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Abstract: In humans, sexual dimorphism is associated
with the presence of two X chromosomes in the female,
whereas males possess only one X and a small and largely
degenerate Y chromosome. How do men cope with
having only a single X chromosome given that virtually all
other chromosomal monosomies are lethal? Ironically, or
even typically many might say, women and more
generally female mammals contribute most to the job
by shutting down one of their two X chromosomes at
random. This phenomenon, called X-inactivation, was
originally described some 50 years ago by Mary Lyon and
has captivated an increasing number of scientists ever
since. The fascination arose in part from the realisation
that the inactive X corresponded to a dense heterochro-
matin mass called the ‘‘Barr body’’ whose number varied
with the number of Xs within the nucleus and from the
many intellectual questions that this raised: How does
the cell count the X chromosomes in the nucleus and
inactivate all Xs except one? What kind of molecular
mechanisms are able to trigger such a profound,
chromosome-wide metamorphosis? When is X-inactiva-
tion initiated? How is it transmitted to daughter cells and
how is it reset during gametogenesis? This review retraces
some of the crucial findings, which have led to our current
understanding of a biological process that was initially
considered as an exception completely distinct from
conventional regulatory systems but is now viewed as a
paradigm ‘‘par excellence’’ for epigenetic regulation.

A History of X-Inactivation: Early Studies
(1950–1980)

The 1950s and the decades that followed provided much of the

basis for present-day developmental biology and molecular

genetics (Figure 1). It was a period of crucial advances in

mammalian embryology (e.g., ex vivo growth of mouse embryos

[1,2] and transgenic experiments [3]). Contemporary description

of the DNA double-helix [4], of homologous recombination [5], of

cloning [6], and of the first DNA-based genetic markers [7]

similarly opened up the path for genetic engineering, extensive

genetic mapping, and seemingly extraordinary quirky observa-

tions such as those concerning Position Effect Variation (PEV) in

Drosophila [8,9]. McClintock’s earlier work on transposable

elements in maize [10] could, moreover, increasingly be

assimilated and interpreted with reference to the intellectual

context provided by work such as Jacob and Monod’s on the

genetic regulation of the lac operon [11]. The new and seemingly

quirky kinds of gene regulation that could not be explained by

Mendelian genetics per se laid the groundwork for the concept of

epigenetics—a term derived from the fusion of ‘‘genetics’’,

referring to the primary DNA code, and ‘‘epigenesis’’, referring

to the differential interpretation of the hereditary material within

different cell lineages—as being, at least in part, responsible for the

relationship between genes and phenotypes [12].

The conditions and nature of the discovery of X-inactivation in

the early 1960s illustrate perfectly both the intellectual burgeoning

that characterised these years and the emergence of the concept of

epigenetics.

The Discovery of X-Inactivation
In 1949, the scrutiny of motoneurons of a female calico cat by

Barr and his PhD student Bertram led to the identification of a

dark, condensed structure situated close to the nucleolus [13].

Whilst Barr and Bertram did not realise at the time that they were

looking at an inactive X chromosome (Xi)—the critical link

between the ‘‘Barr’’ body and a condensed X chromosome was to

be made only later by Susumu Ohno [14,15]—their observation,

along with that relating to the description of two X-linked loci,

Tabby and Mottled, able to confer a mosaic coat colour to

heterozygous females [16], and the realisation in 1959 that XO

female mice were able both to develop normally and to reproduce

[17], were critical to the formulation by Mary Lyon of the X-

inactivation theory (for early reviews relating to the discovery of

X-inactivation, see [18–20]).

In her key 1961 publication, Mary Lyon suggested that the

heterochromatic X could correspond in different somatic cells of

the same female mammal either to the maternally inherited or to

the paternally inherited X chromosome, and proposed that a

process leading to the global silencing of the genes of an entire X

chromosome referred to as ‘‘X-inactivation’’ occurred during early

embryogenesis and was clonally inherited thereafter, thus

providing an explanation for the tortoiseshell pattern of Barr’s

calico cat [21]. Similar ideas were also advanced by Beutler and

colleagues to account for their observation of the presence of two

types of red cell in human females heterozygous for the X-linked

deficiency in glucose-6-phosphate dehydrogenase (G6pdx gene)

[22] and by Russell, who put forward a similar—if less elaborate—
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explanation for variegation in female mice carrying X-autosome

translocations [23].

Counting, Choosing, and Skewing
Mary Lyon’s theory prompted researchers to study individuals

carrying more than one X per set of autosomes. Surprisingly,

independently of the configuration, all but one of the X

chromosomes in the cell were observed to be condensed,

suggesting that each cell could ‘‘count’’ the number of X

chromosomes and accordingly inactivate (n21) Xs per autosome

set [20]. This presumed counting process would therefore be

responsible for the absence of X-inactivation in male cells.

Other surprising observations concerned the concept of

‘‘choice’’ of active and inactive X(s) and the molecular

mechanisms ensuring randomness. Non-randomness, or skewing,

can be caused by secondary selection for or against cells carrying

the active or the inactive X chromosome (for review see [24]) or

alternatively by primary non-random choice occurring during the

X-inactivation process itself. The latter implies that a distortion

from the 1:1 ratio of X-inactivation in diploid cells can be caused

by factors/genomic region(s) implicated in the X-inactivation

process itself. An example of primary skewing is the X-controlling

element (Xce), a mouse locus defined in 1972 by Bruce Cattanach,

after crosses of mice on different genetic backgrounds revealed that

some Xs were more likely to resist X-inactivation than others

depending on the Xce allele they carried [25]. No locus

homologous to Xce has as yet been described in the human,

possibly due to the difficulties of conducting similar analyses.

Developmental Regulation of X-Inactivation
Another key issue at this time was the establishment of where

and when X-inactivation took place during development. In the

mouse, the Xs that originate either from spermatogenesis, where

the paternal X is sequestered within the ‘‘sex body’’ (for review see

[26]), or from the female germline, where the maternal X

undergoes reactivation at the onset of meiosis, were both shown to

be active in the fertilised egg and to remain active until the 8-cell

stage as measured by biochemical studies of the few available X-

linked isoenzymes [27,28]. Such early biallelic expression was

suspected to concern only a few genes and/or to be of low level

and therefore tolerated at these early embryonic stages. The first

wave of X-inactivation was originally thought to occur around

E3.5 in the extra-embryonic tissues of the trophectoderm and of

the primitive endoderm and to consist in a preferential inactivation

of the paternal X (imprinted X-inactivation) [29]. In contrast,

random X-inactivation was identified as occurring around the

time of implantation (E5.5) in cells of the epiblast that give rise to

the embryo proper [30,31]. Of note, the description of imprinting

as part of the X-inactivation anticipated by several years the first

reports of parental imprinting at autosomal loci [32,33].

These early studies resulted in X-inactivation being firmly

established as the major mechanism responsible for dosage

compensation of X-linked gene expression between the sexes in

mammals, with the characterisation of a small number of key

characteristics such as late replication timing and condensed

heterochromatic structure allowing the Xi to be reproducibly

distinguished from its active homologue.

The X-Inactivation Centre and the Xist/XIST Gene
(1970–2000)

Intuitively, both counting and choice had to require elaborate

mechanisms of a new kind involving both the trans communication

between Xs and between X chromosomes and autosomes and the

Figure 1. Timeline showing milestones in the history of X-inactivation (1950–1975). Images are taken from http://commons.wikimedia.
org, are a courtesy of the corresponding authors, or are unpublished data.
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cis propagation of the X-inactivation signal along the entire

chromosome. Both functions were postulated to be controlled by a

single X-linked region called the X-Inactivation Centre (Xic/XIC

in mouse/human) from which the X-inactivation signal would

then spread to the rest of the chromosome [34]. Retrospectively, it

appears relatively visionary to have imagined such a region

capable of chromosome-wide concerted gene silencing, especially

considering that long-range cis-regulations such as the b-globin

Locus Control Region were reported only considerably later

[35,36]. Paradoxically, the trans effect, which now seems

particularly intriguing, may have appeared, at the time, as

something relatively common given the fact that transvection in

Drosophila had been described by Ed Lewis some 29 years earlier

[37] (Figure 2; for review, see [38]).

Defining the X-Inactivation Centre (Xic/XIC) Using
Chromosome Rearrangements and Transgenesis

The hunt for the Xic/XIC was initially engaged in the human by

comparing a battery of X-autosome translocations that had been

identified in clinical research centres. Translocation breakpoints

were determined cytologically using chromosome banding pat-

terns and X-inactivation profiles were assessed through replication

timing. These experiments resulted in the human XIC candidate

region being restricted to an interval of some 660–1,200 kb [39].

Similar approaches led to a much larger genetic interval of 8 CM

being defined in the mouse [40,41]. Importantly, both series of

studies confirmed the original hypothesis that a single X-linked

region—and not several interspersed loci—underlay Xic/XIC

function. Other experiments using mouse translocations showed

that inactivation was able to spread from the Xi into attached

autosomal material, indicating that the propagation of X-

inactivation probably involved mechanisms similar to PEV in

Drosophila rather than mechanisms depending exclusively on X-

specific sequences [42].

Early observations on female Embryonal Carcinoma (EC) cells

[43] that had suggested that such cell lines might prove useful for

X-inactivation studies [44] were confirmed and amplified by the

derivation of male and female Embryonic Stem (ES) cells, which

were shown to recapitulate, upon ex vivo differentiation, the steps

leading to stable random X-inactivation. The concomitant

development of large fragment transgenesis using these ES cells

and embryos permitted the pursuit of Xic/XIC function using

Yeast Artificial Chromosomes (YACs) first, then P1 phages and

cosmids carrying different Xic formats [45–48]. These studies

allowed the minimal Xic region necessary for both random X-

inactivation and imprinted X-inactivation to be defined [45,49].

An experimental rider to the 450-kb region defined as necessary

for random X-inactivation is the multicopy nature of the transgene

array used [50] (for review see [51]).

The Xist/XIST Non-Coding Gene
The search for an XIC candidate gene led to the isolation of the

XIST gene based on its specific expression from the human Xi

(hence its name, X-inactive specific transcripts) [52]. Though the

human and mouse Xist homologues are relatively poorly conserved

at the sequence level, both lie within the XIC/Xic and show similar

overall genomic organisation [53–56]. Both XIST/Xist genes

produced very large transcripts (15–17 kb) restricted to the nucleus

that do not code for a protein. In this respect, Xist/XIST

constituted one of the first large non-coding RNAs to be

discovered, not long after the H19 RNA involved in the regulation

of the imprinted locus Igf2/H19 was described [57].

The need to follow the behaviour of the inactive and active X

chromosomes within the context of a single nucleus led to the

rapid implementation of single cell analyses such as fluorescence in

situ hybridisation (FISH) techniques. This allowed the visualisation

of XIST RNAs within female somatic nuclei as an accumulation or

decoration of the Xi, suggesting a possible structural role for the

Xist/XIST transcripts [54,58]. Additionally, kinetics of Xist

expression during early mouse development revealed that Xist

was expressed as early as the 4-cell stage from the paternal X,

suggesting early onset of imprinted X-inactivation in the embryo

[59,60]. The lack of inactivation of an X chromosome mutated for

Xist confirmed the major role of the gene in X-inactivation

initiation [61,62].

Xist/XIST Does Not Resume All Xic/XIC Functions
During this period, major positional cloning efforts using genetic

and physical mapping resulted in the first large-scale sequencing of

Xic subregions [63]. Several new genes and putative functional

elements within the Xic/XIC interval were identified. Amongst

them, the DXPas34 minisatellite lying 16 kb downstream of Xist

appeared to share significant properties with imprinting centres

governing the monoallelic expression of autosomal imprinted

clusters such as differential DNA methylation profiles [64] and

associated long-range non-coding transcription running antisense

to Xist [65]. The Xce locus was also shown to map to the Xic region

and to be distinct from Xist [66], although its precise location [67],

nature, and action remain undetermined.

The establishment of Xic physical maps and genomic sequenc-

ing also provided the tools to generate targeted mutations of

specific Xic elements and regions. Such mutagenesis notably

allowed the creation of a large deletion encompassing 65 kb of

sequence 39 to Xist, which resulted in a systematic inactivation of

the mutated X regardless of the presence of another X

chromosome in the cell [68]. At the time, this striking phenotype

was interpreted as identifying a counting element within the

deleted span, thereby irrevocably showing that Xist did not

recapitulate all Xic functions.

Main Discoveries since the Year 2000 and Pending
Questions (2000–Present)

During the new millennium, progress in gene targeting

facilitated the creation of a large variety of novel mutations within

the Xic that have considerably improved our understanding of X-

inactivation initiation. In parallel, the emergence of a role for

chromatin structures as putative transcription regulators [69,70]

and the development of Chromatin Immuno-Precipitation (ChIP)

techniques allowing analysis of chromatin composition [71] has

strongly impacted our ideas of the mechanisms involved in X-

inactivation, building in this respect on earlier documented

changes in Xi-associated global histone hypoacetylation [72] and

CpG island methylation [73,74]. These experiments have

underlined the likely integrated multi-level and redundant nature

of the mechanisms ensuring the stability of the inactive state.

Additionally, the finding that lineage specific genome programmes

could be efficiently reverted to the pluripotency state(s) as

demonstrated, notably, by female induced Pluripotent Stem (iPS)

cells [75] and that this was accompanied by Xi reactivation [76]

has reinforced interest in the link(s) between cell differentiation

and X-inactivation triggering suggested by ES cell differentiation

studies. Finally, the many studies of gene nuclear organisation that

have shown that chromatin fibres do not fold randomly but rather

in a dynamic and directed manner that is correlated with gene

expression status [77] have strongly encouraged the investigation

of these topological and dynamic aspects of X-inactivation

(Figure 3).
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Tsix and the Transcription Antisense to Xist
In the mouse, the enigma of the transcription antisense to Xist

was resolved with the description of Tsix, a non-coding gene whose

major promoter is located just upstream of the DXPas34

minisatellite [78]. Interestingly, Tsix function does not seem to

be conserved in other species (see below). The targeted deletion of

Tsix [79–81] or of DXPas34 [82,83] induced a drastic reduction of

Tsix transcription that resulted in the preferential inactivation of

the mutated X in differentiated female cells. This indicated that

Tsix/DXPas34 is involved in the repression of Xist in pluripotent

ES cells and in random choice during differentiation [84,85]. The

implication of Tsix in imprinted X-inactivation has also been

inferred from the absence of apparent effect of paternally inherited

Tsix mutations as opposed to ectopic Xist expression and

embryonic lethality associated with maternal transmission

[80,86]. The role of Tsix in the counting process has been

addressed by targeting Tsix mutations to XO or XY cells. In the

majority of cases such mutations result in ectopic X-inactivation,

thereby pointing to a role of Tsix in the counting process

[68,81,82,85,87], although one report suggests otherwise [79].

Figure 2. Main discoveries of the years 1975 to 2000. (A) Timeline showing milestones in the history of X-inactivation (1975–2000). Images are
taken from http://commons.wikimedia.org, are a courtesy of the corresponding authors, or are unpublished data. (B) Map of the mouse Xic.
doi:10.1371/journal.pgen.1002212.g002
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Figure 3. Main discoveries of the years 2000 to 2011. (A) Timeline showing milestones in the history of X-inactivation (2000–2011). Images are
taken from http://commons.wikimedia.org, are a courtesy of the corresponding authors, or are unpublished data. (B) Kinetics of events leading to
fully stable inactive state during the differentiation of female mouse ES cells.
doi:10.1371/journal.pgen.1002212.g003
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The divergence in phenotypes in these studies has been suggested

to be linked to variations in the differentiation protocols under use.

The emergence of regulatory antisense RNAs has raised a series

of questions as to their underlying mechanism(s) of action. Does it

necessarily involve RNA interference (RNAi) [88–90]? Or

RNApolII activity across the target genes? Or the induction of

local chromatin modifications? The investigation of these issues

has implicated Tsix transcription in maintaining an open

chromatin structure along the Xist gene [91–93] and in the setting

up of a specific chromatin configuration at the Xist promoter [94].

This activity does not appear to be critically dependent in Tsix

splicing [95]. Despite extensive community efforts, no conclusive

evidence for a role of siRNAs involving the Xist/Tsix overlap has

been adduced and the single report of such activity has yet to be

confirmed [96]. The absence of an RNAi-based mechanism as the

main mediator of Xist repression is in agreement with the absence

of a drastic X-inactivation phenotype in ES cells mutated for an

essential member of the RNAi machinery, Dicer [97,98].

In-Depth Characterisation of Xist Expression and the
Molecular Function(s) of Xist RNA

The fascinating visualisation of Xist/XIST RNAs ‘‘decorating’’

the Xi in cis but not in trans in a developmentally regulated manner

has prompted researchers to investigate the molecular mechanisms

behind Xist/XIST action. Keynote insights have come from a

series of experiments based on the use of inducible Xist cDNA

transgenes in male ES cells, a system that allowed the over-

expression of Xist at different time points during differentiation.

With the possible rider that these studies involve the generation of

non-physiological Xist expression levels and the use of Xist as a

spliced form, a major finding was that of a critical window of time

during which Xist was competent to induce transcriptional

repression and after which the chromosome becomes refractory

to silencing and the maintenance of gene repression is Xist

independent [99]. The existence of a ‘‘chromosomal memory’’

suggested by the observation of more efficient initiation of X-

inactivation in cells that had experienced earlier Xist exposure was

also postulated [99].

Using mutations within the Xist cDNA, the silencing function

was attributed to the highly conserved repeat A located at the 59

end of the transcript, whereas the rest of the molecule appears to

participate in the coating of the Xi in a synergistic, if partially

redundant, manner [100]. Another repeat (repeat C) also interacts

with a nuclear matrix attachment protein—hnRNP-U/SAF-A—

and this interaction is necessary for correct Xist coating [101].

These results may explain the long-standing observation that Xist

RNAs remained attached to the nuclear matrix after chromatin

extraction [58], suggesting that Xist transcripts interact with the

nuclear scaffold rather than directly with the Xi (for review see

[102,103]). Xist-mediated mechanism(s) might also involve—albeit

probably indirectly—the SATB1 and SATB2 nuclear matrix

attachment proteins [104–106].

Chromatin Modifications, Chromatin Remodellers, and
Their Role in the Establishment and Maintenance of
Silencing

In the noughtie years, multiple experiments were aimed at

indexing the chromatin modifications that characterise the Xi in

the hope of reconstructing the chain of events leading to the fully

locked inactive state. One of the strategies employed involved

using immuno-fluorescence combined with Xist RNA-FISH at

successive time points during female ES cell differentiation [107].

A sequential ordering was described with Xist coating of the Xi as

the trigger rapidly followed by RNApolII exclusion, the loss of

euchromatic marks and almost concomitantly the recruitment of

the Polycomb group complex PRC2 [108–111], then PRC1 [112]

with the consequent accumulation of the heterochromatin marks

H3K27me3 and H2AK119ub. Other heterochromatic marks,

histone variants such as macroH2A [113], chromatin remodellers

(ATRX) [114], and CpG island methylation were other later

apposed modifications (for details of the kinetics and the nature of

the modifications see [115]).

The number and variety of epigenetic changes—including those

still to be uncovered—highlights the extent and depth of the

progressive metamorphosis that the presumptive X undergoes

during X-inactivation. Although the regional organisation of these

different marks along the length of the Xi remains to be

established, some ChIP data have already revealed that some

marks such as H3K27me3 are preferentially associated with

promoters and gene bodies [116], and others, such as the

macroH2A histone variants, are more globally distributed [117].

Interestingly, whilst DNA methylation was observed at Xi gene

promoters—albeit quite heterogeneously—genes on the active X

were hypomethylated at the promoter and hypermethylated in the

body of the gene [118]. ChIP analyses on the Xic region have

suggested that the presence of specific chromatin domains along

the Tsix/Xist locus and upstream of Xist prior to the onset of

differentiation is important for X-inactivation randomness

[93,119,120], but stringent analysis of the specific function of the

individual epigenetic marks is still mostly lacking.

Revisiting the Kinetics of X-Inactivation during Pre-
Implantation Development

A fundamental question regarding the nature of the imprint on

X chromosomes has been to clarify whether the paternal X enters

the oocyte in an already ‘‘pre-inactivated’’ state that is subse-

quently maintained, implying that paternal genes would be silent

from the zygotic stage onwards. This question has been the theatre

of both lively debate and extensive work. RNA-FISH analysis of

several genes interspersed along the paternal X during pre-

implantation have now led to the consensual view that an

additional reactivation of the paternal X must occur at some point

between the onset of spermiogenesis and the 2- to 4-cell embryo

stage [121–123]. These analyses also revealed that genes on the

paternal X were not silenced synchronously, suggesting that the

initial repressive state involves genes or possibly region-specific

mechanisms.

The evidence of de novo imprinted X-inactivation during pre-

implantation development [111,124,125] favours the existence of

a robust imprint acting to prevent the inactivation of the maternal

X at these stages. This hypothesis is supported by previous

observations on gynogenetic embryos where the absence of

imprinted X-inactivation was accompanied by the death of the

embryos around implantation, in contrast to androgenetic

embryos, which were capable of achieving regular random X-

inactivation and of surviving until E7.7 [59]. This imprint could be

mediated by a strong repression of Xist (as illustrated by the total

lack of expression from the maternal Xist locus compared to a

pinpoint expression from the paternal locus [125]), although the

requirement of Xist for the triggering of imprinted X-inactivation

has recently been questioned [121].

Linking X-Inactivation to Pluripotency and Genome
Reprogramming

The long-searched-for link between cellular differentiation and

X-inactivation was recently established through the discovery
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that pluripotency factors Nanog, Oct3/4, and Sox2 bind to Xist

intron 1 to prevent Xist upregulation in undifferentiated ES cells

[126] whilst the pluripotency factors Rex1, Klf4, and c-myc

occupied the Tsix promoter and activated Tsix expression [127].

As a consequence at the onset of differentiation, the loss of these

pluripotency factors would be expected to be associated with the

induction of Xist upregulation. Whilst it is clear that additional

binding sites of pluripotency factors/developmentally regulated

factors within the Xic remain to be uncovered [128], these

important results suggest a direct connection between Xi

reactivation during experimentally induced pluripotency and

the molecular mechanisms responsible for the genome-wide

resetting occurring in the inner cell mass (ICM) (for review see

[129,130]).

It is striking that Nanog has also been detected in female

Primordial Germ Cells (PGCs) from E7.75 onwards, a time when

Xi reactivation has been shown to initiate [131–133], indicating

that Nanog might also be involved in Xi reprogramming in the

female germline (for review see [134]). Intriguingly, however, Xi

reactivation appears to occur progressively throughout the time of

PGCs’ migration to the genital ridge, thereby dramatically

contrasting with the speed of reactivation occurring in the ICM.

This suggests that slightly different and as yet uncharacterised

mechanisms may be at work during one of the types of

reactivation. Another related question concerns the absence of

reactivation of the paternal Xi during early pre-implantation

despite the expression of some of the key pluripotency factors. An

attractive working hypothesis is that parental imprinting at these

stages prevents the action of the pluripotency factors. The lack of

Xi reactivation in the epiblast (and in derived female EpiStem

Cells [135]) raises similar issues, although at this later stage, the

absence of some pluripotency factors such as Nanog and Rex1

thought to be required for the initial Xist repression [126] may be

sufficient explanation.

Nuclear Dynamics and trans-Communication between
X-Chromosomes

Large-scale nuclear reorganisation has been shown to accom-

pany the establishment of random X-inactivation. 3D-FISH

analyses suggest that the core of the Xi chromosome territory is

constituted of non-genic sequences, including LINE-1 repeats that

provide the support for the initial coating by Xist RNAs [136].

This is followed by global chromatin changes and by the relocation

of genes to within the Xist repressive compartment [137]. These

observations favour another of Mary Lyon’s hypotheses, who

proposed, based on an enrichment of the X chromosome for

LINE-1 elements, that the latter serve as ‘‘way-stations’’ facilitating

the propagation of the inactivation signal [138,139].

Nuclear dynamics may also be implicated in X chromosome

counting and random choice. It has recently been observed

that the two X chromosomes come into close nuclear

proximity both before and at the very beginning of the

differentiation process and that these X-X pairing events [61]

involve two specific regions within the Xic, respectively: the

Xpr, located within the Xpct gene [140], and the DXPas34-Tsix-

Xite region [141,142], which has long been suspected of

participating in both counting and choice. Dynamic nuclear

contacts between these regions are thought to mediate the

trans-sensing of the two X chromosomes and to resolve through

the apposition of distinct modifications on each allele, resulting

in transient asymmetric Tsix expression [143]. This would then

provide a window of opportunity for monoallelic Xist

upregulation (for a review on nuclear organisation during

X-inactivation, see [144]).

Changing Our Attitudes: The Evolution of
X-Inactivation Mechanisms

X-inactivation in ‘‘ancient mammals’’ such as the marsupial is

characterised by unstable imprinted inactivation of the paternal X,

and, on this basis, imprinted X-inactivation was hypothesised until

the mid-1990s to represent the ancestral form of X-inactivation

[145]. This form of X-inactivation was thought to have been partly

conserved in the mouse, which displays imprinted X-inactivation

both during pre-implantation development, prior to the onset of

random X-inactivation [111,124,146], and in extra-embryonic

tissues [29], whereas hominids appear to have evolved towards the

complete replacement of imprinted by random X-inactivation

[147,148] (reviewed in [149]). Crucial insights into our under-

standing of the evolution of X-inactivation mechanisms have come

from recent sequence comparison of the X-inactivation centres of

different species [150,151]. These showed that Xist/XIST has

evolved from a protein coding gene present in marsupials,

indicating that other non-coding RNAs or totally different

mechanisms must be at work in such ‘‘ancient mammals’’ [152].

Xic/XIC sequence comparisons had previously shown that the

human TSIX was either completely absent or present in a

truncated form, resulting in an absence of antisense transcription

at the XIST promoter [150,153,154] (for review see also [155]). In

parallel, other studies have led to the identification of several new

non-coding genes (Jpx/Enox and Ftx) in the Xic, showing various

degree of conservation [150]. Taken together, these analyses

underline the surprising evolutionary instability of the master

region controlling X-inactivation and of some of the key actors

identified as critical in functional studies in the mouse.

Other important mechanistic differences have been identified

through transgenic experiments. For instance, a YAC transgene

containing the entire human XIST when integrated into the mouse

genome, unlike the endogenous mouse Xist gene, initiated X-

inactivation even before differentiation [156,157]. This points to a

conservation—totally or partially—of the mechanisms involved in

the cis-spreading of X-inactivation between the two species

together with a lack of conservation of the mechanisms acting to

ensure XIST cis-repression prior to differentiation. The latter may

be associated with the absence of human TSIX (see above).

Interestingly, a recent comparison of X-inactivation profiles

during pre-implantation development in humans and rabbits has

found a late onset of X-inactivation in both species compared to

mice and initial biallelic upregulation of Xist alleles prior to

monoallelic resolution [158]. Additional species-specific differenc-

es include the recruitment of diverse heterochromatin marks in

marsupials, mice, and humans [159–162].

A last but certainly not least difference between mice and

human concerns X-linked genes escaping from X-inactivation. In

humans, unlike mice [163], a large number (15%) of X-linked

genes have been shown to escape from X-inactivation [164],

offering a potential explanation of the severity of the phenotypic

alterations observed in XO women (Turner Syndrome) compared

to mice (for review see [165,166]). A level of variability in the

degree of escape has also been reported between individuals,

between tissues, and even amongst cells of the same tissue.

Interestingly, the distribution of the genes escaping from X-

inactivation along the chromosome also differs between human

and mouse. In mice, the few ‘‘escapees’’ are either embedded

within regions undergoing X-inactivation or located within the

single murine Pseudo-Autosomal Region (PAR) (shared with the Y

chromosome). In humans, genes escaping from X-inactivation are

similarly found in both human PARs but, in addition, exist within

clusters in large genomic domains that may be several megabases
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in size. This suggests that large-scale chromatin remodelling as

opposed to gene-based mechanisms is likely at work in humans

[163,164,167]. In mice, LINE-1 transcription [136], the expres-

sion of other non-coding RNAs [168], and binding of the insulator

CTCF [169] at the boundaries of escapees are associated with the

looping out from the Xist-repressive compartment [137], which is

thought to participate in preventing the spreading of heterochro-

matin into genes that escape from X-inactivation. Transgenesis

approaches allowing the introduction of escapees into different

genomic contexts should enable the further dissection of the

molecular mechanisms underlying this phenomenon [170].

An unexpectedly large variety of mechanisms involved in the

initiation, spreading, and stabilisation of X-inactivation therefore

probably exist in the mammalian kingdom. This suggests that ‘‘a la

carte’’ mechanisms most likely evolved to adapt to, and cope with,

the developmental and gestational specificities of each species. The

original observation of the dense Barr body led researchers to

postulate a chromosome-wide process that would affect the entire

X chromosome uniformly. The more recent findings suggest that

gene- or gene cluster-based mechanisms allow the fine tuning of

X-inactivation to cope with the specific requirements of develop-

ment and/or tissue/lineage functionalities. Such mechanisms may

be related to systems used in other phyla to compensate sex

chromosome dosage, as in birds, where only few genes are subject

to dosage compensation [171,172], or in Drosophila, where X over-

expression in males is initially established preferentially and locally

at entry sites scattered all along the X [173].

Concluding Remarks

As the inactivation traveller looks back over the 50 years since

Mary Lyon’s original hypothesis was published, it seems that quite

a long—if winding—road has been covered and some great

achievements made. Raising our eyes, however, reveals the extent

of the path still in front of us.

Moreover, earlier X-inactivation travellers, like Himalayan

climbers, have left their load of unresolved issues. For instance,

despite intense scrutiny and in-depth mutagenesis studies, we still

mostly ignore how the XIC/Xic exerts its function, and even Xist’s

mode of action remains rather obscure. A role for Xist in recruiting

the chromatin remodeller PRC2 [174], which, in turn, triggers

H3K27 trimethylation, has found support from similar results

obtained with other large non-coding RNAs such as Air/AIR,

Kcnq1ot1/KCNQ1OT1 (regulation of imprinted genes at the Igf2r/

IGF2R and at the Cdkn1c/CDKN1C loci), and HOTAIR (develop-

mental regulation of HOXD gene cluster in human) [175,176]. The

recent observation that the mutation of the mouse Hotair was

without dramatic impact on the regulation of the mouse Hoxd

cluster [177] provides a welcome cautionary reminder of the need

to cross-reference such studies to in vivo functional approaches. We

also still ignore how the original euchromatic marks are removed

from the Xi. Does this require the association of Xist RNAs with

specific histone demethylases, or does it depend solely on the

passive dilution occurring via DNA replication and/or successive

mitoses? Other Xist/XIST-related questions concern the potential

role of Xist/XIST splice variants—are they just relics of evolution?

Or integral to the resetting of the Xist/XIST domain after DNA

replication or mitosis?

Within the Xic, the function of many of the more recently

discovered non-coding RNAs such as Jpx/Enox [178,179] and Ftx

[180] and of sites of intergenic transcription such as Xite [181] and

the Region B [150] remains to be fully elucidated, as does the role of

actors lying outside of the immediate Xic/XIC interval, which are

involved in the counting process. The U3 ubiquitin ligase

produced by the X-linked Rnf12 gene, which was recently shown

to act on the initiation of X-inactivation in a dose-dependent

manner, is the first of such actors to be characterised [182–184].

The concentration of research into understanding how the Xic/

XIC operates to count, choose, and initiate X-inactivation has led

to a relative neglect of other topics such as that concerning the re-

equilibration of levels of expression between the single Xa and

autosome pairs. The latter has been suggested to involve the global

upregulation of genes on the Xa in both males and females,

inducing an increase of 1.4- to 2-fold in expression levels of the X

chromosome during the time course of differentiation [185,186],

although a later study involving high-throughput RNA sequencing

failed to confirm these observations [187]. Clarification of this

important point and a more detailed understanding of the

underlying mechanisms are likely to impact largely on current

models of both dosage compensation and of the evolution of the

sex chromosomes.

The molecular processes responsible for the individualisation of

the establishment of a heterochromatin structure on a gene-by-

gene basis and the nature of the mechanism(s) rendering

‘‘escapees’’ resistant to global heterochromatinisation or sensitive

to reactivation similarly remain, for the most part, unknown. Some

of these studies will clearly benefit from the single-cell analyses that

will be required to follow in real time the chromatin dynamics

occurring during embryogenesis and to capture the putative

furtive nuclear interactions and changes in large-scale chromatin

organisation that are likely to be part and parcel of the initiation of

X-inactivation. Clearly, integrating chromosome-wide and Xic

nuclear dynamics to transcriptional regulation is but one step in

this process. The development of in vivo systems allowing the

specific perturbation of some of these features/mechanisms during

early embryogenesis will, almost certainly, be critical to a complete

understanding of how a fully stable Xi is established and how Xi

and Xa epigenetic features are transmitted during the formation of

mosaic cell populations making up the pre-implantation embryo.
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