predictors were scaled between zero and 1, and we used 10-fold cross validation (i.e. leaving 

out 10% of patients at each cross-validation step) to choose the regularization strength, λ, 

solving for

argmingr, β
1

2N   ∑
i = 1

N
yi − gr − ∑

j = 1

p
xijβj

2
  +  12λ ∑

j = 1

p
βj   +  12λ ∑

j = 1

p
βj2

Stage 1 yielded a sparse coefficient matrix of predictors used to design the model in stage 2.

Expanded analysis on patients with microbiome data – stage 2

To identify associations between microbiota and white blood cell dynamics, we conducted 

an analogous, Bayesian regression using the package PyMC3 for the Python programming 

language52. Stage 1 identified important differences between transplant types, and we 

therefore stratified our data into 4 cohorts according to their stem cell graft source. Using 

data independently from each cohort, we applied “no U-turn” sampling53 to produce 10,000 

posterior samples from 5 independent MCMC chains that parameterized the model:

y N μ, σ2

μ  =  gr + ∑
j = 1

P
xjβj

with uninformative prior distributions
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gr N mean = 0, standard deviation =  100

βj N mean = 0, standard deviation =  100

σ HalfCaucℎy beta = 2

where y is the observed daily change of a focal white blood cell type as in stage 1 with 

normal distributed mean, μ, and σ, the model uncertainty with a thick-tailed half Cauchy 

prior (importantly, our posterior estimates do not depend on this choice as we obtain the 

same results with an inverse Gamma prior, Extended Data Fig. 10b). μ was a function of the 

baseline growth rate, gr, and predictors, P : medications with non-zero coefficients in stage 1, 

the white blood cell counts, patient age and sex, and HCT conditioning intensities; 

additionally, P  now included the log-abundances of microbial genera as measured by 16S 

sequencing from DNA in the stool collected on the second day of a daily interval (see 

supplementary information for details). We considered taxa that were among the 100 most 

abundant, or had reached maximum relative abundances of at least 10%, and selected those 

who were non-zero in more than 75% of our samples. White blood cell counts and 

microbiota data present during a daily interval were log-transformed, and zeros were filled 

with half of the minimum observed non zero counts (i.e. 0.5e3 and 2e-6, respectively). We 

focused on the largest cohort (PBSC) and used the independent inference results from TCD, 

BM, and cord cohorts for validation.

Validation score

Coefficients learnt from the PBSC patient cohort were assigned a “validation score” based 

on the results obtained from the other three MSK patient cohorts. Our requirements for 

validation were conservative; we required evidence from our validation data sets as well as 

absence of counter evidence. For regression results from each of the validation graft type 

cohorts, i.e. TCD, BM, and cord, we checked if a coefficient had more than 75% probability 

(50%HPDI) to have the same sign as the mean of the PBSC coefficient posterior for a given 

predictor. If so, this was considered evidence of validation, and we summed the evidence 

over the three validation sets (i.e. maximum score of 3, 1 from each of TCD, BM, and cord 

cohorts). Conversely, if we found more than 75% probability among any of the validation 

data sets that a given predictor had the opposite sign as the posterior mean calculated from 

PBSC data, this was considered counter evidence and the validation score was always set to 

zero.

Analysis of white blood cell dynamics with absolute bacterial abundances as predictors 
instead of relative abundances

We conducted an ordinary least squares regression using the statsmodels package in the 

Python programming language of the same model as in the main Bayesian analysis using 
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total bacterial abundances as predictors. This was only possible on a subset of 389 

neutrophil, 331 lymphocyte and 376 monocyte rate observations from PBSC patients.

Forwards simulation of predicted immune system reconstitution kinetics

To assess the impact of the estimated microbiota coefficients on immune system dynamics, 

we conducted 1,000 simulations of the system of 3 differential equations describing the 

dynamics of neutrophils, lymphocytes and monocytes. We ran 1,000 simulations four times: 

in presence and absence of GCSF, each with microbiota compositions enriched or depleted 

in Faecalibacterium, Ruminococcus 2 and Akkermansia. To identify these compositions, we 

ranked the observed microbiota compositions by these taxa, and chose randomly either from 

the top or bottom 100. The coefficients for white blood cell interactions, interactions with 

the microbiota and the effect of GCSF were sampled from our posterior coefficient 

distributions. Using these coefficients sampled at the start of the simulation, and using 50 

cells*μl−1 of neutrophils, lymphocytes and monocytes as initial values, we simulated these 

differential equations forwards in time using the odeint function of the scipy package for the 

Python programming language.

Validation on data from Duke University

We analyzed 9,603 blood samples with 25,581 associated administrations of 

immunomodulatory medications, and 741 microbiota samples from Duke as an orthogonal 

data set to validate our findings. The temporal resolution of this data was much lower, and 

after filtering for samples from the relevant post neutrophil engraftment period, and by 

requiring daily intervals, 83 valid, complete data points were available. Using these data, we 

correlated daily blood cell changes individually in univariate, or jointly in a partial least 

squares regression, with those predictors that achieved more than 95% probability density in 

the positive or negative domain in the PBSC data regression. For each of these predictors, 

we present the sign of slopes and Bonferroni corrected p-values from individual linear 

regressions.

Joint analysis of the effect of antibiotics and white blood cell counts on the microbiota and 
the microbiota and immunomodulatory medications on white blood cell counts

Analogous to stage 1, we performed cross-validated, regularized linear regressions 

(ElasticNet) using the scikit-learn package for the Python programming language to jointly 

estimate the association network between microbiota and circulatory white blood cells. For 

this, we constructed a block matrix X of predictor matrices Xi that include the absolute 

bacterial abundances, drug data (antibiotics for bacterial dynamics and immune modulators 

for white blood cell dynamics), as well as the counts of white blood cells and a separate 

intercept term per block. Each block Xnl, pl
l , with nl observations and pl predictors (l=0…k), 

on the diagonal of X corresponds to the indices of the observed daily log-changes of one of 

the 41 bacterial genera considered in our main analysis or the log changes in neutrophil, 

lymphocyte and monocyte counts from PBSC patients contained in Y (in total we calculated 

15,833 rates from 256 patients). Our regression problem can thus be written as:
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argminβ Y − Xβ  where X =

Xn0, p0
0 ⋯ 0n0, pk

⋮ ⋱ ⋮

0nk, p0 ⋯ Xnk, pk
k

with k=44, i.e. 41 bacterial genera and 3 white blood cell types, the to-be estimated 

coefficient vector β and 0 the zero matrix. This system is underdetermined and we therefore 

chose the same approach as in stage 1, elastic net regression, for feature selection. Predictors 

were scaled between zero and 1, and we used 3-fold cross validation, leaving out 1/3rd of the 

patients at each iteration to identify a global regularization strength, λ, solving for

argminβ
1
2η   ∑

i = 1

η
yi − ∑

j = 1

ρ
xijβj

2
  +  12λ ∑

j = 1

ρ
βj   +  12λ ∑

j = 1

ρ
βj2

where η is the total number of observed daily log changes in genera and white blood cells, 

and ρ the total number of predictors. This yielded a strongly regularizing λs, and thus few 

predictors. To characterize potential bidirectional relationships between white blood cell 

counts and the gut microbiota, we iteratively reduced the regularization strength until the 

strongest interaction between microbiota and white blood cell dynamics, i.e. 

Faecalibacterium with neutrophil dynamics, was detected. We than re-ran the regression 

with this reduced regularization strength, λr.

Shotgun sequencing

Sequencing of 124 post-neutrophil engraftment was conducted on the Illumina HiSeq 

platform. For details and the processing of the FASTQ files, see supplementary information. 

We used the HUMAnN2 pipeline54 with default settings for functional profiling of our 

samples, with the UniRef90 data base and ChocoPhlAn for alignment, and we renormalized 

our samples by library depth to copies per million. We used MetaCyc to obtain stratified and 

unstratified pathway abundances.

Statistical analysis of shotgun data

We calculated the predicted microbiota potency score for each sample and separately for 

neutrophils, lymphocytes and monocytes, by multiplying the abundances of taxa in each of 

the 124 samples with the corresponding posterior coefficients obtained from the PBSC 

inference. To distinguish the sets of metabolic functions that separate samples with positive 

and negative predicted potencies, we converted the pathway abundances into presence and 

absences profiles. We performed a linear discriminant analysis between positive and 

negative potency samples with a least squares solver and automatic shrinkage using the 

Ledoit-Wolf lemma using the sklearn package for the Python programming language51. To 

assess differences in the presence or absence of pathways between samples with positive and 

negative potency, we used Fisher’s exact test for each pathway.
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Extended Data

Extended Data Fig. 1: Blood cell counts over time.
a, White blood cell counts and platelet counts per graft source over the first 100 days post 

HCT per day relative to HCT from N=2,235 adult patients (detailed demographics in 

supplementary table 1); lines: mean, shaded: ± standard deviations. b, data exclusion 

diagram.
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Extended Data Fig. 2: FMT increases WBC counts.
a, HCT patient who received an autologous fecal microbiota transplant (auto-FMT, dashed 

red line) that restored commensal microbial families and ecological diversity in the gut 

microbiota, with concurrent cell counts of peripheral neutrophils, lymphocytes and 

monocytes and immunomodulatory drug administrations. b, total white blood cell counts in 

24 enrolled patients (10 control, 14 treated) post-neutrophil engraftment; vertical lines 

indicate randomization dates. c, weekly mean WBC counts aligned to the randomization 

date (FMT-treated: red, control: black). Line: mean per week, shaded region: 95%-CI. d, 

coefficient estimates (mean vs. mean + FMT effect) from linear mixed effects models of 

total WBC counts over time indicate an auto-FMT-induced increase of WBCs (βFMT: 

p=7×10–14). e, f, g, respectively: neutrophil, lymphocyte and monocyte count trajectories of 

24 FMT trial patients. Thin lines: raw data (blue: post-FMT); thick black: mean per day, 

thick blue: mean+post-FMT coefficient. Means and confidence intervals (shaded region) 

without (black) and after FMT (blue), as well as the coefficient estimate for FMT treatment 

and its p-value from a linear mixed effects model relating cell counts over time to the FMT 

treatment (methods).
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Extended Data Fig. 3: Results of the feature selection stage 1 regression.
a-c, “Stage 1” regression on neutrophil, lymphocyte, and monocyte dynamics, respectively, 

on patients without microbiome data. Coefficients from 10-fold cross-validated elastic net 

regression daily changes in neutrophils. gr: intercept; TCD: T-cell depleted graft (ex-vivo) 

by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: umbilical 

cord blood; NONABL: Nonmyeloablative; REDUCE: reduced-intensity conditioning 

regimen; F: female; N: patients, n: samples (daily changes in neutrophils).

Schluter et al. Page 17

Nature. Author manuscript; available in PMC 2021 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4: Additional coefficients, posterior convergence evaluation and validation.
a-c, Additional posterior coefficient estimates of medications, additional genera and HCT 

metadata from the Bayesian stage 2 regression, see also Fig. 3. REDUCE: reduced-intensity 

conditioning regimen; NONABL: non-myeloablative conditioning regimen. F: female. d-f, 
posterior sampling convergence. Histograms of the ranked posterior draws from the model 

of neutrophil, lymphocyte and monocyte dynamics, respectively, in PBSC patients (ranked 

over all chains), plotted separately for each chain show no substantial differences between 

chains. g-i, Predictors of white blood cell dynamics using data from patients treated at Duke. 

Heatmaps indicate the slope coefficients from individual univariate regressions of 

microbiome and clinical predictors with changes in neutrophils, lymphocytes and monocyte, 

and for comparison the corresponding coefficients signs from the Bayesian multiple linear 

regressions in stage 2 of the analysis of white blood cell dynamics in MSK patients (Fig. 3). 

P-values were adjusted for multiple hypothesis testing using Bonferroni correction: 

***<0.001, **<0.01, *<0.05; p>0.05: n.s. Sign of coefficients from MSK PBSC patients for 

comparison. j, equivalent validation analysis from patients treated at Duke using partial least 

squares regression of microbiome and clinical predictors identified in stage 2 of our analysis 

on daily changes in neutrophils, lymphocytes and monocyte.
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Extended Data Fig. 5: Validation using absolute instead of relative abundance bacterial genus 
data.
a-d Validation analysis of the main model using absolute bacterial abundances as predictors 

instead of relative abundances in Fig. 3. Results show inferred coefficients and p-values from 

multiple linear regressions. One regression per analyzed white blood cell type dynamics, i.e. 

neutrophil, lymphocyte and monocyte daily log-changes, was conducted, and coefficients for 

medications (A), white blood cell feedbacks (B) metadata (C) and total genus abundances 

(D) are shown. This was only possible for only a subset of the data used in the main analysis 

for which we obtained absolute bacterial abundance estimates (methods), n: samples, N: 

patients.
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Extended Data Fig. 6: Jointly inferred association network between white blood cell and 
bacterial genus dynamics (methods).
Strong regularization yields few non-zero coefficients and antibiotics dominate the 

dynamics.
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Extended Data Fig. 7: Jointly inferred association network between white blood cell and 
bacterial genus dynamics with reduced regularization.
Reducing regularization strength (methods) indicates potential bidirectional feedbacks, e.g. 

between lymphocytes and [Ruminococcus] gnavus group (highlighter green boxes, and 

cartoon).
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Extended Data Fig. 8: Functional analysis of microbiota samples.
To distinguish samples predicted to increase rates of white blood cells, a microbiota potency 

score was calculated from posterior coefficients (Fig. 3, methods) and the relative abundance 

of taxa in samples. Bars show linear discriminant analysis (LDA) scores of MetaCyc 

pathway profiles from 124 shotgun sequenced samples that distinguished positive and 

negative potency samples the most (LDA-score magnitude in the 95th percentile). 

Highlighted pathways are discussed in the main text. For each pathway, we tested if pathway 

presence was enriched (depleted) in positive (negative) potency samples using one-sided 

Fisher’s exact test; p-value <0.001: ***, <0.01:**, <0.05:*.
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Extended Data Fig. 9: Abundance profiles of bacterial genera across analyzed samples.
a, The relative non-zero abundance of Staphylococcus is inversely related to microbiome 

alpha diversity, bold line: regression line from a linear model of the mean of the log10 

Staphylococcus relative abundance, shaded: 95% confidence intervals (n=1,381 samples 

with non-zero Staphylococcus abundances). b, c, Abundance profiles of the two genera, 

Faecalibacterium (b) and Ruminococcus 2 (c), most strongly associated with white blood 

cell increase; number of times detected (left) and log10 abundance distribution when above 

detection (right).
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Extended Data Fig. 10: Survival analysis and confirmation of model results with different priors.
a, Kaplan-Meier plot of patient 3-year survival with sufficient available blood data 

(Supplementary Information, Extended Data Fig. 1). b, posterior association coefficients do 

not depend on the choice of prior for σ in the main Bayesian model. Plotted are the posterior 

means from our main analysis against the equivalent inference with an inverse Gamma prior 

(alpha=1, beta=1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Immune reconstitution and microbiome dynamics after HCT.
a Major periods of HCT: I) immunoablation during conditioning before HCT on day 0 

followed by II) post-HCT neutropenia and III) reconstitution. Mean counts (shaded: ±1 

standard deviation, σ) of neutrophils, lymphocytes and monocytes per day relative to HCT 

from patients transplanted between 2003 and 2019 (a), contrasted with individual patients 

(b,c) representative of the recovery trajectories for different stem cell graft sources; patient 1 

received a PBSC graft and patient 2 received umbilical cord blood (line with circles: patient 

data, solid line and shaded region: mean±1σ of all PBSC/cord patients, red: GCSF 

administration). d-f) Loss of microbial diversity during HCT, measured by 16S rRNA gene 

sequencing of fecal samples, confirming previous smaller studies23,24 (d, line: mean per day, 

shaded: ±1σ; e,f: individual patients) coincides with loss of g-i commensal families (g, line: 

mean relative abundances of bacterial families, shaded: ±1σ); h,i: individual patients), often 

replaced by Enterococcaceae domination.
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Figure 2: Neutrophil, lymphocyte and monocyte counts increased in FMT-treated patients in 
weeks following treatment.
a Absolute counts of neutrophils (blue), lymphocytes (green) and monocytes (orange) in 10 

control, 14 FMT-treated patients post-neutrophil engraftment; vertical lines indicate 

randomization dates. b Weekly mean cell counts aligned to the randomization date (FMT-

treated: red, control: black). Line: mean per week, shaded region: 95%-CI. c Coefficient 

estimates from linear mixed effects models of neutrophils, lymphocytes and monocytes over 

time indicate an auto-FMT-induced increase of each white blood cell type (βFMT: 

p=4×10−11, p=2×10−10, p=2×10−16, respectively, full regression results in SI; b, c: N=24 

subjects, n=921 blood samples).
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Figure 3: Bayesian inference reveals associations between the microbiota and dynamics of 
circulatory white blood cell counts.
a Cartoon of the model: observed changes in WBC counts between two consecutive days are 

associated with the current state of the host in the form of blood cell counts in circulation, 

immunomodulatory medications, clinical metadata, and the state of the microbiome. b 
Visualization of the data of WBC dynamics; scatter plot of the principal components (PC) of 

observed daily changes of neutrophils, lymphocytes and monocytes without (grey) and with 

(orange) available concurrent microbiota samples (bold: post neutrophil-engraftment 

samples). c PBSC patients (N=312) provided most paired blood dynamics and microbiota 

samples (n=995); TCD, BM and cord patient data sets were used for validation. d-f Bayesian 

inference results from PBSC patient data; posterior coefficient distributions of associations 

between treatments (d), WBC counts (e), and log10-relative abundances of microbial genera 

(f) and daily changes in neutrophils, lymphocytes and monocytes. v-score: number of 

validation cohorts confirming associations, set to zero if invalidated by validation cohorts 
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(additional coefficients in Extended Data Fig. 4a–c). g 100 microbiota samples with highest 

(left) or lowest (right) abundances of Faecalibacterium, Ruminococcus 2 and Akkermansia. 

h Simulation of neutrophil dynamics in presence of GCSF and microbiota compositions 

sampled either from those high (blue) or low (red) in Faecalibacterium, Ruminococcus 2 and 

Akkermansia relative abundance as shown in g); line: median of 1,000 simulations, shaded 

regions: interquartile range of simulated trajectories. i Time until neutrophil counts first 

reach >2K*μl−1 in equivalent simulations without GCSF.
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